
Published in the 1st USENIX Conference on Web Application Development 2010

SeerSuite: Developing a scalable and reliable application framework for

building digital libraries by crawling the web

Pradeep B. Teregowda
Pennsylvania State University

Isaac G. Councill
Google

Juan Pablo Fernández R.
Pennsylvania State University

Madian Khabsa
Pennsylvania State University

Shuyi Zheng
Pennsylvania State University

C. Lee Giles
Pennsylvania State University

Abstract

SeerSuite is a framework for scientific and academic dig-
ital libraries and search engines built by crawling scien-
tific and academic documents from the web with a fo-
cus on providing reliable, robust services. In addition
to full text indexing, SeerSuite supports autonomous ci-
tation indexing and automatically links references in re-
search articles to facilitate navigation, analysis and eval-
uation. SeerSuite enables access to extensive document,
citation, and author metadata by automatically extract-
ing, storing and indexing metadata. SeerSuite also sup-
ports MyCiteSeer, a personal portal that allows users to
monitor documents, store user queries, build document
portfolios, and interact with the document metadata. We
describe the design of SeerSuite and the deployment and
usage of CiteSeerx as an instance of SeerSuite.

1 Introduction

Efficient and reliable access to the vast scientific and
scholarly publications on the web requires advanced ci-
tation index retrieval systems [18] such as CiteSeer [19,
36], CiteSeerx [20], Google Scholar [6], ACM Portal [1],
etc. The SeerSuite application framework provides an
unique advanced and automatic citation index system
that is usable and comprehensive, and provides efficient
access to scientific publications. To realize these goals
our design focuses on reliable, scalable and robust ser-
vices.

A previous implementation, CiteSeer (maintained as
of this date), was designed to support such services.
However, CiteSeer was a research prototype and, as such,
suffered serious limitations. SeerSuite was designed to
provide a framework that would replace CiteSeer, to pro-
vide most of its functionality, but designed to be extensi-
ble. SeerSuite improves on several aspects of the original
CiteSeer with features such as reliability, robustness and
scalability. It does this by adopting a multi-tier architec-

ture with a service orientation and a loose coupling of
modules.

CiteSeerx, an instance of SeerSuite is one of the top
ranked resources on the web and indexes nearly one and
half million documents. The collection spans computer
and information science (CIS) and related areas such as
mathematics, physics and statistics. CiteSeerx acquires
its documents primarily by automatically crawling au-
thors web sites for academic and research documents.
CiteSeerx daily receives approximately two million hits
and has more than two hundred thousand documents
downloaded from its cache. The MyCiteSeer personal
portal has over ten thousand registered users.

While the SeerSuite application framework has most
of the functionality of CiteSeer, SeerSuite represents a
complete redesign of CiteSeer. SeerSuite takes advan-
tage of and includes state of the art machine learning
methods and uses open source applications and modules.
The structure and architecture of SeerSuite is designed to
enhance the ease of maintenance and to reduce the cost
of operations. SeerSuite is designed to run on off the
shelf hardware infrastructure.

With CiteSeerx, SeerSuite focuses primarily on CIS.
However, there are requests for similar focused services
in other fields such as chemistry [31] and archaeol-
ogy [37]. SeerSuite can be adopted to providing ser-
vices similar to those provided by CiteSeerx in these ar-
eas. SeerSuite is a part of the project ChemXSeer [32],
a digital library search engine and collaboration service
for chemistry. Though designed as a framework for
CiteSeerx-like digital libraries and search engines, the
modular and extensible framework allows for applica-
tions that use SeerSuite components as stand alone ser-
vices or as a part of other systems.

2 Background and Related Work

Domain specific repositories and digital library systems
have been very popular over the last decades with several



examples such as arXiv [21] for physics and RePEc [12]
for economics. The Greenstone digital library [7] was
developed with a similar goal. These repository systems,
unlike CiteSeerx, depend on manual submission of doc-
ument metadata, a tedious and resource expensive pro-
cess. As such CiteSeerx which crawls authors web page
for documents is in many ways a unique system, closest
in design to Google Scholar.

The popularity of services provided by the origi-
nal CiteSeer and limitations in its design and archi-
tecture were the motivation behind the design of Seer-
Suite [15, 28]. The design of SeerSuite was an incre-
mental process involving users and researchers. User in-
put was received in the form of feedback and feature re-
quests. Exchange of ideas between researchers and users
across the world through collaborations, reviews and dis-
cussions have made a significant contribution to the de-
sign. In addition to ensuring reliable scalable services,
portability of the overall system and components was
identified as an essential feature that would encourage
adoption of SeerSuite elsewhere. During the process of
designing the architecture of SeerSuite, other academic
repository content management system (CMS) architec-
tures such as Fedora [26] and DSpace [5] were studied.
The Blackboard architecture pattern [33] had a strong in-
fluence on the design of the metadata extraction system.
The main obstacles in adopting existing repository and
CMS systems were the levels of customization and the
effort required to meet SeerSuite design requirements.
More specifically, implementation of the citation graph
structure with a focus on automatic metadata extraction
and workflow requirements for maintaining and updating
citation graph structures made these approaches cumber-
some to use.

In addition to repository, search engine and digital
library architectures, advances in metadata extraction
methods [22, 23, 16, 25, 30] and the availability of open
source systems have influenced SeerSuite design. We be-
gin our discussion of SeerSuite by describing the archi-
tecture.

