
Published in the 2nd USENIX Workshop on Hot Topics in Cloud Computing 2010

CiteSeer
x

in the Cloud

Pradeep B. Teregowda
Pennsylvania State University

Bhuvan Urgaonkar
Pennsylvania State University

C. Lee Giles
Pennsylvania State University

Abstract

Information retrieval applications are are good candi-
dates for hosting in a cloud infrastructure. CiteSeerx, a
digital library and search engine, was built with the goal
of efficiently disseminating scientific information and lit-
erature over the web. The framework for CiteSeerx, an
application of the SeerSuite software, was designed with
a focus on extensibility and scalability. Its loosely cou-
pled architecture with service oriented interfaces allows
the whole or parts of SeerSuite to readily be placed in the
cloud.

1 Introduction

Digital library search engines have been a topic of re-
search and development for the past several years [?].
The growth in information available both on the Web and
from rapid growth in electronic resources make informa-
tion retrieval systems like CiteSeerx [?] invaluable. At
time of this publication the CiteSeerx collection indexes
more than 1.6 million documents and receives several
hundred thousand unique visits per day.

The rate of growth of digital information is always a
challenge to the effective design of information retrieval
systems. Particularly, Web based digital library search
engines such as CiteSeerx can readily take advantage of
the reduced maintenance, elasticity, and availability of
infrastructure on demand provided by a cloud infrastruc-
ture [?].

SeerSuite includes components common to other in-
formation retrieval applications. Inspired by services
provided by CiteSeer [?], SeerSuite provides among oth-
ers full text indexing, autonomous citation indexing ,and
a personal portal in the form of MyCiteSeer. It extracts
and publishes extensive metadata for documents, authors
and citations. Its design takes advantage of open source
applications such as Tomcat, Solr/Lucene, Java Spring
Framework and open source RDBM systems. Advances

in and development of automatic metadata extraction for
parsing header and citation information have also been
important.

SeerSuite based applications share a common set of
infrastructure challenges to support an a growing set of
documents. Although the CiteSeerx architecture allows
hosting of all components and services in the cloud, the
size of the CiteSeerx collection and the amount of data
transferred make cloud hosting of CiteSeerx not straight-
forward. There are several cost-effective approaches for
solving this problem. We discuss some of these ap-
proaches in detail and identify the lessons learnt from
this analysis. The rest of the paper is arranged in the
following manner. Background architecture and services
of SeerSuite are discussed in Section 2. The issues of
hosting are identified in Section 3. Various strategies for
hosting services are discussed in Sections 4, 5 and 6 with
future work in Section 7 and conclusions in Section 8

2 Background and SeerSuite Architecture

Recent research on the role of cloud infrastructure in in-
formation retrieval systems has focused primarily on its
use for information extraction [?]. Furthermore, the fo-
cus has been on the computational costs with little at-
tention to data storage costs and applications pertinent to
grid and distributed computing [?]. In contrast, we focus
on the use of cloud infrastructure hosted on infrastructure
already offered by various vendors.

2.1 Architecture

We give a brief introduction to SeerSuite architecture and
services supporting SeerSuite. A brief commentary on
the feasibility and refactoring required to host these ser-
vices or components is included. Figure 1 shows com-
ponents and services of SeerSuite. Service oriented in-
terfaces allow components and services to be distributed
across physical systems. Components and services can

Figure 1: SeerSuite Architecture

be broadly grouped into those responsible for handling
user requests and those handling acquisition and inges-
tion of documents. Among those handling user requests
are the Web application which provides presentation and
personalization services. The focused crawler, document
conversion and metadata extraction, ingestion, and main-
tenance services are responsible for acquiring and ingest-
ing documents which are then stored in the data storage
components for user access.

2.1.1 Web Application

User requests at the Web application are processed with
the support of the database, index or the repository. Seer-
Suite supports interfaces such as the OAI [?] API to al-
low programmatic access to data stored in the collec-
tion. The Web application allows users to search for
authors, documents, citations and view document meta-
data. Some services provided by the Web application
require state based interactions with the user, particu-
larly MyCiteSeer. For cloud hosting minor refactoring
will be required to support user interaction with MyCite-
Seer. The Web application load depends on traffic, which
varies throughout the day, making the Web application a
strong candidate for hosting.

2.1.2 Focused Crawler

Document acquisition drives the growth of SeerSuite in-
stances. In particular, focused crawlers [?] are used
to efficiently harvest relevant documents. The focused
crawler is a strong candidate for hosting, since it can take

advantage of the elasticity and on demand provisioning
by efficiently scheduling crawls.

