
Online Person Name Disambiguation with Constraints

Madian Khabsa
Computer Science and

Engineering
The Pennsylvania State

Univeristy
University Park, PA, USA

madian@psu.edu

Pucktada Treeratpituk
∗

Science Park Promotion
Agency

Ministry of Science and
Technology

Bangkok, Thailand
pucktada@gmail.com

C. Lee Giles
Information Sciences and

Technology
Computer Science and

Engineering
The Pennsylvania State

Univeristy
University Park, PA, USA

giles@ist.psu.edu

ABSTRACT

While many clustering techniques have been successfully ap-
plied to the person name disambiguation problem, most do
not address two main practical issues: allowing constraints
to be added to the clustering process, and allowing the
data to be added incrementally without clustering the entire
database. Constraints can be particularly useful especially
in a system such as a digital library, where users are allowed
to make corrections to the disambiguated result. For exam-
ple, a user correction on a disambiguation result specifying
that a record does not belong to an author could be kept as a
cannot-link constraint to be used in any future disambigua-
tion (such as when new documents are added). Besides such
user corrections, constraints also allow background heuris-
tics to be encoded into the disambiguation process. We
propose a constraint-based clustering algorithm for person
name disambiguation, based on DBSCAN combined with a
pairwise distance based on random forests. We further pro-
pose an extension to the density-based clustering algorithm
(DBSCAN) to handle online clustering so that the disam-
biguation process can be done iteratively as new data points
are added.

Our algorithm utilizes similarity features based on both
metadata information and citation similarity. We imple-
ment two types of clustering constraints to demonstrate the
concept. Experiments on the CiteSeer data show that our
model can achieve 0.95 pairwise F1 and 0.79 cluster F1. The
presence of constraints also consistently improves the disam-
biguation result across different combinations of features.

Categories and Subject Descriptors

H.3.3 [[Information Storage and Retrieval]: Informa-
tion Search and Retrieval

∗Work done while at PSU

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full cita-

tion on the first page. Copyrights for components of this work owned by others than

ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-

publish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

JCDL’15, June 21–25, 2015, Knoxville, Tennessee, USA.

Copyright c© 2015 ACM 978-1-4503-3594-2/15/06 ...$15.00.

http://dx.doi.org/10.1145/2756406.2756915.

General Terms

Algorithms, Experimentation

Keywords

Name Entity Recognition; Record Linking; Name Disam-
biguation; Clustering; Online Disambiguation

1. INTRODUCTION
People search is a large part of the search traffic on the

internet. An old analysis of query logs from AllTheWeb
and AltaVista search sites show that 11-17% of the queries
were composed of a person name with additional terms and
4% were simply just person names [22, 3]. The most popular
query on Google has often been a celebrity name, with other
four or five names ranked in the top ten queries. Similar pat-
terns can also be found in digital library search. Around 9%
of the search requests made to the digital library CiteSeerX
are queries with author names. This number goes up to
almost 19% when counting search from unique IPs.

The task of searching the web for information regarding an
individual person can be very challenging, especially when
the name is shared by many others. According to the data
from 1990 U.S. Census Bureau, 90,000 different names are
shared by 100 million people [4]. As the amount of informa-
tion on the web grows, more of these people are mentioned
on different web pages, causing even more ambiguity in the
search results. This problem is further compounded by the
fact that sometimes the same person is referred to differ-
ently at various places. A person might be referred to with
the full name on his/her homepage, but with just an initial-
ized name or even just their position in some news articles.
Moreover, even the information associated with one single
person can be different in different sources. For instance,
two web pages about the same person may provide different
name spellings and different addresses.

Generally, the ambiguity of person’s name comes in three
varieties: (1) the aliasing problem - when a person uses mul-
tiple name variations such as “Ronald W. Williams” and
“R.W. Williams”, and (2) the common name problem - when
there is more than one person with the same name, which
is especially problematic for high frequency names such as
many asian names; and (3) the typographic error problem -
which often results from human input or automatic extrac-
tion systems. The goal of person name disambiguation is to

37

resolve such ambiguities, linking and merging all the records
of the same person together.

Name ambiguity is an important problem in many appli-
cations, including web search, natural language processing,
information integration, and digital libraries. Name disam-
biguation is a specialized case of a more general database
problem, called record linkage. Without name disambigua-
tion, uses in the people search task, are often required to
manually sort through search results to find the right per-
son. In digital libraries, it hinders the accurate attribution of
scholarly work, which is often used by academic institutions
and funding agencies for promotion and funding consider-
ation. In databases, name ambiguity leads to difficulty in
merging multiple personal information databases, such as
patient medical records from various healthcare providers.
Additionally, the resulting disambiguated names can also be
used to help improve other data mining results such as natu-
ral language processing, and social network analysis. While
the person name disambiguation problem has long been well-
studied, it has recently gained even more significance due to
the increased ubiquity of names on the internet and the rise
of social networking sites.

In this work we address two main practical issues found in
a working name disambiguation system but generally have
not been addressed by most previous person name disam-
biguation algorithms. First, most previous methods treat
the person name disambiguation problem as a static prob-
lem, where all entities to be disambiguated are available
to the algorithms. However, for working systems such as
PubMed, the number of names to be disambiguated is ever
increasing, for instance, when new papers are added to a
digital library. Most previous methods would require the
disambiguation process be periodically run on the whole
data, which is time consuming and usually not scalable.
Second, often the disambiguated clusters contain inconsis-
tencies either due to insufficient information or mistakes by
the similarity function. Thus, we propose an extension to
the density-based clustering algorithm (DBSCAN) to han-
dle online clustering so that the disambiguation process can
be done iteratively as new data points are added. Addi-
tionally, our clustering method also imposes constraints on
the clustering result, ensuring that each record in the same
disambiguated cluster is consistent with each other. Our ex-
periments show that our method not only outperforms the
previous method in terms of performance, but also is ca-
pable of discovering new name clusters as new records are
added.

