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ABSTRACT
A classifier that determines if a webpage is relevant to a
specified set of topics comprises a key component for focused
crawling. Can a classifier that is tuned to perform well on
training datasets continue to filter out irrelevant pages in
the face of changed content on the Web? We investigate this
question in the context of researcher homepage crawling.

We show experimentally that classifiers trained on exist-
ing datasets for homepage identification underperform while
classifying “irrelevant” pages on current-day academic web-
sites. As an alternative to obtaining datasets to retrain the
classifier for the new content, we propose to use effectively
unlimited amounts of unlabeled data readily available from
these websites in a co-training scenario. To this end, we de-
sign novel URL-based features and use them in conjunction
with content-based features as complementary views of the
data to obtain remarkable improvements in accurately iden-
tifying homepages from the current-day university websites.

In addition, we propose a novel technique for “learning a
conforming pair of classifiers” using mini-batch gradient de-
scent. Our algorithm seeks to minimize a loss (objective)
function quantifying the difference in predictions from the
two views afforded by co-training. We demonstrate that tun-
ing the classifiers so that they make “similar” predictions on
unlabeled data strongly corresponds to the effect achieved by
co-training algorithms. We argue that this loss formulation
provides insight into understanding the co-training process
and can be used even in absence of a validation set.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Miscella-
neous

General Terms
Algorithms

Keywords
co-training, consensus maximization, gradient descent

1. MOTIVATION
Professional homepages of researchers, which typically sum-

marize research interests, publications and other metadata
related to researchers, are shown to be rich sources of in-
formation for digital libraries [12]. Researchers’ homepages
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(also referred to as academic homepages or simply home-
pages in this paper) have been successfully employed in tasks
such as expertise search [2], extraction of academic networks,
author profile extraction and disambiguation [40] as they
provide crucial evidence for improving these tasks in digital
libraries.

Furthermore, digital library systems such as CiteSeer1,
ArnetMiner2, and Google Scholar3 are primarily interested
in obtaining and tracking researchers’ homepages in order to
retrieve appropriate scientific research publications. Given
the infeasibility of collecting the entire content on the Web,
a focused crawler aims to minimize the use of network band-
width and hardware by selectively crawling only pages rel-
evant to a (specified) set of topics [7]. A key component
for such a crawler is a classification module that identifies
whether a webpage being accessed during the crawl process
is potentially useful to the collection. For digital libraries,
the “yield” of such crawlers highly depends on the accuracy
of researcher homepage classification.

Supervised methods for learning homepage classifiers rely
on the availability of large amounts of labeled data. A widely
used labeled dataset for webpage classification is the We-
bKB dataset4 that is built in 1997. However, due to recent
changes in the information content on academic websites,
this dataset is becoming outdated. For example, there are
now pages on academic websites that are related to vari-
ous activities such as invited talks, news, events that do not
occur in the WebKB dataset. We refer to university, depart-
ment and research center websites as “academic websites” in
this paper. Compared to few decades back, it is easier now to
find faculty information, links to their homepages, informa-
tion on research groups, course related notes and documents,
and research papers from academic websites. Similarly, job
postings, seminar announcements and notices are also being
uploaded onto departmental websites in recent times [35].

How can a homepage classifier keep up in the face of
rapidly changing types of pages on the Web? Specifically,
given a classifier that identifies homepages with reasonable
accuracy (as measured on the training datasets), how does
it perform in the potentially different deployment environ-
ment? Semi-supervised methods that can exploit large amounts
of unlabeled data together with limited amounts of labeled
data for learning accurate classifiers have received signifi-
cant attention in recent research in machine learning due to

1
http://citeseerx.ist.psu.edu

2
http://arnetminer.org/

3
http://scholar.google.com/

4
http://www.cs.cmu.edu/∼webkb/
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the fact that labeling examples for any supervised learning
problem requires intensive human labor [33].

Against this background, one question that can be raised
is: Can we design techniques to effectively adjust the previously-
trained classifier to the changed content on the Web, while
minimizing the human effort required for labeling new data,
and under what conditions, can such an adjustment be pos-
sible? The research that we describe in this paper addresses
specifically this question.