3 Architecture

In the context of SeerSuite reliability refers to the ability
of the framework instances to provide around the clock
service with minimal downtime, scalability to the ability
to support increasing number of user requests and doc-
uments in the collection, and robustness to the ability of
the instance to continue providing services while some of
the underlying services are unavailable or resource con-
strained.

An outline of SeerSuite architecture is shown in fig-
ure 1. By adopting a loosely coupled approach for mod-
ules and subsystem, we ensure that instances can be

scaled and can provide robust service. We describe the
overall architecture in the web application, data storage,
metadata extraction and ingestion, crawling and mainte-
nance sections.

Figure 1: SeerSuite Architecture

3.1 Web application

The web application makes use of the model view con-
troller architecture implemented with the Spring frame-
work. The application presentation uses a mix of java
server pages and javascript to generate the user inter-
face. Design of the user interface allows the look and
feel to be modified by switching Cascading Style Sheets
(CSS). The use of JavaServer Pages Standard Tag Li-
brary (JSTL) supports template based construction. The
web pages allow further interaction through the use of
javascript frameworks. While the development environ-
ment is mostly Linux, components are developed with
portability as a focus. Adoption of the spring framework
allows development to concentrate on application design.
The framework supports the application by handling in-
teractions between the user and database in a transparent
manner.

Servlets use Data Access Objects (DAO) with the sup-
port of the framework to interact with databases and the
repository. The index, database and repository enable
the data objects crawled from the web to be stored and
accessed through the web, using efficient programmatic

2



interfaces. The web application is deployed through a
web application archive file.

3.2 Data storage

The databases store metadata and relationships in the
form of tables providing transaction support, where
transactions include adding, updating or deleting objects.
The database design partitions the data storage across
three main databases. This allows for growth in any
one component to be handled by further partitioning the
database horizontally.

The main database contains objects and is focused on
transactions and version tracking of objects central to
SeerSuite and digital libraries implementations. Objects
stored in the main database include document metadata,
author, citation, keywords, tags, and hub (URL). The ta-
bles in the main database are linked together by the doc-
ument they appear in and are identified by the document
object id.

One of the most unique aspects of SeerSuite is the
citation graph. The nodes of this graph correspond to
documents or citations and the edges to the relationships
among them. This graph is stored in its own database.
The citation relationship is stored in a graph table in
the form of ‘cited by’ and ‘cites’ fields. In addition
the database stores a canonical representation of cita-
tion or document metadata which is basically the most
frequent and correct of the citations, as determined by
a Bayesian network. These records serve as a group-
ing point for metadata collected about a particular docu-
ment or citation. This database thus provides support for
autonomous citation indexing and related features. The
citation relationships are established by generating and
matching keys for the document metadata records dur-
ing ingestion or updates. The use of triggers allows data
in the graph database to be updated when transactions
such as insertions, deletions and corrections occur in the
main database. In addition to triggers, application logic
and maintenance functions maintain the link between the
graph and the main database. MyCiteSeer personaliza-
tion portal stores user information, queries and document
portfolios in a separate database. The link between the
user and the main database is through references in the
tags in the MyCiteSeer database and the main database
version tracking tables. A conventional RDBMS with
support for triggers is used to host these databases.

The repository system provides SeerSuite with the
ability, to provide cached copies of the documents
crawled. In addition to the cached copy, the repository
stores xml files containing extracted document metadata.
These files serve as backup copies of the metadata stored
in the databases. This is similar to the Fedora Object
XML document representation [26]. The repository is

organized into a directory tree. The top of the tree con-
sists of a root folder containing sub directories mapped
according to the segments in the document identifier. The
final level contains metadata, text and cached files. The
document identifier structure ensures that the there are a
nominal number of sub folders under any folder in the
tree structure.

An index provides a fast efficient method of storing
and accessing text and metadata through the use of an
inverted file. SeerSuite uses the Apache Solr an Index
application [13] supported by Apache Tomcat to provide
full text and metadata indexing operations. The meta-
data items are obtained from the database and the full
text from the repository. The interaction of the applica-
tion in the form of controllers is through the REST (Rep-
resentational state transfer) [17] interface. This allows
any indexing application supporting REST API’s to be
adopted by SeerSuite. In addition, this enables introduc-
tion of newer feature sets in the index or new versions of
Solr without disruptions.

3.3 Metadata Extraction and Ingestion

Metadata extraction methods are built using Perl and
C++. To enable interaction with the extraction services,
a service oriented architecture is utilized using a Busi-
ness Process Execution Language (BPEL) or, for con-
venience, scripts. Each component of the extraction sys-
tem individually contributes to the final document, in this
case an xml file, which is then ingested. The feedback to
individual systems is manual adjusting of parameters or
replacing components. The system can be rewired to in-
clude or exclude any extraction modules or applications.

The user can either batch process the incoming data
or process each item individually. Addition of metadata
into the system is controlled by the ingestion system,
which interacts with main database using DAOs. The
ingestion system ensures that essential metadata is cor-
rectly and uniquely labeled, with the help of an object
identifier and checksum based de-duplication. In addi-
tion, the ingestion system makes use of listeners to share
notification data such as alerts that inform users and pro-
grams about objects of interest.

The ingestion process can itself be distributed across
machines, taking advantage of the Document Object
Identifier (DOI), database and shared repository services.
The DOI is issued by on of our web services with its own
database and tracks document identifiers and the time of
their issue.