The remainder of this paper is organized as follows. Sec-
tion 2 surveys related work, while Section 3 describes the
pairwise profile similarity function. In Section 4 we intro-
duce DBSCAN with constraints and extend it to run in on-
line fashion. The results and evaluations are reported in
Section 5. Section 6 concludes the paper and discusses fu-
ture work.

2. RELATED WORK
Previous work in person name disambiguation can be gen-

erally be categorized as either supervised or unsupervised
approaches. Unsupervised methods harness some pre-defined
likeness between people records in grouping them into clus-
ters (e.g. similarity between topic-distribution or link-structure)
[5, 21]. Supervised methods, on the other hand, explicitly
learn the linking functions or rules from labeled examples

[15, 16, 23, 24]. Some hybrid approaches also have been
proposed. [23] and [12] use heuristics to automatically gen-
erate reference sets and use them, instead of labeled exam-
ples, as training data for the supervised methods. In [20]
disambiguation is conducted using heuristics, with super-
vision being applied to optimize the heuristics parameters.
We can also classify person name disambiguation methods
based on the types of information they employ. In the digital
library domain, the most often-used information is found in
citations such as titles, coauthors, and venues [15, 16]. Ad-
ditional information that is extracted from documents them-
selves, such as affiliations [16, 24] and abstract [21], have also
been used. Some utilize information in the structure of the
citation graph and the co-authorship graph [5]. Some ex-
plore external knowledge sources such as search engine and
author homepages for disambiguation [18].

However the aspect of clustering streaming data has been
ignored in most previous work on person name disambigua-
tion. Most, if not all, assume the number of entities to be
disambiguated static, and carry out the disambiguation pro-
cess in a batch mode. On the other hand, many studies have
been done on how to cluster streaming data in the database
and data mining communities [29, 14, 13, 9, 8, 2, 1]. Ester
et al. introduced an incremental version of DBSCAN [10].
While Cao et al. modify an density-based clustering method
for dealing with streaming data [7]. Wagstaff and Cardie
propose two types of instance-level clustering constraints,
must-link and cannot-link, and show that these constraints
can increase clustering accuracy and decrease runtime [27].
Whang et al. propose a general framework for entity res-
olution that can handle some integrity constraints, called
“negative rules” [28]. Carlos Ruiz and colleagues introduced
C-DBSCAN to accommodate for constraints when cluster-
ing data[19], but their work uses instance level constraints
only such as must-link and cannot-link. Our work, on the
other hand, introduces cluster level constraints in addition
to instance level constraints. Furthermore, our work com-
bines a streaming DBSCAN method along with constraints
requirements that are not only at the instance level, but also
at the cluster level.

3. PAIRWISE PROFILE SIMILARITY
Given two author profiles, p1 and p2 we seek to build

similarity function that measures if these two profiles refer
to the same author or not. In our previous work [24] we
have introduced a machine learning method to learn such
similarity function using random forests. Random forest is
an ensemble classifier proposed by Breiman that combines a
collection of decision trees [6]. Each decision tree within the
forest is built with a different bootstrap sample drawn from
the original data set. Each tree is then constructed to the
maximum size without any pruning. The variable selection
for each split in the tree is conducted on a randomly selected
subset of features, instead of on the full feature set as is
usually done in the traditional decision tree. Once the forest
is built, the classification can be done by simply aggregating
the votes of all trees. We will adapt this work to measure
profile similarity with small modifications described later.

The pairwise author disambiguation service provides meth-
ods for calculating distance between a pair of author records
and for retrieving the ε-neighborhood of an author record.
The ε-neighborhood of a record r is a set of records with
distance from r less than ε. The pairwise disambiguation

38

service is composed of two components: the record indexes
and the pairwise distance function. The indexes together
with heuristic blocking function provide efficient retrieval of
candidate records for ε-neighborhood generation. Currently,
we simply block and index each record according to the last
names and the first initials. While a more sophisticated
blocking function should improve both the performance and
the efficiency of the algorithm, it is beyond the scope of this
work.

We extract the total of 31 features for computing the pair-
wise similarity. These 31 features can be grouped into six
categories: name-related information (names and emails),
affiliation, coauthors (names and their affiliations), venue
information (venues and years), content (abstracts and ti-
tles), keyphrases and citations. Table 1 shows all the meta-
data used in the pairwise similarity, except citation informa-
tion. Most metadata, such as author/coauthor names, affil-
iations, and etc, are extracted from each paper itself. These
are available in all author records, albeit sometimes erro-
neous. The venue information (publication venue and year),
on the other hand, is obtained through citation matching,
and thus is less populated. Out of 3355 records of the test
data set (described later), only half (∼1500) contain venue
names and about two-third contains years of publication.
The citation information is computed from the global cita-
tion graph and thus requires access to the whole CiteSeerX
database. Lastly, for the keyphrases, we use the SEERLAB
algorithm [26] to extract keyphrases from each paper. The
examples of keyphrases extracted by SEERLAB system are
shown in Table 1.

The pairwise distance function is learned using a random
forest. Since a random forest is a collection of random-
ized decision trees [6], the percentage of trees voting with
the record pairs non-coreferent can be used as the distance
measure. We use a similar feature set as proposed in [24],
which includes similarities between author names, affilia-
tions, emails, coauthors, papers titles, journals, and pub-
lication years. We also use two additional metadata types
that were not in the original feature set in [24]: citations
and keyphrases. For citations, we compute two features
based on citation similarity: #bibliographic coupling and
#co-citations. #bibliographic coupling between two author
records is the number of papers that are cited by both pa-
pers, while #co-citations is the number of times that both
papers appear together in the reference sections.