Contributions and Organization. We present two ap-
proaches to researcher homepage classification using unla-
beled data readily available from academic websites. More
precisely, we first adapt the well-known co-training approach
[4] to reflect the change in the data distribution over time.
Second, we design an iterative algorithm based on the Mini-
batch Gradient Descent technique for learning a conform-
ing pair of predictors using two different views of the data.
We restrict ourselves to homepages of researchers in Com-
puter Science since training datasets are available for this
discipline. To the best of our knowledge, the problem of re-
searcher homepage classification using unlabeled data avail-
able during focused crawling was not addressed in previous
research. The contributions of this work are as follows:

• We show that with the classifiers trained on existing
datasets for researcher homepage classification we in-
correctly identify pages of types not seen in the train-
ing datasets as homepages. This results in unaccept-
able yield from the perspective of a focused crawler.

• We design novel features based on URL surface pat-
terns and terms to complement term and HTML fea-
tures extracted from the content of homepages and
show that these two sets of features can be treated as
two “views” for a researcher homepage instance.

• We show that the URL and content-based views can be
used successfully in a co-training setup to adapt clas-
sifiers to the changing academic environments using
unlabeled data. This finding enables us to accurately
crawl the new academic website content without hav-
ing to label a new dataset for re-training the classifier.

• Inspired by the success of co-training on this prob-
lem, we investigate loss functions that capture the dis-
parity between the classifiers’ predictions on the two
views afforded by co-training. We design an iterative
algorithm based on the Mini-batch Gradient Descent
technique for minimizing this loss and learning a con-
forming pair of predictors with the two views.

• Finally, we show that minimizing our proposed loss
function on unlabeled data closely corresponds to the
effect demonstrated by co-training techniques. We posit
that this loss can, therefore, be used as a measure, for
tracking the progress of co-training schemes even in
the absence of a validation dataset.

Although in this paper we focus on the design of accurate
approaches for researcher homepage classification, our ob-
jective is to integrate this classification component in the
context of focused crawling, to improve retrieval and index-
ing of scientific publications in digital libraries such as Cite-
Seer and ArnetMiner. In these usage environments, since
maintaining up-to-date collections of research literature is
of primary importance, having an accurate list of homepage

URLs for frequent, periodic tracking is both feasible and
scalable, compared to examining the entire content at aca-
demic websites each time.

The rest of this paper is organized as follows: We briefly
summarize closely related work in Section 2. Researcher
homepage classification is discussed in Section 3. We elab-
orate on details of our co-training experiments and learning
conforming predictor pairs in Section 4. Experimental setup,
datasets and results are discussed in Section 5, followed by
a summary and future extensions to our work.

2. RELATED WORK
Researcher homepage classification is a well-studied web-

page classification problem in context of digital libraries such
as CiteSeer [22] and ArnetMiner [40]. Typically, content-
based term features and HTML structure-based features are
used for classifying webpages [36]. We propose the use of
URL features as additional evidence for homepage identi-
fication. A smaller set (compared to ours) of URL-based
features (presence of part of the name, presence of the char-
acter ‘∼’, etc.), was used in isolating homepages among the
search engine results for researcher name queries by Tang, et
al [40]. URL-based features are widely used in tasks related
to the Web. For example, URL strings were used for extract-
ing rules to solve the webpage de-duplication problem [21].
Shih and Karger [38] used URL features, the visual place-
ments of links in the referring pages to a URL for improv-
ing applications such as ad-blocking and recommendation,
whereas a preliminary study by Kan and Thi [20] illustrates
the use of URLs in performing fast webpage classification.

The problem of collecting a high-quality researcher home-
page collection was studied for Japanese websites by Wang,
et al. using on-page and anchor text features [42]. Tang, et
al. studied homepage acquisition from search engine results
using researcher names as queries [40]. In contrast, we seek
to apply focused crawling using a seed list of academic web-
sites (where researcher homepages are typically hosted) to
acquire such a collection. Focused crawling first proposed
by Bra, et al. is a rich area of research on the Web [5, 19].
Chakrabarti, et al. [7] present a discussion on the main com-
ponents involved in building a focused crawler. Although
focused crawling is our motivating application, this paper
deals with the classifier component of the crawler and not
with the crawler itself.

We show that the focused crawling scenario presents novel
challenges in using a pre-trained homepage classifier in iden-
tifying relevant pages. Specifically, the classifier needs to be
attuned to the changing types of pages on the Web. Co-
training is proposed as a solution for addressing this chal-
lenge for homepage classification. Blum and Mitchell [4]
first proposed co-training, an approach for semi-supervised
learning when the number of labeled examples available for
training is limited, and applied it to webpage classification.
This approach requires having two views of features for the
instances and has been shown to work well when the two
views satisfy certain assumptions on “sufficiency” and “in-
dependence” [30]. Recent research addresses techniques for
decomposing the feature set into two views when such a split
is not naturally available [9, 15].