2.1.3 Document Conversion and Information Ex-

traction

Before the documents can be processed by the extrac-
tion system, the documents in PDF and PostScript for-
mat are converted into text and filtered to remove those
not containing citations. Documents acquired from the
Web are processed by multiple modules, which extract
extensive document, citation, author metadata. These
modules are based on state-of-the-art machine learning
methods. Prominent among these is the header parser,
which extracts document and author information. The
ParsCit module is utilized to extract citation metadata.
The metadata extraction system is not a strong candidate
for a Platform-as-a-Service cloud offering, since exten-
sive refactoring might be required.

2.1.4 Document Ingestion

The documents processed by the extraction and conver-
sion service are then ingested into the system. This in-
cludes adding the document and related metadata to the
database and to the repository. By comparing the check-
sum of the document to be ingested with others, the in-
gestion system avoids adding duplicates. Documents are
assigned a unique document object identifier from the
DOI service. The use of service oriented interfaces and
the minimal code footprint allow the ingestion system to
be easily hosted.

2.1.5 Data Storage

Persistence of data extracted is achieved by the use of in-
dex, databases and file storage components (repository).
The database is utilized by the web application to provide
document summaries and metadata. The index allows
users to query the full text and citation information. The
file storage caches documents crawled by the crawler and
metadata extracted by the extractors as files.

2.1.6 Maintenance Service

Tasks not part of the ingestion system such as updates to
the index, inference based metadata updates, and charts
and generation of citation charts and statistics are per-
formed by the maintenance system. The maintenance
systems generate very little data and can be scheduled by
the administrator. These services need to be closer to the
data storage due to vast amount of information processed
for each iteration of their operation. Their candidacy for
the cloud is hence dependent on hosting of the data stor-
age components.

2

2.1.7 Federated Services

SeerSuite provides several features not part of the main
application. These features are supported by services
which may not share the same framework or applica-
tion components, but share infrastructure. Many of these
services are still being developed. Such components are
strong candidates for migration to the cloud, since they
can take advantage of cloud offerings in their develop-
ment.

2.2 Deployment

The current deployment of SeerSuite as CiteSeerx is on
a group of heterogeneous systems. Two Web application
instances are hosted on the Apache Tomcat platform in
a cluster. Each Web application instance is hosted on a
system with two dual core CPUs and 16GB of RAM. The
Web traffic is load balanced through a software based
level four load balanced cluster. The database and repos-
itory are hosted on separate machines with large storage
(> 15 TB), dual core dual CPU’s and 16GB of RAM.
MySQL is the RDBMS for the system. Indices for docu-
ment, tables, author names are hosted separately on ma-
chines with dual core dual CPU and 16GB of RAM. The
repository is shared between the web servers using the
Global File System over Global Network Block Device.

2.3 Terminology

A description of terms used in future discussions relevant
in the context of SeerSuite are provided below.

Request Types: User requests can be grouped into
search, document views, MyCiteSeer and others. The
search request and document view requests involve the
Web application, database and the index. MyCiteSeer re-
quests involve the Web application and database. Others
include requests for stylesheets, images, etc.

Peak Load: This represents a set of requests observed
at the web server exceeding a set threshold of requests
per second (90th percentile).

3 Problem Definition

SeerSuite as a whole can be hosted in Infrastructure as a
Service platforms with minimal refactoring. Such a host-
ing, however, is expensive with current cloud offerings.
This is due to the large collection size and the volume
of data transfered between the application and the user.
The key question we are interested in answering in this
context is moving which sections, components or subset

of Citeseer
x

to a cloud would be most cost-effective ?.
To answer this question, we consider the entire appli-

cation with a particular focus on the Web application,

its supporting components, the index, database and the
repository. We present three different approaches by pre-
senting first a hypothesis and discuss the cost and impli-
cations. We make use of the existing log monitoring data
collected from the CiteSeerx deployment. The Web ap-
plication logs for a period of 15 days were analyzed to
obtain data for the following sections. Figure 2 shows
the number of requests made during this period along
with the type of request.

Figure 2: Traffic by Request Type

4 Component Hosting

Hypothesis: Based on the cost of hosting, we can choose
one or several components to host in the cloud.

SeerSuite includes several components among which
we would like to an optimal set. We consider compo-
nents of the system, choosing components based on the
size, data transfer and feasibility of migration. In our
case, the cost of hosting is dominated by the amount of
data stored in the cloud and the volume of data trans-
ferred in and out of the cloud. We consider the amount
of data stored in these components and the volume of
data transferred through the component.