As for the keyphrases, we use the normalized Point-wise
Mutual Information (nPMI) to measure the similarity be-
tween two keyphrases. The normalized Point-wise Mutual
Information (nPMI) for two keyphrases, x and y, is defined
as:

nPMI(x, y) =
log p(x,y)

p(x)p(y)

−log p(x, y)

The nPMI ranges from −1 to 1. nPMI(x, y) is maximal
at 1, when x and y fully co-occur and is minimal at -1 when
x and y never co-occur (p(x, y) = 0). nPMI(x, y) is 0 if x
and y are independent. For a record pair r1 and r2, with
keyphrases {kp1i}i=1..n and {kp2i}i=1..m respectively, we
compute three nPMI similarity measures: total nPMI sim-
ilarity, maximum nPMI similarity and average nPMI simi-
larity. For example, the total keyword similarity between r1

Table 1: Example of metadata used for the disam-
biguation
Title:
Tuning Memory Performance in Sequential and Parallel Programs

Abstract:
Recent architecture and technology trends have led to a
significant and increasing gap between processor and main memory
speeds. Caches hide these latencies to some extent, but when cache
misses...

Author: Anoop Gupta
Affiliation:
Department of Electrical Eng. Computer Systems Laboratory,
Princeton University Stanford University

Coauthors:
- Margaret Martonosi, Dept. of Electrical Eng...
- Thomas E Anderson, Computer Science Division, University of
California

Venue: IEEE Computer, Year: 1995

Keyphrases:
parallel program, performance monitoring system, cache miss,
performance information, program memory, memory bottleneck,
program execution time, program data, technology trend

and r2 is
X

i=1..n

X

j=1..m

nPMI(kp1i, kp2j)

4. CLUSTERING PROFILE: ONLINE DB-
SCAN WITH CONSTRAINTS

To cluster author profile, we use a density-based cluster-
ing algorithm, DBSCAN [11]. DBSCAN defines a cluster as
a connected region where data records are dense. A region
is dense, if the number of records within ε distance from
its center point (seed record) exceeds a minimum threshold,
minPts. First, DBSCAN selects a record p that has not yet
been assigned a cluster. Then, the ε-neighborhood of p is
retrieved. If the ε-neighborhood is dense, a new cluster is
created for p, otherwise p is marked as noise. If p is part of a
cluster, then so is every record in p’s ε-neighborhood. Thus,
every record in the ε-neighborhood is added to the cluster,
so are their dense ε-neighborhoods. With this process, the
cluster is recursively expanded until it is fully discovered
then a new unassigned record is selected to find a new clus-
ter. DBSCAN does not require the number of clusters to be
specified beforehand. Thus it is suitable for the author dis-
ambiguation task since different ambiguous names contain
different numbers of true author clusters. This property also
allows us to detect new author clusters, as new records are
added. DBSCAN component relies on the pairwise simi-
larity measure (as described in Section 3) in retrieving the
ε-neighborhood of any given record p. We use ε = 0.35 and
minPts = 3 in our implementation.

However, the standard DBSCAN assumes that all data
points are already available at the start of the clustering pro-
cess. This is not the case in the typical digital libraries set-
ting, where new records are continuously added. In addition,
the original DBSCAN does not address how to incorporate
constraints in the clustering process. Thus in this section, we
propose a modification to the standard DBSCAN clustering
algorithm that enforce constraints on cluster-membership.
We will also propose a merge subroutine to DBSCAN, that

39

Table 2: Examples of author records that could
be mistakenly clustered without cluster-level con-
straints. A and B belong to the same author, while
C is not.

Name
A) Execution Based Evaluation of Multistage Interconnection
Networks for Cache-Coherent Multiprocessors
Name: Akhilesh Kumar
Affil: Intel Corporation Department of Computer Science, 2200
Mission College Blvd Texas AM University, Santa Clara
College Station
B) FFT Implementations on nCUBE Multiprocessor
Name: A Kumar
Affil: Department of Computer Science, Texas AM University
C) Real-Time Communication in FDDI-Based Reconfigurable
Networks
Name: Amit Kumar
Affil: Department of Computer Science, Texas AM University

allows new records to be added to the existing clustering
result.

4.1 Types of Constraints and Motivation
In a real author disambiguation system, it generally is de-

sirable to guarantee certain integrity property of each clus-
ter. Table 2. shows an example of records that could be
mistakenly clustered together by DBSCAN without an in-
tegrity check. In this case, record A and B belong to the
same author, while C is of a different author. A and B
are very similar on all three metadata (name, affiliation and
both are multiprocessor-related). The similarity between B
and C is less than the similarity between A and B; their
topics are less related. So if

distance(A, B) < distance(B, C) < ε% distance(A, C)

Since both A and C are within ε-neighborhood of B, they
will both be put in the same cluster with B, even though A
and C are clearly incompatible and the distance(A, C) & ε.

Constraint enforcement can be done in two levels: at the
instance-level and at the cluster-level.

Instance-level constraints are rules that check the com-
patibility between a record pair. With instance-level con-
straints, only records that are compatible with the seed
record are allowed to be included in its ε-neighborhood.
It restricts the local connections between a record and its
neighbors.

Cluster-level constraints are rules that check the com-
patibility between a record and a cluster. Cluster-level con-
straints ensure that every record in a cluster is compatible
with each other.

Instance-level constraints are relatively inexpensive and
are easy to incorporate. However, it does not guarantee
the integrity of the resulting cluster. For example, instance-
level constraints would not address the situation shown in
Table 2. Cluster-level constraints require more computation
to enforce, but guarantee cluster integrity.

We now present two types of constraints currently imple-
mented in the algorithm: the“temporal proximity”heuristic,
which is a disjunctive constraint, and the “name compatibil-
ity” constraint, which is a conjunctive constraint.