Multiview learning (of which co-training is a special case,
with two views) is typically addressed by maximizing “con-
sensus” or agreement among the different views [39, 24, 10].
Most solutions to multiview learning tend to frame the prob-
lem in terms of a global optimization problem and simulta-
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neously learn classifiers for all the underlying views. In some
cases, the solutions depend on underlying classification algo-
rithm used [17, 6]. Although our proposed algorithm based
on mini-batch gradient descent seeks to maximize consensus
as well, our approach is a generic technique assuming only
that the underlying classifiers output initial “parameter vec-
tors” that are altered using a simple, iterative algorithm.

3. FEATURES FOR HOMEPAGE
CLASSIFICATION

Webpage or text classification is typically handled using
“bag of words” approaches. Specifically, the frequently oc-
curring and discerning terms are collected from training data
to form a feature dictionary that is used to represent in-
stances as normalized term frequency or TFIDF vectors [26].
Homepage classification was previously studied as a text
classification problem using term features [32, 31]. Previous
work on the same problem also used other content-based
features related to the HTML structure of the page such
as the number of images/tables on the page, and the terms
commonly found in anchor text of homepages [12]. In this
study, we extracted content-based and URL-based features
from our training sets. These features and the size of fea-
ture sets are summarized in Table 1. The term dictionaries
contain terms that occur in at least three documents (i.e.,
webpages) and at least five times in the training set.

In addition to term dictionaries, we hypothesize that the
URL strings of homepages can provide additional evidence
for identifying homepages. Hence, we design novel URL-
based features based on surface patterns and presence in
WordNet5. The URL-based features are explained in the
next subsection.

Type of features #features
Content-based
Top unigrams 18674
Number of tables/links/images on the page 3
Unigrams from anchor text on the page 30
URL-based
Top unigrams and bigrams from URL strings,
surface pattern and wordnet features 1039

Table 1: Feature types and the size of feature sets used
in homepage identification.

3.1 URL strings as additional evidence
The idea of using URL strings in academic homepage iden-

tification comes from an error analysis of a crawl obtained
with the content-based classifier. Consider some example
URLs we encountered in our crawl listed in Table 2.

With some knowledge in academic browsing, one can con-
fidently guess that the webpages at the URLs (1), (2), and
(3) are unlikely to be researcher homepages. Similarly, among
the URLs (4), and (5), while the former seems to be a
homepage, the latter seems to lead to a course page. The
above conjectures are based on the presumption that the
URL strings are not “arbitrary”, but, instead conventions
are observed that are indicative of the target content at the
URL. For instance, in the previous examples, words such as
“projects”, “events”, alphanumeric patterns of the terms in
the URL indicate that the URLs, (1), (2), (3) and (5) are
most possibly not researcher homepages.

Treating “/” as delimiters, we extract features from the
URL string following the domain name of a webpage. The

5
http://wordnet.princeton.edu/

list of all unigrams and bigrams from URL strings that oc-
cur more than thrice in the training dataset, comprise the
URL-term dictionary. For terms in the URL not present
in this dictionary, we look for their presence in WordNet to
check if they are common words or proper nouns. WordNet
is a large, lexical database of nouns, verbs, adjectives and
adverbs for English, organized as a concept graph [29, 16].

In addition, we capture the surface patterns of the URLs
including the presence of hyphenated or underscored words,
alphanumeric patterns, long words (i.e., words having greater
than 30 characters), question marks and the presence of
characters such as tilde. These features are designed to filter
out the URLs that commonly represent course pages, an-
nouncements, calendars and other auto-generated content.
For instance, a typical homepage URL string in Computer
Science departments has the name of the researcher follow-
ing the ∼ character after the domain name
(e.g., http://people.cs.umass.edu/∼mccallum/).
This pattern is usually captured by our “TILDENONDICT”
feature, where mccallum is a non-dictionary term. Partial
sets of extracted features are shown along with the URLs
listed in Table 2.