Figure 3 shows the flow of data between components
of CiteSeerx. Data for creating this graph was obtained
from log files, and application specific monitors. In the
case of crawlers and information extraction system, the
data flow was assumed proportional to the number of
documents acquired and processed. This graph is use-
ful for determining candidates for hosting in the cloud.
For example, if CiteSeerx were hosted entirely within the
cloud, the amount of data stored in the cloud would be
1.7 TB, with 3.2 TB of data transferred between the user,
web and the application. Clearly, the repository is the
largest component in size, while the web application has

3

Figure 3: Data Flow - CiteSeerx Components

the largest amount of data volume crossing it. We pro-
vide a cost estimate for the components based on cloud
infrastructure services offered by Amazon EC2 [?] and
Google App Engine [?]. Cost estimates are based on a
30 day month.

Choice of vendors is a result of support in terms of
environment and code libraries offered or supported by
these vendors. In the case of Amazon EC2, we consider
a mapping of one to one to an extra large instance for
hosting the database, application, index, repository, ex-
traction and crawler services. We assume that additional
instances are provided as required in Google App Engine
with no additional cost.

Cost Amazon Google
Initial Setup Data In 1820.4 0 182

Monthly

Stored 1820.4 182.04 273.06
Data In 152 0 15.2
Data Out 3072 460.8 368.64
Trans. 368 190.77 0
CPU 30*24 2937.6 144

Total Monthly $3771.21 $800.9

Table 1: CiteSeerx Hosting

Table 1 provides the cost of hosting CiteSeerx for a
month. We now examine the cost of hosting individual
components, with all other services hosted locally. Es-
timates are provided in Table 2. CiteSeerx suffers ini-
tial setup costs, as a substantial collection already exists;
however, new services will not incur this cost.

Note that Amazon currently provides free data trans-
fers into their cloud. If this were not the case, hosting
services on Amazon would be much more expensive and
also incur initial setup costs. Calculating the cost of host-
ing the entire application leads to a figure of $3771 for

Component A. EC2 G. App Engine
Initial Month Initial Month

Web Service 0 1448.18 0 942.53
Repository 0 1011.88 163.8 593.21
Database 0 858.89 12 348.05
Index 0 527.08 3.1 83.48
Extraction 0 499.02 0 90.6
Crawler 0 513.4 0 105

Table 2: Component Costs in the Cloud (Costs in USD)

Amazon EC2 and $800 for Google App Engine. The cost
of hosting components also lends support to the conclu-
sions drawn about data and access [?].

Individual components hosted in the cloud have im-
plications beyond the cost of hosting them. Costs related
to refactoring code for migration has not been accounted
for in Table 2. In the case of the Google App Engine,
existing code written in languages not supported by App
Engine will require significant refactoring. Along with
components hosted, components hosted locally may re-
quire refactoring. This refactoring is minimal if the ser-
vice or component utilized a service oriented interface
and significant when services are closely coupled.

Lessons Learned: If the cost of hosting an entire ser-
vice is prohibitive, hosting components may be a reason-
able approach to taking advantage of cloud infrastruc-
ture. The cost effectiveness of such an approach depends
on data transferred through the service. Loosely coupled
components are easier to migrate. For existing compo-
nents and code, refactoring costs will provide closer es-
timates of costs. This approach is suitable when a fixed
budget constrains the placement of services or compo-
nents. By identifying components, data transfer, and
refactoring costs, a hosting solution can be identified.

5 Content Hosting

Hypothesis: Content, particularly static content can be
hosted in the cloud such that, traffic can be shared across
local and cloud hosted content.

An analysis of peak traffic at the web services provides
an insight on how this can be achieved. ¿From the fig-
ure 4, we see that most requests for peak traffic occur for
Javascript and Stylesheets which can be hosted indepen-
dent of the web application. In this case the amount of
data stored on the cloud is small, so despite the high vol-
ume of traffic the cost of hosting is cost-effective. The
size of the files to be placed on the cloud is 2.24 MB.
By hosting these files in the cloud, the amount of data
transferred for CiteSeerx from the cloud is 390.26 GB
costing less then $80 (on both Amazon EC2 and Google
App Engine services) per month. While this is just part

4

Figure 4: Request Types at Peak

of more than 3 TB of data volume between the applica-
tion and the user, it helps the system satisfy a significant
number of peak load requests.