4.1.1 Temporal Proximity
The intuition is that neighbors of a record r should be

not only spatially close to r, but also temporally close as
well. This is because two author records 10 years apart

Table 3: Example of name variations found in Cite-
SeerX

Name Found Variations Note
Chienyu Chen C Chen, Cy Chen, Chinese name

Chien Yu Chen Segmentation
Chun Che Fung Lance Chun Che Fung Extra nickname
David Johnson Dav ID Johnson Parsing error
James E Smith Jim Smith, J E Smith Nickname
Juan E. Tapiador Juan M Estevez-Tapiador Extra last

name, confused
as middle name

Jocelyn Smith Jocelyin Smith Misspelling

are unlikely to be coreferent if there are no records in be-
tween that time linking them. And also even if they both
belong to the same author, their attributes such as coau-
thors and topics can be quite different because people move
in and out of fields and often change collaborators. At the
instance-level, temporal proximity requires that a record r
can be in the ε-neighborhood of a record p only if r and p
are close temporally. At the cluster-level, temporal proxim-
ity requires that a record r is a member of a cluster C, only
if there exists p ∈ C, such that p is temporally close to r.
Temporal proximity is a disjunctive constraint; To satisfy
a cluster-level constraint of C, a record only needs to sat-
isfy the instant-level constraint with any records in C. In
our implementation, a record pair is considered to be tem-
porally close if their publication dates are within 3 years of
each other. Records missing year information are exempted
from this constraint.

4.1.2 Name Compatibility
At the instance-level, name compatibility requires that a

record r is a the ε-neighbor of a record p only if the name in
r and p are compatible. At the cluster-level, it means that
the name of every record in a cluster C must be compatible
with each other. Unlike temporal proximity, name compat-
ibility is a conjunctive constraint. To satisfy a cluster-level
constraint of C, a record needs to satisfy the instant-level
constraint with every record in C.

Table 3 shows examples of names and their variations
found in CiteSeerX database. The different variations can
be the results of parsing errors and misspelling like in the
case of “Dav ID Johnson” and “Jocelyin Smith.” Nicknames
can be used in place of the first names (“Jim” instead of
“James”) or in addition to the full name (e.g. “Lance Chun
Che Fung”). They can also be cultural dependent. Span-
ish names often have extra last names, which sometimes are
taken as middle names (eg. “Juan M Estevez-Tapiador”),
while Chinese names can be segmented and initialized in
various ways. These names are all considered compatible
with their variations.

Surface name matching is a very challenging problem in
itself. Much research is still being devoted to the problem.
Here we use the ethnicity-sensitive name matching that we
introduced in [25] for enforcing the name compatibility con-
straint.

4.2 Clustering with Constraints
We now present our modification to the standard DB-

SCAN to incorporate clustering constraints, called DBSCANC .
DBSCANC maintains a data structure that keeps track of
constraints for each cluster. When a record is added to

40

a cluster, it appropriately updates the constraints for that
cluster. A cluster-level constraint can be replaced if a strictly
more restrictive one is added. For instance, a full mid-
dle name constraint would replace a middle name initial
constraint. This allows for more efficient constraint check-
ing. An example of constraint pairs that are compatible but
one does not subsume the other are first name constraints,
“James” and “Jim.”

The main procedure of DBSCANC is shown in Procedure
1, where D denotes the static collection of records to be
disambiguated. The subroutine query(D, p, ε) retrieves ε-
neighborhood for the record p. DBSCANC contains two
main differences from the standard DBSCAN. First, each ε-
neighborhood is sorted in ascending order according to the
distance to the seed record p. In the standard DBSCAN,
the order that records are processed is irrelevant to the fi-
nal output. However, with cluster-level constraints, when
a record is added to a cluster, it could introduce new con-
straints that would prevent some records to be added to
that cluster later. Since the final result is sensitive to the
order of records processed, we heuristically choose to favor
the records that are closer to the seed record.

Procedure 1 DBSCANC(D)

Input: D - static collections of records to be disambiguated
1: mark all records in D as UNVISITED
2: for all record p in D do
3: if p is UNVISITED then
4: mark p as VISITED
5: N ← query(D, p, ε)
6: sort records in N by their distance from p
7: N ← IConsF ilter(p, N)
8: N ← orderedIConsF ilter(N)
9: if |N | < minPts then

10: assign p → NOISE
11: else
12: expandCluster(p, N)
13: end if
14: end if
15: end for

Second, each ε-neighborhood is first checked against instance-
level constraints, before passing the density test. The call
IConsF ilter(p, N) checks each record in the N and filters
out those that do not satisfy instance-level constraints with
the record p. The call orderedIConsF ilter(N) removes any
record r in N that is not compatible with all the records
that precede it in N . In other words, for every record pair
r, s ∈ N , if r is closer to p than s, then s must be compati-
ble with r. The reason behind orderedIConsF ilter(N) will
become more clear when we describe expandCluster(p, N).
If the ε-neighborhood of p is sufficiently dense after both
integrity checks, the function expandCluster(p, N) is called
to create and expand the new cluster.

expandCluster(p, N), shown in Procedure 2, exhaustively
expands a new cluster with a starting record p. As in the
procedure DBSCANC(D), each ε-neighborhood N ′ is sorted
and passed through IConsF ilter and orderedIConsF ilter
filters. An addition CConsFilter filter is also applied to
it. CConsFilter(cid, N ′) imposes cluster-level constraints
of the cluster cid to each record in N ′. With IConsF ilter,
orderedIConsF ilter, and CConsFilter, we can prove that
∀ record q ∈ Q at all time, q can be added to the cluster

cid, without violating any constraints, and that such a prop-
erty is maintained throughout the clustering process. This
property ensures the integrity of each cluster.