The above sets of features perform very well on the train-
ing datasets as shown Section 5. We, therefore, do not study
other complicated, problem-specific feature design or feature
selection. Instead our focus in this work is to study how
these classifiers perform “in the wild”. We also note here
that, a classifier that can make accurate predictions using
URL features can be quite beneficial from the perspective of
efficiency for a focused crawler. A crawler can potentially
bypass examining the content of a page if a confident deci-
sion can be made based on the URL string. However, we
may not be able to always extract features from the URL
strings. For instance, consider the following URLs from our
crawls:
http://john.blitzer.com/

http://clgiles.ist.psu.edu/

http://ben.adida.net/

In these cases, it is not clear from the URL string that the
target content refers to academic homepages. Even if com-
plicated name-extraction based features were designed for
the above cases, it is rare to find academic homepages with
‘.com’ and ‘.net’ domain suffixes. Based on the URL alone,
we cannot be confident if the target content is an academic
homepage or a company/personal homepage. For the sec-
ond case, ‘clgiles’ could refer to a machine name. In addition
to the above cases, given that feature dictionaries typically
comprise features that meet a frequency requirement, we
may not be able to extract features for all URLs. In our
training datasets (Section 5), we were unable to extract URL
features for about 27% of the instances. Therefore, content-
based and URL features complement each other while iden-
tifying homepage instances and a focused crawler might be
required to use either or both of these sets of features.

4. HOMEPAGE CLASSIFICATION USING
UNLABELED DATA

We show in our experiments (Section 5) that, although
content-based features perform extremely well on the train-
ing datasets, they are not very successful on the validation
and test sets that were collected from the current-day aca-
demic websites. On the other hand, URL features show
good performance on both training and validation datasets.
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- URL
1 www.cs.columbia.edu/robotics/projects/visual_control/allen-realtime.html

SEQBEGIN robotics, robotics, projects, hyphenatedword, hyphenatedword
2 www.cs.ucla.edu/events/events-archive/2011/limits-of-communication

events, hyphenatedword, NUMBER, hyphenatedword
3 http://www.cc.gatech.edu/hg/image/63622?f=ccfeature

QMARK, hg, image, NONDICTWORD, NONDICTWORD SEQEND
4 http://www.cs.umd.edu/∼djacobs/index.html

TILDENONDICT, index
5 www.cs.umd.edu/∼djacobs/CMSC828/CMSC828.htm

TILDENONDICT, ALPHANUM, ALPHANUM

Table 2: Example URLs with partial sets of extracted features (shown on the next line after each URL)

However, as pointed out in the previous section, we may
not be able to extract URL features for all instances and it
is, therefore, imperative to have an accurate content-based
classifier as well.

We now address the questions: Can we adapt the content-
based classifier to perform well in the deployment environ-
ment with the help of the URL-based classifier? Can the two
classifiers “teach” each other so as to perform better in the
new environment, using the co-training approach? Since the
URL and content features provide evidence for classifying a
webpage instance independently, intuitively, it appears pos-
sible that there are instances that the URL classifier makes
mistakes on, which the content-based classifier identifies cor-
rectly and vice versa.

Blum and Mitchell proposed co-training in context of web-
page classification [4]. In their datasets, webpages are rep-
resentable in terms of two distinct views: using terms on
webpages and terms in the anchor text of hyperlinks point-
ing to these pages. When few labeled examples are avail-
able for training, they showed that co-training could be used
to obtain predictions on the unlabeled data to enlarge the
training set. Blum and Mitchell’s experiments and the sub-
sequent experiments by Nigam and Ghani [30] showed that
when a natural split of features is available, co-training that
explicitly leverages this split has the potential to outperform
classifiers that do not.

We study the applicability and extension of co-training
for our problem. Although the essential motivation is to
make use of the naturally available feature split and enable
classifiers to learn from each other, we highlight the follow-
ing aspects of our setup: Previous studies and benefits from
co-training were illustrated on datasets where the unlabeled
data is arguably from a similar distribution. That is, the
positive and negative instances in the labeled datasets are
representative of those in the unlabeled data. This is in
contrast to our case, where our positive class is fairly well-
defined (homepages), whereas the negative class is described
in terms of “not positive”. More precisely, although our
training dataset has examples for the negative class, web-
pages encountered during the crawls can belong to types not
encountered in the labeled data. We present an error analy-
sis in Section 5, that illustrates the “new” types of webpages
encountered in our crawl, potentially causing the pre-trained
content-based classifiers to underperform during crawling.

The number of negative instances encountered during our
crawls is higher in comparison with the number of posi-
tive instances. While this aspect was noticed during our
experiments, a previous estimation experiment using mark-
recapture methods had indicated that academic homepages
comprise a minute fraction of the Web [12]. We can expect
this imbalance to become more prominent as more examples

are sampled over the co-training rounds. In the algorithm
studied by Blum and Mitchell, the ratio between the number
of positive and negative instances added from the unlabeled
data is maintained to be the same as that in the training
dataset during each iteration of co-training [4]. We argue
that avoiding this constraint is better in our scenario since
we want the datasets to be more representative of the chang-
ing distribution.