3.4 Crawler

The suite also includes a Heritrix [8] based crawler for
harvesting documents from the web. The interface be-

3



tween the ingestion system and the crawler is based on
the Java Messaging Service over ActiveMQ [2]. Due to
the modularity of the design, other crawlers can be used.
The ingestion system sends URL submissions messages
containing a job identifier and url through the ingestion
channel, and the crawler responds with ’new content’
messages pointing to the acquired resource and meta-
data to the ingestion system. The crawler can use other
optional channels to provide status messages to listen-
ers. The crawler uses the Heritrix job submission sys-
tem which consumes messages in the submissions chan-
nel and processes these submissions.

3.5 Maintenance

Maintenance services support and enable associated
functionality for the ingestion and presentation systems.
Maintenance systems are responsible for updating the in-
dex, identifying metadata by inference, generating cita-
tion and document statistics, charts generation, and ex-
ternal data linking in the system. For convenience, com-
mon maintenance processes are available through a com-
mand line interface.

An evidence based inference system [16] utilizes a
Bayesian inference framework to determine canonical
metadata for documents in the collection. The system
builds an ideal citation record for a document inferring
from the information provided by citations and the doc-
ument metadata.

Citation graphs which accompany the document view
are generated from the graph database, by examining the
citation relationships and the distribution across years. In
addition to enabling access to extensive document meta-
data, SeerSuite allows documents in the collection to be
linked to copies or bibliographic records in other collec-
tions. SeerSuite provides components to map and link to
other services such as DBLP [4] and CiteULike [3].

The configuration of an SeerSuite instance or appli-
cation is controlled through properties and context files,
through which information about the file system for the
repository, database, index and system parameters can be
specified. The web application and the maintenance and
indexing functions use similar configuration files. In ad-
dition the SeerSuite distribution provides configuration
files or examples of configurations for applications used
such as the Solr index and Tomcat.

4 Workflow

The outline of the process of adding documents to Seer-
Suite instances is shown in Figure 2. Documents are
harvested from the web using focused crawlers (step
1). These documents are first converted from PDF or
PostScript format to text with application tools such as

PDFBox and TET or GhostScript for PostScript docu-
ments in the step labelled 2.

In step 3, to prevent processing of documents such as
resumes and non-academic documents part of the har-
vested collection, SeerSuite uses a regular expression
based filter on the converted text file. The converted, fil-
tered text is processed using state of the art automatic
metadata extraction systems. These include the Support
Vector Machine based header parser [22], which extracts
metadata such as titles, publication information, authors
and their affiliation, and abstract from the document. The
ParsCit [25] citation extraction system extracts citation
and context information from the document.

The ingestion system identifies unique documents and
requests a document identifier for the document. If the
document is found to be a checksum duplicate based on
content, URL mappings are updated to include alternate
URL(s) in step 4. In the same step, the repository is up-
dated with a complete set of files including the document
in the original format. The converted text files, citations,
crawler and document metadata are placed in the relevant
document directory under the repository tree. In addition
to the individual metadata files, a file copy of the com-
plete document metadata is stored in the form of an xml
file. With updates and corrections, the xml files are up-
dated and stored with a version tag. In the main database
papers, authors citation and url mapping tables are up-
dated, triggering updates to the graph database. Updates
to the graph database ensure that the citation relationship
of the incoming metadata to the data already existing in
the collection is accurately maintained.

Documents in the database have a time stamp indicat-
ing time of update, helping the maintenance scripts per-
form incremental updates of the index. Incremental up-
dates are crucial in reducing the time required for mainte-
nance. With step 5, new or updated metadata are indexed.
The maintenance script scans the database for updated
and new documents and creates an in-memory indexable
document, including the document metadata fields and
citation information gathered across the main and cita-
tion graph databases. This document is then indexed by
the main Solr index over the REST interface with an up-
date command. The maintenance system optimizes the
index after each update, using an built in feature in Solr.

Statistics provide users with a perspective of the col-
lection from a citation, document and author ranking us-
ing aggregated citation information. Statistics are gen-
erated from the graph database, in the form of text files,
which are then presented to the user through the statis-
tics servlet interface. Maintenance scripts are manually
scheduled or run by the administrator.

4



Figure 2: SeerSuite Workflow: Links represent actions and documents data

5 An Instance of SeerSuite: CiteSeer
x

CiteSeerx serves as a flagship deployment of SeerSuite.
It utilizes Apache Tomcat as the supporting platform
with MySQL as the RDBMS. The deployment spans
multiple machines with varied configurations. Compo-
nents are distributed based on functionality on these ma-
chines. A pair of level 4 load balancing servers direct
traffic to a pair of webservers. The load balancers use a
connection based metric to determine to which server a
particular request will be directed. To ensure availabil-
ity, the load balancers are configured as a high availabil-
ity asymmetric cluster that uses open source linux high
availability software.

The web servers host the application on the Apache
Tomcat platform with the Tomcat instances as part of
an Apache Tomcat TCP cluster with session information
shared across the cluster. The application processes these
requests and processes them with the help of the index,
database or the repository.

In case of an search query, the application translates
the query to a suitable format and dispatches the query
to the Solr indices. The results are processed and pre-
sented to the user. CiteSeerx uses indices for document
and citation objects, table objects and disambiguated au-
thor objects. Requests for metadata are handled by the
MySQL database system containing the main graph and
the user databases. The repository is responsible for stor-
ing cached documents and the text and metadata files.
Requests for cached files are handled by the applica-
tion with support from the repository stored on a storage
server. The repository system is shared with the inges-
tion system and web servers, using the Global File Sys-
tem within the cluster.

The processing system is maintained separately from
the web application and data storage infrastructure. The
document processing systems are responsible for con-

verting and extracting the metadata from converted text
files. This operation is distributed across machines by di-
viding the incoming data into distinct sets, each set being
processed by individual machines across the cluster.