Procedure 2 expandCluster(p, N)

1: cid ← nextClusterId()
2: assign p → cid
3: Q ← N /* put records in region into a queue */
4: while Q += ∅ do
5: q ← pop a record from Q
6: if q is UNVISITED then
7: mark q as VISITED
8: N ′ ← query(D, q, ε)
9: sort records in N ′ by their distance from q

10: N ′ ← IConsF ilter(q, N ′)
11: N ′ ← orderedIConsF ilter (N ′)
12: N ′ ← CConsFilter(cid, N ′)
13: if |N ′| ≥ minPts then
14: /* append N ′ to the end of Q */
15: Q ← Q + N ′

16: end if
17: end if
18: if q doesn’t belong to any cluster then
19: assign q → cid
20: end if
21: end while

4.3 Online Disambiguation with Streaming Data
In the online setting, new records can be introduced to the

existing clustering result. We add a mergeRecord procedure
to the algorithm (Procedure 3). The mergeRecord proce-
dure allows new records to be added to an existing cluster.
The new record could also cause two or more existing clus-
ters to merge together, if it creates a dense connection be-
tween those clusters. It could also cause a region of records
that previously are marked as noises to become sufficiently
dense to form a new cluster.

mergeRecord first considers the density of the
ε-neighborhood of the new record. If the neighborhood is
sparse, the new record is marked as noise. Otherwise, if the
neighborhood contains existing clusters, the new record is
added to the cluster that contains the most records in the
ε-neighborhood. If more than one clusters intersect with the
ε-neighborhood, they are sequentially merged according to
the size of their intersections. After the new record is added
to the cluster, and all appropriat clusters are merged, noise
records in he neighborhood are added.

5. EVALUATION

5.1 Data & Evaluation Metrics
The CiteSeer’s author disambiguation dataset is used for

both training and evaluation purposes. The dataset con-
tains author records of 10 highly ambiguous names sampled
from the CiteSeer database. The names, their number of
records, and their number of unique authors are shown in
Table 4. This dataset and its slight variations have been
used in many previous works in author disambiguation [16,
21]. The greyed out rows are used in training the random
forest model (the same three names were also used in [16]
as the training set). The classification accuracy is evaluated

41

Table 4: CiteSeer author disambiguation collection
Data #Rec #Cluster

1 A. Gupta 498 45
2 A. Kumar 139 31
3 C. Chen 525 99
4 D. Johnson 345 40
5 J. Anderson 307 40
6 J. Robinson 111 27
7 J. Smith 729 83
8 K. Tanaka 52 19
9 M. Jones 348 51
10 M. Miller 226 35

on non-training data, while the clustering performance is
evaluated on the whole data set.

We evaluate our disambiguation algorithm using three sets
of standard metrics: the pairwise F1 (pF1), the cluster-level
F1 (cF1) and the purity/inverse purity measures. The pair-
wise F1 is defined as the harmonic mean of the pairwise
precision (pP) and the pairwise recall (pR). The pair-
wise precision is the percentage of record pairs placed in the
same cluster that are coreferent, while the pairwise recall is
the percentage of coreferent record pairs that are discovered
by the algorithm (they are placed in the same cluster). In-
stead of counting pairs, the cluster-level F1 counts clusters
that exactly match the ground truth and is defined as the
harmonic mean of the cluster-level precision (cP) and
the cluster-level recall (cR). The cluster-level precision
is the fraction of generated clusters that exactly match those
in the ground truth. The cluster-level recall is the fraction
of the clusters in the ground truth that are exactly discov-
ered. Lastly, the purity measures the purity of each of the
generated clusters, while the inverse purity measures the
fragmentation of clusters in the ground truth in the result.
The formal formula of purity is

X

i

|Ci|
N

maxjPrecision(Ci, Lj)

where Ci denotes a cluster in the result, and Lj denotes a
cluster in the answer set. Similarly, the inverse purity is
defined as

X

i

|Li|
N

maxjPrecision(Li, Cj)

We also calculate ratio of cluster size (RCS), which is
defined as the ratio of the number of clusters retrieved over
the number of true clusters.

5.2 Feature Analysis of the Clustering Results
Table 5 shows the comparison of the clustering results

using each similarity feature. Two mixture models, MIX
and MIX+CKP, are also evaluated. The MIX+CKP model
utilizes all features, while the MIX model uses every fea-
tures except keyphrases and citations. The features used in
MIX are similar to those used in other previous work in au-
thor disambiguation [16, 24]. All feature sets yield over 89%
pairwise-classification accuracies. As expected, the mixture
models, MIX and MIX+CKP, yield the highest classification
accuracies at 97%. However, other simpler feature sets also
give comparable classification accuracies, with name-related

features and coauthors features achieving around 95% clas-
sification accuracies.

For the clustering performance, the simplistic models do
not perform well. The highest pF1 is that of the name
model at only 0.65 and the highest cF1 is that of the af-
filiation model at just 0.54. The coauthors model produces
the purest clusters (with Purity at 0.97 and pP at 0.98) but
the clusters are quite fragmented (InvPurity at 0.58). This
is because a highly similar coauthors connection is a good
indicator of coreference, but the lack of such shared connec-
tion does not necessary mean that they do not refer to the
same person. The venue model also gives a similar cluster-
ing result as the coauthors one, relatively pure clusters but
very fragmented (high value of InvPurity and RCS). The
content-based features such as abstract and keyphrases gave
the opposite clustering results. They tend to produce less
fragmented clusters but also more impure. Their InvPurity
are reasonably high (0.82 and 0.78 respectively), and their
Purity are relatively low.

For the mixture models, the MIX model achieves 0.86 pF1
and 0.69 cF1 while the MIX+CKP achieves 0.90 pF1 (+4%)
and 0.76 cF1 (+7%), which is significantly higher. The per-
formance of the MIX model is comparable to those of the
previously reported result in [16]. The MIX+CKP performs
noticeably better in cluster precision and recall (cP and cR).

It is interesting to note that while the classification accu-
racies of the simplistic models are comparable to those of
the mixture models, their clustering performances are sig-
nificantly lower. The pF1 and cF1 of the name model is just
0.65 and 0.46 respectively, compared to 0.90 and 0.76 for
the MIX+CKP model. This difference is even more glar-
ing between the two mixture models. We hypothesize that
in the clustering process, misclassification errors will aggre-
gate, thus a small difference in classification accuracy could
result in a noticeable difference in the clustering result.