The same approach can be used to identify elements
like subset of the repository, into the cloud. Such an ap-
proach would involve identifying the most commonly ac-
cessed documents and placing them both locally and in
the cloud. During peak loads, clients can be directed to
the cloud for access.

Lesson Learned: Hosting specific content relevant to
peak load scenarios in the cloud can be beneficial, and
the simplest approach to hosting services in the cloud.

6 Load based partitioning

Hypothesis: A copy of the application or a component,
supporting a locally hosted application during peak loads
can be hosted in the clouds.

This approach is particularly important for supporting
the growth in traffic, flash crowds providing users access
to service.

Figure 5 shows the requests received at the web server.
The total number of requests are shown in gray, with doc-
ument requests shown in blue. Search requests are shown
in brown. From the graph we identify that the 90th per-
centile is represented by 60 requests per second. Most of
these requests are for elements associated with presenta-
tion (javascript and stylesheets). Assuming that the traf-
fic growth continues at the same pace and as more fea-
tures (Algorithm and Figure search) are added, There is
a need for provisioning more systems. Instead of procur-
ing these systems, infrastructure at the cloud can be con-
sidered to fulfill this need.

Two strategies are possible in partitioning based on
load. Of these, one strategy would be to host a copy of
the entire application in the cloud, using load balancers

Figure 5: Number of Requests per Second

to identify and direct traffic during peak load conditions.
Table 3 provides the costs of such a hosting solution for
CiteSeerx in Amazon EC2 and Google App Engine. All
data measurements are in GB, and transaction measure-
ments in transactions per second obtained via iostat.

Cost Amazon Google
Initial Setup Data In 1820.4 0 182

Monthly

Stored 1820.4 182.04 273.06
Data In 14.78 0 1.48
Data Out 298.7 44.8 35.84
Trans. 368 9.27 0
CPU 70 285.6 7

Total Monthly $521.71 $317.38

Table 3: CiteSeerx Peak Load Hosting

These costs can be considered in comparison to the
cost of procuring, maintaining systems. Savings by
avoiding adoption of storage systems locally add to the
attractiveness of cloud infrastructure.

An alternate approach would be to host only the com-
ponent under stress in the cloud, For example, a database
replica to support a locally hosted database could be de-
ployed in the cloud. If this instance were used only dur-
ing peak load conditions, the costs would decrease to
$385, since the instance would be in use for 70 hours.

Lessons Learned: By utilizing a replica or subset of
the application for handling only peak loads, we can take
advantage of cloud infrastructure in a cost-effective man-
ner. This can resolve issues stemming from the growth
of the collection and user traffic.

5

7 Future Work

We were however not able to examine the temporal na-
ture of traffic and user behavior. By identifying user pat-
terns, the hosting solutions can be optimized to take ad-
vantage these patterns. While this discussion included
the Amazon EC2 and Google App Engine for cost com-
parison, this work needs to be extended by examining
in depth options offered by other cloud offerings, private
clouds and virtualization solutions.

Products like private clouds offered Eucalyptus [?] can
be utilized to take advantage of hardware already existing
as part of the system. Components related to user inter-
action with CiteSeerx hosting with services like Amazon
Virtual Private Clouds, and local clouds can be consid-
ered for these services.

Impact of including cloud hosted services on other ser-
vices has not be considered in the current discussion. In-
clusion of cloud services could require significant refac-
toring and changes to maintenance cycles. Several op-
portunities exist within SeerSuite framework for adopt-
ing virtualization and cloud infrastructure. In particu-
lar, the repository can be restructured to take advantage
of cloud based storage solutions in an effective manner.
Hadoop [?] based metadata extraction and log analysis
systems could enable faster document acquisition.

8 Conclusions

Preliminary costs on hosting SeerSuite instances such as
CiteSeerx in the cloud do not seem unreasonable. We de-
velop different approaches that can be adopted either for
their cost-efficiency, simplicity, or handling peak loads.
Cost estimation for each approach, along with lessons
learned from analysis provide a guideline for further ex-
ploration. Our future work would focus on adoption of
virtualization and extraction systems suitable for hosting
in the cloud. In addition to these goals, we would like
to examine user behavior, issues in privacy, security for
components hosted in the cloud that were not discussed
in this work. As part of these discussions, we have pre-
sented a detailed examination of the existing deployment
of SeerSuite in CiteSeerx.

9 Acknowledgments

Authors acknowledge partial grant from NSF.

6