The deployment is supported by a staging and devel-
opment system, where new features are introduced and
reviewed before being introduced in the production sys-
tem. Major components in the system are backed up ei-
ther using component level replication services and or by
file level backups. In addition to backup on site, off site
backups are utilized to ensure redundancy.

CiteSeerx depends on operating system based security
and application security provided by firewalls plus intru-
sion detection systems and the underlying framework.
Application logs and Tomcat error and access logging
provide audit trails for bug fixes and troubleshooting.

Infrastructure adopted by CiteSeerx has led to several
issues. Frequent freezes occur due to deadlocks involv-
ing the shared file system. Hardware failures have led to
loss of data across the repository database. In such cases
back ups have helped restore services. The ability to re-
cover from these unfortunate losses showcase CiteSeerx
robustness.

5.1 Focused Crawling

For the initial crawling seeds, CiteSeerx assimilated the
complete collection of documents and their URLs from
CiteSeer with some exceptions. These documents were
ingested into the system by utilizing the already existing
information in the CiteSeer databases.

Though equipped with Heritrix, the new CiteSeerx
uses a customized focused crawler, which runs incre-
mentally. The crawler is run on a daily basis and can
fetch several thousand new documents every day. The
system maintains a list of parent URLs where documents
were previously found. The parent URL’s include aca-

5



Figure 3: CiteSeerx Deployment

demic homepages containing lists of online publications.
CiteSeerx has nearly two hundred thousand unique

URLs containing links to publications. The crawl pro-
cess begins with the crawl scheduler, which selects a
thousand parent URLs based on an estimated likelihood
of these pages having new documents. The selected
URLs are fed to a seed crawler. The seed crawler re-
visits these thousand URLs and also follow links up
to two hops from each scheduled URL. By parsing
fetched pages, the seed crawler will retrieve all document
links eligible for processing. These represent documents
which will be later downloaded. If a document link is
found on a new URL, this URL will be added to the par-
ent URL list. This enables the parent URL list to expand.
The crawling system also maintains a list of document
URLs and a list of document checksum hash values for
all previously crawled documents. These two lists help
avoid downloading duplicate documents. When the seed
crawler outputs a list of discovered document URLs, it
first compares them to the maintained document URL list
and filters out duplicate URLs. Therefore, documents
with same URLs will not be downloaded again. Only
new document URLs will be fed to the document crawler.

The document crawler then simply fetches all docu-
ments in PDF or PostScript from the input list. After
the documents are crawled, their checksum values are
calculated based on their content and compared to the
maintained checksum list by the ingestion system. Thus,
content based duplicates are removed. Finally, only new
documents are ingested into CiteSeerx. User submis-
sions to CiteSeerx are directly submitted to the crawler

seed listing. A user interface allows tracking of the doc-
uments obtained from a submitted URL. This allows the
user to determine, whether a document has been ingested
into CiteSeerx.

6 User Interface

A user interacts with SeerSuite through a number of web
pages. The most common of these include results of
searches, document details, and citation graphs. We de-
scribe a set of pages, whose coverage spans most of the
functionality provided by SeerSuite. The user interfaces
are built using jsp, backed by the controller servlets. A
navigation panel allows the user quick access to the main
pages. The access control to pages across the application
is based on the login system provided as part of MyCite-
Seer component.

6.1 Search Interface

Figure 4: Document Search Results

The search interface in SeerSuite allows users to make
queries across document, author, and table metadata ei-
ther by using the default query interface or an advanced
search interface. Search results are generated as a re-
sult of a user query. The results can be sorted according
to the relevance, citations, and recency of the document
ingestion. Since SeerSuite indexes document metadata
across entities such as title, authors and their affiliation,
year of publication, publication venue, keywords and ab-
stract, the user can make queries which span one or more
document or citation entities through the advanced query
interface.

6



Each search result includes the title, author names,
publication information and a short snippet of the text
containing the query terms. A javascript interface en-
ables users to view the abstract of a document from a
mouse over the down arrow associated with each search
result. The process and content of the search results are
unique and can be ranked based on citations, relevance
and recency.

SeerSuite applications use a Solr instance configured
to index metadata fields defined by SeerSuite across doc-
uments in the collection. SeerSuite uses a simple rank-
ing algorithm based on the default ranking algorithm
provided by Solr for ranking results. These results are
boosted based on the location of where the results were
found and citations, e.g. a result containing the query
term in the title or author names have higher rank. New
ranking methods are readily implemented in Solr.

Relevance based searches are used by default in Seer-
Suite. The ability to rank documents based on the num-
ber of citations is an optional default.

SeerSuite uses author normalization for the metadata
extracted from the documents to provide a comprehen-
sive set of variations of the author names. The normal-
ization allows authors to be searched for through name
variants.

In addition to viewing results on the search results
page, the user can subscribe to search feeds, which up-
date the user when new results are available for a partic-
ular query.

6.2 Document Summary

The document view in figure 5, provides the user a view
of metadata information aggregated for each document.
This view contains extensive metadata about a individual
document including - title, author names, venue of pub-
lication, year of publication and the citations contained
in the document. The tabbed interface allows the user
to browse citation relationships and the metadata version
information. Link to the source of the document along
with the option to download a cached copy are provided.
In case the document is found at multiple URLs, the page
lists all the alternate document URLs. The citation link-
ing information provided along with the document in-
cludes links to documents cited by this document. The
documents cited by the document are ranked by how well
they are cited in the collection. A graph illustrating the
citations to the document across years which can be use-
ful for identifying trends and impact is also displayed.