In random forest, one way to measure the importance of a
feature in a model is by calculating the average drops in Gini
index at nodes where that feature is used as the splitting cri-
teria [6]. Table 7 shows 10 most indicative features in the
MIX+CKP model according to this measurement. Middle
name is the most informative feature, followed by various
affiliation similarities, then keyphrase PMIs and coauthors’
affiliations. We hypothesize that the high contributions of
these keyphrase PMI features in the MIX+CKP model is
what makes the MIX+CKP model better clustering perfor-
mance over the MIX model. It is interesting to note that
the number of papers cited by both records (bibliographic
coupling) seems to be more indicative of linkage between
authors than the number of co-citations.

5.3 Evaluating Online Disambiguation
with Constraints

To evaluate the iterative disambiguation algorithm, we
first randomly select 20% of the author records as the ini-
tial static records. We then run the disambiguation algo-
rithm over these initial records, producing the initial disam-
biguated author clusters. The left-over 80% records are then
added to the system one-by-one, simulating new incoming
data. Table 6 shows the result of the iterative disambigua-
tion algorithm with various constraint settings. Figure 1.
shows the graphs of RCS, pF1, cF1, purity and inverse purity
of the best configuration (MIX+CKP model with cluster-
level constraints) as new records are added.

42

Table 5: The disambiguation result using different combination of feature sets
Similarity Model Accuracy RCS pP pR pF1 cP cR cF1 Purity InvPurity

name 94.6% 2.08 0.69 0.68 0.65 0.28 0.46 0.34 0.83 0.68
affiliation 91.3% 2.47 0.61 0.68 0.54 0.53 0.24 0.54 0.73 0.63
coauthors 93.6% 2.16 0.98 0.48 0.62 0.30 0.61 0.40 0.97 0.58
venue 89.6% 4.43 0.64 0.17 0.25 0.12 0.49 0.19 0.78 0.28
abstract 91.6% 1.07 0.45 0.86 0.52 0.41 0.43 0.40 0.61 0.82
keyphrases 92.5% 1.24 0.46 0.76 0.50 0.36 0.44 0.49 0.65 0.78
citations 92.5% 1.81 0.73 0.63 0.63 0.32 0.57 0.41 0.83 0.67
MIX 96.8% 1.03 0.81 0.94 0.86 0.69 0.69 0.69 0.89 0.87
MIX+CKP 96.9% 1.02 0.85 0.96 0.90 0.76 0.76 0.76 0.92 0.88

Table 6: The disambiguation result of the full-feature similarity and whether heuristic constraints are en-
forced. LASVM is the online SVM model used in Huang et al[16].

Similarity Model Constraint RCS pP pR pF1 cP cR cF1 Purity InvPurity
MIX none 1.03 0.81 0.94 0.86 0.69 0.69 0.69 0.89 0.87

instance 1.06 0.85 0.92 0.88 0.69 0.73 0.71 0.91 0.87
cluster 1.08 0.89 0.94 0.91 0.70 0.74 0.72 0.93 0.87

MIX+CKP none 1.02 0.85 0.96 0.90 0.76 0.76 0.76 0.92 0.88
instance 1.06 0.87 0.96 0.90 0.76 0.80 0.78 0.93 0.88
cluster 1.07 0.95 0.96 0.95 0.76 0.81 0.79 0.97 0.88

LASVM none 0.94 0.87 0.94 0.91 - - 0.64 - -

Procedure 3 mergeRecord(p)

Input: p is a new record added to D, not yet processed
1: N ← query(D, p, ε)
2: sort records in N by their distance from p
3: N ← IConsF ilter(p, N)
4: if |N | < minPts then
5: assign p → NOISE
6: else
7: C ← set of clusters Ci, such that ∀Ci, Ci ∩ N += ∅
8: if C += ∅ then
9: L ← ∅

10: for all Ci ∈ C do
11: if ∅ += CConsFilter(i, {p}) then
12: L ← L ∪ {Ci}
13: end if
14: end for
15: sort Ci ∈ L by |Ci ∩ N | in descending order
16: Ck ← the cluster ∈ L with the biggest intersec-

tion
17: else
18: k ← nextClusterId()
19: end if
20: assign p → k
21: for all Ci in L \ {Ck} do
22: if Ci = CConsFilter(k, Ci) then
23: Ck ← Ck ∪ Ci /* merge Ci to Ck */
24: end if
25: end for
26: noises ← {q|q ∈ N and q /∈ Ci, ∀Ci ∈ C}
27: /* noises retained the sorted order of N */
28: noises ← orderedIConsF ilter (noises)
29: noises ← CConsFilter(cid0, noises)
30: for all q in noises do
31: assign q → k
32: end for
33: end if

Table 7: The top 10 features (out of 31) in the
MIX+CKP model according to the average Gini de-
crease

Rank Features

1 middle name
2 affiliation (soft-tfidf)
3 affiliation (jaccard)
4 keyword PMI (summation)
5 coauthors’ affiliations (jaccard)
6 keyword PMI (max)
7 first name (boolean rule-match)
8 first name (jaro-winkler)
9 affiliation (tfidf)
10 # of bibliographic coupling

Table 6. shows that constraints consistently improve per-
formance across all evaluation matrices. Instance level con-
straints offer improvement over no constraints configuration,
and the cluster level constraints offer improvement over in-
stance level constraints. Cluster level constraints offer 5%
increase in pairwise F1 and 3% increase in cluster F1 over
the base model. The improvements are most noticeable in
pP and cR, and purity.