Most classification algorithms are sensitive to the number
of positive and negative instances available in the training
data and are known to learn biased classifiers in case of se-
vere imbalance [3, 23]. We employ the idea of altering the
mis-classification costs for the underlying classifiers during
each round of co-training to handle this problem. For ex-
ample, if the training dataset has 10 positive and 100 neg-
ative instances, we can set the penalty incurred on making
mistakes on a negative instance to be 1

10
th of the penalty

incurred on making mistakes on a positive instance. For
most implementations of classification algorithms, the mis-
classification costs can be specified as a parameter during
the training process [18].

Our co-training setup is detailed in Algorithm 1. L and U
represent the labeled and unlabeled datasets, respectively,
available at each iteration. They comprise instances with
both the views (content-based and URL-based feature sets).
For a round of co-training, we train classifiers, C1 and C2, on
the two available views, using misclassification costs, ρ1 and
ρ2, respectively. Next, “s” number of examples are sampled
without replacement into S from the unlabeled data and C1

and C2 are used to obtain predictions for these instances.
The GetConfidentEgs method is a generic placeholder that
stands for a function that determines what instances from S
are chosen for addition in subsequent rounds of co-training.
We use the notation L+

1 to represent the positive instances
in the set L1 whereas L1

1 indicates that the view 1 (or feature
set 1) of the examples in L1 is being used.

Based on previous studies in co-training [4, 30], we studied
the following strategies for this function:

• AddBoth: In this scheme, we add all examples from S
that are labeled by C1 or C2 confidently to the training
set for the next round. This approach is similar to self-
training used in semi-supervised learning where confi-
dently predicted unlabeled instances are added to the
training set for retraining the classifier in subsequent
rounds [45]. However, in contrast with self-training
that uses a single view, in AddBoth, confident pre-
dictions are obtained from two sources (view 1 and 2)
for addition into subsequent rounds.

• AddCross: In this scheme, examples from S, confi-
dently labeled by C1 are added to view 2 for the next
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round and vice versa. That is, we use the examples
confidently labeled by one classifier while training the
other classifier in the next round. Cross-addition also
seems resilient to handling the possibility of cascaded
errors over the iterations. If a classifier makes a con-
fident but incorrect prediction, we would like to avoid
feeding this example in the next round to the same
classifier, a common problem in self-training [45].

• AddCrossRC: This scheme is similar to AddCross
with the additional constraint on the number of posi-
tive and negative instances added in each round. This
constraint was originally studied by Blum and Mitchell
and ensures that the ratio of the number of positive
and negative instances added in each round is the same
as that in the initial labeled dataset [4].

Algorithm 1 Procedure for Co-training
Input: L, U , ‘s’
L1 ← L, L2 ← L
ρ1 ← φ, ρ2 ← φ
while U #= φ do

Compute ρ1 using
|L+

1 |

|L−

1 |
, ρ2 using

|L+
2 |

|L−

2 |
.

Train classifier C1 using (L1
1, ρ1).

Train classifier C2 using (L2
2, ρ2).

S ← φ
Sample ‘s’ examples from U and move them to S.
U ← U \ S
S1, S2 ← GetConfidentEgs(S,C1, C2)
L1 ← L1 ∪ S1, L2 ← L2 ∪ S2

end while
Output: Classifiers C1, C2.

The co-training algorithm is general and can be applied
with any choice of classifiers on the two views. Blum and
Mitchell provided a PAC-style analysis of co-training with
probabilistic classifiers and showed that co-training works
when the assumptions on sufficiency and independence are
met. That is, each view should be sufficient to predict the
class label, and the two views are independent given the
class label. Recent studies have proposed relaxed criteria
under which co-training techniques still work [1]. However,
in practice, it is tricky to judge if co-training works for a
problem and to verify if the assumptions are satisfied [15].
These questions are more relevant in context of recent re-
search in obtaining two views from a single view when two
views are not naturally available for applying co-training [9].
With this context, we now discuss our formulation of the ef-
fect obtained with co-training, in terms of a loss function.
This formulation allows us to track whether the co-training
process is beneficial for a given problem, even without the
use of a validation dataset.

4.1 Learning Conforming Predictors on
Unlabeled Data

We assume that classifiers, C1 and C2 trained on the two
views are parameterized in terms of their weight vectors, w1

and w2. Most classification algorithms e.g., Support Vector
Machines (SVM) and Maximum Entropy (MaxEnt), output
weight vectors capturing the importance of each feature as
part of the training process [3].