The document summary page provides several
MyCiteSeer interaction points. Add to Collection, Cor-
rect Errors and Monitor changes links allow the user to
insert documents to his collection, correct metadata and
monitor the document.

Corrections to the metadata involve several changes to
the document metadata and citation relationships. Seer-
Suite examines these relationships, updating the citation
graphs as necessary. It either creates or updates the ci-
tation cluster established for the current document af-
ter the corrections are submitted. A versioning system
enables the administrator to track changes to document
metadata. A user can view the modifications to the doc-
ument through the versions tab, which displays all ver-
sions of the document metadata and the attribution for
each update or correction.

The document view page contains data spanning mul-
tiple databases and the generation of this page is resource
intensive. In addition to providing metadata, the docu-

Figure 5: Document Summary

ment also allows the user to download the bibtex of the
article or collect the bibtex of the article in a meta cart
for download later. The page also provides several book-
marking links and the ability to copy document data pro-
vided on the page using browser plugins.

6.3 Citation Relationships

The citation graph generated and stored as part of the in-
gestion process and updated as part of the maintenance
process allows SeerSuite to provide users with tools for
citation analysis. Citation based relationships such as ac-
tive bibliography and co-citations are available for each
document through the related documents tab in the doc-
ument summary page. This relationship provides valu-
able information to users, allowing users to track docu-
ments of their interest. Such analysis is helpful in ex-
ploring topics and literature surveys. Active Bibliogra-
phy provides links between documents citing the same

7



set of documents and is one way grouping of documents.
Another method is by identifying Co-citations which are
links between documents which cite the same documents
to a particular document. Figure 6 shows the Active Bib-
liography of a document in CiteSeerx.

The citation graph is dynamic, changing as a result
of corrections and other metadata updates. SeerSuite
indexes the citation relationships with the document.
Therefore, in addition to the database, rendering citation
relationships such as active bibliography and co-citations
requires queries to the database followed by queries to
the index. The listing of each citation in the relation-
ship is based on a similarity document measure imple-
mented at the index. The links utilize the cluster ID,
which is mapped to the document in case the document is
available in the collection. In case where the document
is not available, it points to the index listing of docu-
ments citing the citation entity. The citation relationships
and ranking of authors, documents and citations are also
summarized in a detailed year by year list in the statistics
pages.

Figure 6: Active Bibliography

7 MyCiteSeer

SeerSuite aims to provide the user with services which
improve the efficiency of the user in accessing informa-
tion. MyCiteSeer plays a crucial role in providing and
supporting these services. MyCiteSeer allows users to
store queries, document portfolios, tag documents, and
monitor and track documents of interest. The portal
space is available after user registration and login. We
briefly describe the user interface of MyCiteSeer.

Figure 7 shows the index page for MyCiteSeer. The
index page serves as the landing page, with the menu
providing links to other pages including the profile, col-
lections tags and monitoring pages.

The profile page presents the user with interfaces
to update information stored as part of his profile on
MyCiteSeer including the password for the account. In
the case where API support has been enabled, the profile
page also allows the user to request an API key.

The collections page allows the user to view collec-
tions of documents stored within the account. These col-
lections are user defined sets of documents, aggregated
under their profile for ease of access. The user can use
a collection to download bibliographic data for all docu-
ments in a collection.

Tags provide the user with a listing of tags defined by
the user and link to the documents tagged with that tag.
The tag portal page allows the user to view and delete
tags defined by the user and the documents these tags are
linked to.

The monitoring page allows users to track changes to
a document in the SeerSuite collection. Any updates to
document metadata, including the citation graph linked
with the document for documents in the monitored col-
lection are sent to the user through e-mail registered with
the system.

In addition to providing the user with a portal, MyCite-
Seer enables SeerSuite to utilize crowd sourcing or dis-
tributed error correction [27] for corrections to document
metadata. By assessing weights based on prior correc-
tions, the evidence based system can detect malicious
changes.

The application program interface component utilizes
MyCiteSeer user data for generating the access key and
controlling access to services provided. An user marked
as an administrator has additional functionality available
to him through MyCiteSeer. A subset of configuration
and administrative interfaces are made available through
an admin console.

The portal framework shares the structure and stor-
age with the main application. While the servlets for
MyCiteSeer are developed with SeerSuite in mind, the
interaction with SeerSuite applications can easily be ex-
tended to other projects and services. The MyCiteSeer
component interacts with SeerSuite ingestion and main-
tenance modules, using listeners. The maintenance and
ingestion service provide notifications on objects being
updated or processed through these listeners.

8



Figure 7: MyCiteSeerx Index Page

8 Other Interfaces

8.1 OAI

The Open Archives Initiative (OAI) provides an effi-
cient protocol metadata dissemination framework for
data sources such as a SeerSuite. A low barrier mech-
anism, OAI is particularly suitable for SeerSuite applica-
tions, enabling instances that provide metadata sharing,
publishing and archiving. SeerSuite supports interfaces
compliant to the OAI-Protocol for metadata harvesting
(PMH) [11] previously established with CiteSeer [35].

In the earlier CiteSeer system, modified CGI scripts
were utilized for handling queries and generating com-
pliant content for the OAI. In contrast, requests made
to the SeerSuite OAI interface are handled by servlets,
which translate requests into data access calls. The
servlets assemble results in an OAI compliant manner,
which is presented to the client. SeerSuite supports the
full complement of OAI-PMH version 2 verb requests
and provides content in the Dublin Core format. Thus,
all document metadata is accessible to a client through
the OAI interface.