MIX+CKP model with cluster level constraints achieves
0.95 pairwise F1 and 0.79 cluster F1. Its purity and in-
verse purity are 0.97 and 0.88. Its pairwise precision is 8%
more than those with just instance level constraints, and
10% more than the no constraints setting. 0.81 cluster re-
call indicates that it successfully recovered 81% of the true
clusters, and with 0.76 cluster precision, more than three
fourths of its clusters are correct. With 0.97 purity, it rarely
mixes multiple people together. While both instance con-
straints and cluster constraints improve purity, they, how-
ever, do not increase inverse purity. RCS is also slightly
bigger in constraints conditions. So while constraints help

43

Table 8: Cluster-level F1 with margins of errors for
the MIX+CKP with cluster-level constraints

Margin cP* cR* cF1*

0 0.76 0.81 0.79
1 0.81 0.88 0.84
2 0.83 0.89 0.86

enforce cluster integrity, they do not alleviate the cluster
fragmentation problem.

Compared with the previously proposed method in Huang
et al [16], LASVM – online SVM, the basic MIX model per-
forms worse in the pairwise F1, 0.86 compared to 0.91 for
LASVM, but has higher cluster-level F1, 0.69 compared to
0.64 for LASVM. The basic MIX+CKP performs slightly
lower in the pairwise F1, 0.91 compared to 0.91 for LASVM,
but performs significantly higher in cluster-level F1, with
over 0.12 improvement. With the cluster-level constraints
enforced, both the MIX and the MIX+CKP perform better
than LASVM model in all evaluation matrices, including
both the pairwise F1 and the cluster-level F1.

As new records are introduced to the algorithm, we see the
inverse purity goes up in all data sets (Figure. 1). This is
because as new information becomes available, the algorithm
can better join previously fragmented clusters together. The
increases are most noticeable in “cchen,” which is the most
ambiguous case, and “ktanaka,” which is one of the smaller
cases. The pairwise F1 and the purity remain relatively
stable as records are added. There is more fluctuation in the
cluster F1. This is because when new records of a previously
unseen author are introduced, it is difficult for a density-
based clustering method to pick up on the new cluster. And
as more records of that cluster are added, the chance that
the algorithm will correctly identify that cluster increases.
As new records are added, the number of the true clusters
increases. But since RCS remains relatively stable over time,
this means that the algorithm is able to identify previously
unseen clusters.

In order to better understand the resulting clusters, we
modify the definition of the cluster-level measures to include
a margin factor. The standard cluster-level measures (cP, cR
and cF1) only count the exact match as correct. In the mod-
ified measures (denoted cP*, cR* and cF1* respectively),
near-exact clusters would also be counted as a match. More
precisely, for a given margin M , a non-singleton resulting
cluster C and an answer cluster L is considered a match if
both |C − L| and |L − C| are less than M . For M = 0, it is
equivalent to the standard definition. For M = 1, a cluster
is still considered a match if it is off by only one record. We
do not apply the margin in comparing singleton and double-
ton clusters (still need a perfect match to count). Table 8
shows the modified cluster-level precision, recall and F1 for
the MIX+CKP model with constraints. With the margin
M = 2, the cluster F1 is over 0.86 with the cluster recall
0.89. This means that almost 90% of author clusters are
almost perfectly identified.

Overall, precision and purity are higher than recall and in-
verse purity. This characteristic is actually desirable in the
production system because it is generally easier to merge
two (or more) pure clusters and then to split impure clus-
ters, both from the users’ and the administrator’s perspec-
tive. Furthermore, two pure but fragmented clusters could

be algorithmically merged if a new author record, whose
its ε-neighborhood contains records from both clusters and
has above-threshold density, is ingested. But if a cluster
is already impure, the standard DBSCAN does not have a
mechanism to re-split it.

6. CONCLUSION
Constraints can be particularly useful in a digital library

or other situations where users are allowed to make cor-
rections to disambiguated names, especially in an iterative
scenario.

We describe an author disambiguation framework that in-
corporates both metadata information and citation infor-
mation. We show that our feature set yields high pairwise
disambiguation accuracy and could be used successfully in
clustering author records. We also propose a novel variation
of the DBSCAN-based clustering algorithm that allows ex-
ternal knowledge and constraints to be injected into the dis-
ambiguation processes. Two examples of constraints were
implemented, one instance-level and one cluster-level con-
straint, namely the “temporal proximity” and “middle-name
compatability.” Our experiments demonstrate that our clus-
tering with constraints approach can achieve almost 96%
precision and 93% F1 measure in disambiguation accuracy.
Additionally, we also propose an extension to our clustering
framework, that allows an iterative disambiguation process.
Our experiment shows that the iterative disambiguation pro-
cess is effective. As new people profiles are added, it can use
the new information to improve the existing clustering result
or to discover new people clusters. Recently we have used
a batch variation of this algorithm to disambiguate more
than 70 million author mentions in Medline [17], and the
proposed iterative algorithm can be used to disambiguate
newly added records to Medline. For future work, one could
explore additional types of constraints, both instance-level
and cluster-level, and their effect on the disambiguation per-
formance. It would also be interesting to study the effect on
efficiency based on how the constraints are enforced.

7. ACKNOWLEDGMENTS
We gratefully acknowledge partial funding from National

Science Foundation and useful comments from the referees.

8. REFERENCES

[1] C. C. Aggarwal, J. Han, J. Wang, and P. S. Yu. A
framework for clustering evolving data streams. The
29th VLDB Conference, Sept. 2003.

[2] C. C. Aggarwal, J. Han, J. Wang, and P. S. Yu. A
framework for projected clustering of high dimensional
data streams. The 30th VLDB Conference, Aug. 2004.

[3] J. Artiles, J. Gonzalo, and S. Sekine. WePS 2
Evaluation Campaign: Overview of the Web People
Search Clustering Task. 2nd Web People Search
Evaluation Workshop (WePS 2009), 18th WWW
Conference, Jan. 2009.

[4] J. Artiles, J. Gonzalo, and F. Verdejo. A Testbed for
People Searching Strategies in the WWW. In
Proceedings of the 28th annual international ACM
SIGIR conference on Research and development in
information retrieval, page 569, New York, New York,
USA, 2005. ACM Press.