8.2 API

Application Programmable Interfaces (APIs) are cen-
tral for programmatic access to the repository. Through
REST [17] web services, SeerSuite supports the needs of
both programmers aiming to access metadata from the
digital library and software agents looking to exchange
information between digital libraries. SeerSuite API is a
revamped version of the previously developed CiteSeer

API [34] which was SOAP/WSDL-based.
The goal of the SeerSuite API is to share metadata

with developers and software agents. Moving to a REST-
based web service from a SOAP/WSDL-based one re-
duces the size of requests and the responses exchanged
between the client and the server. Hence, developers can
retrieve information faster, and total network traffic is re-
duced. The version of the API deployed in CiteSeerx
provides access to the papers, authors, citations, key-
words, and citation contexts. The API caller may pro-
vide a SQL-like query to be executed as a filter on the
matching set. The resource URI formats are shown in
table 1. Objects are identified by document IDs (docid),
author IDs (aid) and citation IDs (cid). SeerSuite API
can output the results in both XML and JSON formats
depending on the callers preference.

Type URI Format
Paper http://host/papers/[docid]

Author http://host/authors/[aid]

Citation http://host/authors/[cid]

Table 1: CiteSeerx API Resource URI Formats

SeerSuite adopts Jersey [9] as a library to build the
RESTful web service, which in turn implements the
JAX-RS [10] reference. SeerSuite requires users looking
to use the API to have a valid MyCiteSeer account. Ac-
count information in MyCiteSeer is used to generate an
Application ID (appid) which has to be passed in every
HTTP request as a mechanism of authentication. Daily
limits for users are monitored and can be managed by
administrators for performance.

9 Federation of Services

CiteSeerx includes several unique services, which are not
part of the SeerSuite application framework. Provision-
ing for these services is an unique aspect of the Seer-
Suite framework. Many of these services have evolved
as a result of research and are still being developed. The
developer builds and operates these services indepen-
dently, sharing hosting infrastructure with the main ap-
plication. Separate tables and databases and index oper-
ations maybe provisioned for each service. In the follow-
ing sections, we briefly discuss Table search and author
disambiguation search.

9.1 Table Search

Tables in documents often contain important data not
present elsewhere. Table search services are based on
TableSeer developed as part of the project [29]. Table

9



search automatically extracts tables metadata, and in-
dexes and ranks tables present in a SeerSuite collection.
While table search shares components of the web appli-
cation and shares the repository with SeerSuite, the index
and extraction components are independent of SeerSuite.

The SeerSuite interface utilizes the main application
framework for interaction with the table index. The
queries results from the index are again processed and
presented by the main application framework. Indepen-
dent operation of the index from the main index allows
for more efficient query processing and ranking of table
search results. The results utilize the SeerSuite file sys-
tem infrastructure view the result of particular pages of
the tables in cached documents. The ingestion, main-
tenance and updates services for Table search are inde-
pendent of SeerSuite, allowing for flexibility in research
and development. Some aspects of the table search in-
gestion system require access to the document metadata
such as title, author not extracted as part of Table ex-
traction, which are acquired from the main SeerSuite in-
stance metadata.

Table search has served as a template for the devel-
opment of similar services such as algorithm and figure
search, which are in development.

9.2 Author Disambiguation

Author disambiguation enables users to identify whether
records of publications in a SeerSuite collection refer to
the same person. The author disambiguation service pro-
vided by SeerSuite is based on an efficient integrative
framework for solving the name disambiguation prob-
lem. A blocking method retrieves candidate classes of
authors with similar names and a clustering method, DB-
SCAN, clusters papers by author. The distance met-
ric between papers used in DBSCAN is calculated by
an online active selection Support Vector Machine algo-
rithm(LASVM) [24]. This system has been utilized in
CiteSeerx. The disambiguation application identifies dis-
tinct authors based on header information which includes
author affiliation and co-authorship.

The implementation makes use of already existing au-
thor object data in the main database, and generates clus-
ter IDs for disambiguated authors that are stored in a sep-
arate table and index. Results for disambiguated author
queries are handled by main application framework by
interacting with the main database and the index. A pro-
file page exists for each disambiguated author, with au-
thor affiliation, impact, and publications garnered from
the SeerSuite instance. The profile page also provides
a link, if available, to the author homepage obtained
through a system HomePageSeer. An incremental algo-
rithm replacing the offline batch algorithm currently used
is in development.

10 Usage

CiteSeerx receives nearly two million requests from
across the globe. A significant portion of this traffic is
as a result of document views, downloads and searches.
An analysis of access logs is presented in this section.

Figure 8: CiteSeerx Traffic in 2009

The graph in figure 8 shows average hits per month
for CiteSeerx during the year 2009. The search group-
ing includes requests for document and author search.
The ’other’ grouping includes queries for citing docu-
ments, legacy mappings (redirects from CiteSeer), OAI,
and requests to author profile and static pages. Docu-
ment related requests include downloads and summary
views. The graph indicates a growth in the number of
hits, driven by downloads, views of citation relation-
ships, and search. The number of document views have
grown by a lesser margin. During this time, the collec-
tion of documents in CiteSeerx grew by 200,000 docu-
ments with updates to document metadata through cor-
rections.

The majority of the referrals to CiteSeerx are through
pages hosted on CiteSeerx (67 %). A number of users
(29 %) arrive without a referrer,(i.e., users landing di-
rectly on CiteSeerx or requests by crawlers). Redirection
from CiteSeer contribute (1 %); references from Google,
Google Scholar (2 %,1 %), Yahoo, and Bing (all <1 %).

Figure 9 shows a division of traffic from different
countries in 2009 identified using GeoIP. Among users
of CiteSeerx, nearly half of users are from the United
States. Taiwan, Germany, China, India, UK, France,
and Canada are other major sources of traffic. Traffic
from two hundred and twenty countries are grouped un-
der ’other’.

Along with valid accesses, CiteSeerx experiences a va-
riety of attacks every day. These attacks involve access to
forbidden areas, portscans, SQL injection attacks, double
decoding, buffer overflow, and cross scripting attempts.

10



Figure 9: Country Profile

11 Collaboration and Distribution

SeerSuite has been developed in collaboration with sev-
eral groups across the world. This collaboration includes
exchange of ideas, development of modules and host-
ing of services. Independent copies of CiteSeerx are
maintained by these research groups at University of
Arkansas, National University of Singapore and King
Saud University.

Data collected as part of crawls, document metadata,
anonymized user log data are available on request. Sev-
eral research groups have already taken advantage of
these datasets. The source code for SeerSuite has been
released under the Apache software license version 2 on
sourceforge.

To improve adoption of SeerSuite based systems and
provide the user an efficient way to explore and deploy
instances. A virtual appliance with SeerSuite has been
made available for such a purpose. The appliance uses
open source components and contains a complete de-
ployment of SeerSuite. This allows users to explore and
operate instances of SeerSuite, in the pre-installed VM.
The use of the virtual appliance also benefits developers
and testers.

User feedback and comments have helped improve
both user the experience and the troubleshooting bugs.
SeerSuite enables other innovative and valuable tools to
be built using metadata extracted and published. Such
efforts include projects such as PaperCube [14] and
JabRef.

12 Lessons Learned and Future Work

By adopting a multi-tier architecture, open source appli-
cations and the use of software frameworks, SeerSuite
has improved upon the client server architecture initially

adopted by CiteSeer. In addition this is an approach that
has provided reliable scalable services in CiteSeerx.

One of the lessons learned is in the provisioning of
infrastructure. To allow SeerSuite instances to grow to
large sizes without constraints on storage and computa-
tion, virtualization and distributed computing need to be
utilized and managed.

The number of requests for metadata and data from the
CiteSeerx collection emphasizes the need for developing
automated methods data sharing such as API and OAI
services for SeerSuite instances. There have also been
requests for a content based similarity and duplicate de-
tection service, which is under development.

With the new design adding features in SeerSuite is
more straight forward. However, further work on sepa-
rating components is required to support systems which
make use of a smaller subset of services. These systems
may not include the citation graph service. Among other
services, MyCiteSeer should be developed as a stand
alone service. This will easily enable other services such
as HomePageSeer that take advantage of login based ac-
cess. Development of MyCiteSeer as an independent ser-
vice, shared across many Seer instances is under con-
sideration. This would allow users to share information
across projects and instances.

One of the continuing major challenges is new and
high quality metadata extraction. Another is that mod-
ules will need to be refactored to support massive crawls
using parallelization at the module level.

A number of optimizations have been implemented in
SeerSuite, prominent among these is the citation rela-
tionships stored in the index. This allows citation rela-
tionship queries which form document summary views
to be more readily handled. Such an optimization has the
drawback in that updates to these relationships are only
available to the user once there has been updates to the
index.

A federation of services model adopted for newer ser-
vices benefits both users and developers. This model
gives users a peek into new features and researchers an
easy a way to include new services. From a development
standpoint, this is also useful since services can be tested
and users can provide feedback.

Improvements to the User Interface will be required to
support upcoming features. Ranking of results and im-
proving relevance in search are active topics of research.
Performance analysis tests for SeerSuite to identify pos-
sible improvements and issues are being designed.

13 Summary

We have described the design, architecture, and deploy-
ment of SeerSuite. We believe SeerSuite overcomes
many of the issues in an earlier system, CiteSeer, which,

11



due to its design, limited growth and extensions to other
services. SeerSuite is designed to take advantage of open
source applications, frameworks and state of the art com-
ponents. It also allow users to readily build mashups and
related applications. The use of loose coupling of mod-
ules and federated services enables SeerSuite to easily
offer new features and components.

The user interface allows search, document summary
views, and citations clustering. We identify workflows
for generating these pages. Various features such as
tagging, building collections and correcting documents
were identified for the MyCiteSeer portal. In addition to
providing services through the web user interface, Seer-
Suite also provides services through the OAI/PMH and
API interfaces.

The statistics and usage pattern for CiteSeerx, a Seer-
Suite instance, provide information about growth in traf-
fic and the profile of users based on the country of origin.
We show that SeerSuite is a collaborative venture with
open source code and virtual appliances that encourage
adoption and research. We believe that SeerSuite will
continue to improve and support a wide variety of ser-
vices and user needs while remaining scalable, reliable
and robust.

14 Acknowledgments

We gratefully acknowledge partial support from the NSF
and useful comments by Yves Petinot.

References

[1] ACM Portal. http://portal.acm.org/portal.cfm.
[2] ActiveMQ. http://activemq.apache.org/.
[3] CiteULike. http://www.citeulike.org/.
[4] DBLP. http://www.informatik.uni-trier.de/

˜ley/db/.
[5] Dspace. http://www.dspace.org/.
[6] Google Scholar. http://scholar.google.com/.
[7] Greenstone. http://www.greenstone.org/.
[8] Heritrix. http://crawler.archive.org/.
[9] Jersey API. https://jersey.dev.java.net/.