44

0
.6

0
.8

1
.0

1
.2

1
.4

Percentage

R
C

S

20% 40% 100%

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Percentage

p
F

1

20% 40% 100%

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Percentage

cF
1

20% 40% 100%

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Percentage

P
u
ri

ty

20% 40% 100%

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Percentage

In
vP

u
ri

ty

20% 40% 100%

agupta
akumar
cchen
djohnson
janderson
jrobinson
jsmith
ktanaka
mjones
mmiller

Figure 1: RCS, pF1, cF1, Purity and InvPurity of the MIX+CKP model with cluster-level constraints as
new records are added.

45

[5] R. Bekkerman and A. McCallum. Disambiguating
Web appearances of people in a social network. In
Proceedings of The 14th International Conference on
World Wide Web (WWW’05), pages 463–470, 2005.

[6] L. Breiman. Random Forests. Machine Learning, 2001.
[7] F. Cao, M. Ester, W. Qian, and A. Zhou.

Density-Based Clustering over an Evolving Data
Stream with Noise. the 6th SIAM International
Conference on Data Mining, May 2006.

[8] M. Charikar, L. O’Callaghan, and R. Panigrahy.
Better streaming algorithms for clustering problems.
The 35th annual ACM Symposium on Theory of
computing (STOC), May 2003.

[9] B.-R. Dai, J.-W. Huang, M.-Y. Yeh, and M.-S. Chen.
Clustering on Demand for Multiple Data Streams. The
4th IEEE International Conference on Data Mining
(ICDM’04).

[10] M. Ester, H.-P. Kriegel, J. Sander, M. Wimmer, and
X. Xu. Incremental clustering for mining in a data
warehousing environment. In VLDB, volume 98, pages
323–333, 1998.

[11] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A
density-based algorithm for discovering clusters in
large spatial databases with noise. In Kdd, volume 96,
pages 226–231, 1996.

[12] A. Ferreira, A. Veloso, and M. Gonçalves. Effective
self-training author name disambiguation in scholarly
digital libraries. In Proceedings of the ACM/IEEE
Joint Conference on Digital Libraries (JCDL’10),
2010.

[13] S. Guha, A. Meyerson, N. Mishra, R. Motwani, and
L. O’Callaghan. Clustering data streams: theory and
practice. IEEE Transactions on knowledge and data
engineering, 15(3):515–528, May 2003.

[14] S. Guha, N. Mishra, R. Motwani, and L. O’Callaghan.
Clustering Data Streams. In The 41st Annual
Symposium on Foundations of Computer Science,
pages 359–366. IEEE Comput. Soc.

[15] H. Han, C. L. Giles, H. Zha, C. Li, and
K. Tsioutsiouliklis. Two supervised learning
approaches for name disambiguation in author
citations. In Proceedings of the ACM/IEEE Joint
Conference on Digital Libraries (JCDL’04), 2004.

[16] J. Huang, S. Ertekin, and C. L. Giles. Efficient Name
Disambiguation for Large-Scale Databases. In The
10th European Conference on Principles and Practice
of Knowledge Discovery in Databases (PKDD 2006),
pages 536–544, 2006.

[17] M. Khabsa, P. Treeratpituk, and C. L. Giles. Large
scale author name disambiguation in digital libraries.
In Big Data (Big Data), 2014 IEEE International
Conference on, pages 41–42. IEEE, 2014.

[18] D. Pereira, B. Ribeiro-Neto, and N. Ziviani. Using
web information for author name disambiguation. In
Proceedings of the ACM/IEEE Joint Conference on
Digital Libraries (JCDL’09), 2009.

[19] C. Ruiz, M. Spiliopoulou, and E. Menasalvas.
C-dbscan: Density-based clustering with constraints.
In Rough Sets, Fuzzy Sets, Data Mining and Granular
Computing, pages 216–223. Springer, 2007.

[20] A. F. Santana, M. A. Goncalves, A. H. Laender, and
A. Ferreira. Combining domain-specific heuristics for
author name disambiguation. In Digital Libraries
(JCDL), 2014 IEEE/ACM Joint Conference on, pages
173–182. IEEE, 2014.

[21] Y. Song, J. Huang, I. G. Councill, J. Li, and C. L.
Giles. Efficient topic-based unsupervised name
disambiguation. In Proceedings of the Joint Conference
on Digital Libraries (JCDL’07), pages 342–351, 2007.

[22] A. Spink, B. J. Jansen, and J. Pedersen. Searching for
people on Web search engines. Journal of
Documentation, 60(3):266–278, 2004.

[23] V. Torvik, M. Weeber, D. Swanson, and
N. Smalheiser. A probabilistic similarity metric for
Medline records: A model for author name
disambiguation. Journal of the American Society for
Information Science and Technology, 2005.

[24] P. Treeratpituk and C. L. Giles. Disambiguating
Authors in Academic Publications using Random
Forests. In Proceedings of the Joint Conference on
Digital Libraries (JCDL’09), Jan. 2009.

[25] P. Treeratpituk and C. L. Giles. Name-ethnicity
classification and ethnicity-sensitive name matching.
In AAAI Conference on Artificial Intelligence, 2012.

[26] P. Treeratpituk, P. Teregowda, J. Huang, and C. L.
Giles. Seerlab: A system for extracting key phrases
from scholarly documents. In Proceedings of the 5th
international workshop on semantic evaluation, pages
182–185. Association for Computational Linguistics,
2010.

[27] K. Wagstaff and C. Cardie. Clustering with
instance-level constraints. Proceedings of the national
conference on artificial intelligence, Apr. 2000.

[28] S. E. Whang, O. Benjelloun, and H. Gracia-Molina.
Generic entity resolution with negative rules. The
VLDB Journal, 18.

[29] J. Yang. Dynamic Clustering of Evolving Streams
with a Single Pass. The 19th International Conference
on Data Engineering (ICDE’03), Apr. 2003.

46