[10] JSR 311. https://jsr311.dev.java.net/nonav/

releases/1.1/index.html.
[11] Open archives initiative - protocol for metadata harvest-

ing v.2.0. http://www.openarchives.org/OAI/

openarchivesprotocol.html.
[12] RePEc. http://repec.org/.
[13] Solr. http://lucene.apache.org/solr/.
[14] BERGSTROM, P. Papercube. http://papercube.

peterbergstrom.com.
[15] COUNCILL, I. G., GILES, C. L., IORIO, E. D., GORI, M.,

MAGGINI, M., AND PUCCI, A. Towards next generation cite-
seer: A flexible architecture for digital library deployment. In
Research and Advanced Technology for Digital Libraries, ECDL
2006 (2006), pp. 111–122.

[16] COUNCILL, I. G., LI, H., ZHUANG, Z., DEBNATH, S.,
BOLELLI, L., LEE, W. C., SIVASUBRAMANIAM, A., AND
GILES, C. L. Learning metadata from the evidence in an on-line
citation matching scheme. In JCDL (2006), pp. 276–285.

[17] FIELDING, R. T. Architectural Styles and the Design of Network-
based Software Architectures. PhD thesis, University of Califor-
nia, Irvine, Irvine, California, 2000.

[18] GARFIELD, E. ”Science Citation Index”a new dimension in in-
dexing. Science 144, 3619 (1984), 649 – 654.

[19] GILES, C. L., BOLLACKER, K. D., AND LAWRENCE, S. Cite-
seer: An automatic citation indexing system. In Digital Libraries
(1998), pp. 89–98.

[20] GILES, C. L., COUNCILL, I., TEREGOWDA, P., AND R., J. P. F.
CiteSeerx. http://citeseerx.ist.psu.edu, 2010.

[21] GINSPARG, P. Can Peer Review be better Focussed.
http://people.ccmr.cornell.edu/˜ginsparg/

blurb/pg02pr.html.
[22] HAN, H., GILES, C. L., MANAVOGLU, E., ZHA, H., ZHANG,

Z., AND FOX, E. A. Automatic document metadata extraction
using support vector machines. In JCDL ’03: Proceedings of the
3rd ACM/IEEE-CS joint conference on Digital libraries (2003),
pp. 37–48.

[23] HAN, H., MANAVOGLU, E., ZHA, H., TSIOUTSIOULIKLIS, K.,
GILES, C. L., AND ZHANG, X. Rule-based word clustering for
document metadata extraction. In SAC (2005), pp. 1049–1053.

[24] HUANG, J., ERTEKIN, S., AND GILES, C. L. Efficient name
disambiguation for large scale databases. In The 10th European
Conference on Principles and Practice of Knowledge Discovery
in Databases (2006), pp. 536–544.

[25] ISAAC COUNCILL, C. L. G., AND KAN, M.-Y. Parscit: an
open-source crf reference string parsing package. In Proceedings
of the Sixth International Language Resources and Evaluation
(LREC’08) (Marrakech, 2008), European Language Resources
Association.

[26] KAHN, R., AND WILENSKY, R. A framework for distributed
digital object services. International Journal on Digital Libraries
6, 2 (2006), 115–123.

[27] LAWRENCE, S., BOLLACKER, K., AND GILES, C. L. Dis-
tributed error correction. In DL ’99: Proceedings of the fourth
ACM conference on Digital libraries (1999), p. 232.

[28] LI, H., COUNCILL, I., LEE, W.-C., AND GILES, C. L. Cite-
seerx: an architecture and web service design for an academic
document search engine. Poster Session 15th International World
Wide Web Conference (2006).

[29] LIU, Y., BAI, K., MITRA, P., AND GILES, C. L. Tableseer:
automatic table metadata extraction and searching in digital li-
braries. In JCDL (2007), pp. 91–100.

[30] MCCALLUM, A., FREITAG, D., AND PEREIRA, F. C. N. Maxi-
mum entropy markov models for information extraction and seg-
mentation. In ICML (2000), pp. 591–598.

[31] MITRA, P., GILES, C. L., SUN, B., AND LIU, Y. Chemxseer: a
digital library and data repository for chemical kinetics. In CIMS
’07: Proceedings of the ACM first workshop on CyberInfrastruc-
ture: Information Management in eScience (2007), pp. 7–10.

[32] MITRA, P., GILES, L., AND MUELLER, K. ChemxSeer. http:
//chemxseer.ist.psu.edu.

[33] NII, H. P. Blackboard systems, part one: The blackboard model
of problem solving and the evolution of blackboard architectures.
AI Magazine 7, 2 (1986), 38–53.

[34] PETINOT, Y., GILES, C. L., BHATNAGAR, V., TEREGOWDA,
P. B., HAN, H., AND COUNCILL, I. Citeseer-api: towards seam-
less resource location and interlinking for digital libraries. In
CIKM (2004), pp. 553–561.

12



[35] PETINOT, Y., TEREGOWDA, P. B., HAN, H., GILES, C. L.,
LAWRENCE, S., RANGASWAMY, A., AND PAL, N. ebizsearch:
an oai-compliant digital library for ebusiness. In JCDL (2003),
pp. 199–209.

[36] STEVE LAWRENCE, C. LEE GILES, K. B. CiteSeer. http:

//citeseer.ist.psu.edu, 1998.

[37] TAN, Q., MITRA, P., AND GILES, C. Metadata extraction and
indexing for map search in web documents. In Proceeding of the
17th ACM CIKM (2008), pp. 1367–1368.

13