One can expect co-training to benefit a classification prob-
lem if one classifier (say, C1) can “guide” the other (C2) on
examples that the latter makes mistakes on. This guidance
is provided by adding examples confidently labeled by C1 to

the subsequent round of training C2. This observation hints
at the possibility of directly manipulating C2, based on C1’s
prediction for an example that C2 is not confident about.
This effect can be achieved by optimizing a function that
directly captures the mismatch in the predictions of the two
classifiers.

Elaborating further, given that the concept classes, “pos-
itive” and “negative” are still the same on unlabeled data, if
C1 and C2 are accurate, they would make similar predictions
on the unlabeled data. This intuition is the basis for “con-
sensus maximization”widely adopted in multiview learning,
of which co-training is a special case with two views [39, 24,
10]. The mismatch in predictions by C1 and C2 on unlabeled
data can be quantified using a loss function. The squared
error loss function commonly used in machine learning cap-
tures this loss as:

LU (w1,w2) =
1
|U |

∑

u∈U

(f1(w1, u)− f2(w2, u))
2

The above formulation captures the average squared-difference
in predictions from the two views on unlabeled data. w1

and w2 correspond to the parameter vectors correspond-
ing to C1 and C2, respectively, and u refers to an example
from U , having two views, u1 and u2. For a given exam-
ple, u = (u1, u2), the functions, f1 and f2 act on u1 and u2

respectively, and make the predictions from C1 and C2 com-
parable. These functions could be generic (e.g. a function
that outputs the probability that the instance is positive) or
classifier-dependent (for e.g. a function that outputs scaled
distances from the separating hyperplane in case of Support
Vector Machines). Minimizing L corresponds to adjusting
the weight vectors, w1 and w2, so that they make similar
predictions on U .

In contrast with multiview learning methods, where learn-
ing the classifiers is folded into a global objective function in
sophisticated ways [39, 24, 10], we adopt a simpler approach
that works off the initial parameter vectors and iteratively
modifies them in a “co-training like”manner. Note that this
initialization plays a crucial role in avoiding trivial solutions
(such as w1,w2 = 0) that are potentially possible since the
loss is optimized only on unlabeled instances. Our proposed
technique for obtaining the “pair of conforming classifiers”
is described in Algorithm 2.

In Algorithm 2, we start with the original parameter vec-
tors w1 and w2 from classifiers C1 and C2, respectively,
and iteratively adjust these vectors so that the values of
f1(w1, u1) and f2(w2, u2) look similar for all u ∈ U . The
input parameter, #oIters, refers to the number of times the
inner loop comprising of the two gradient descent steps is ex-
ecuted, where as, the #iIters, and α are parameters for the
gradient descent algorithm. Overall, the values of #oIters,
#iIters, and α control the rate of convergence of the algo-
rithm and can be set experimentally. These parameters can
be set based on the base classifiers used, noting when the
decrease in the objective function value is below a threshold.
Adaptive tuning of these parameters by tracking the change
in the value of the objective function in every iteration is a
subject for future study [34].

In each iteration, we employ mini-batch gradient descent
to minimize the loss function, once w.r.t. w1 and next w.r.t.
w2. The mini-batch gradient descent algorithm is a hybrid
approach often used for large-scale machine learning prob-
lems. This approach combines the best of stochastic (on-
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Algorithm 2 Learning a pair of Conforming Classifiers
Input: w1, w2, U , ‘s’, #oIters, #iIters, α
o = 0
while o ≤ #oIters do

%Perform Mini-batch Gradient Descent to obtain a new w2

i = 0
while i ≤ #iIters do

S = φ. Sample ‘s’ examples from U into Ut

for u ∈ Ut do
if f1(u1,w1) is confident then

Add u to S
end if

end for
w2 ← w2 − α∂LS

∂w2
.

i ← i+ 1
end while
%Perform Mini-batch Gradient Descent to obtain a new w1

i = 0
while i ≤ #iIters do

S = φ. Sample ‘s’ examples from U into Ut.
for u ∈ Ut do

if f2(u2,w2) is confident then
Add u to S

end if
end for
w1 ← w1 − α∂LS

∂w1
.

i ← i+ 1
end while
o ← o+ 1

end while
Output: w1, w2

line) gradient descent and batch gradient descent to obtain
fast convergence during optimization by running gradient
descent on small batches of randomly selected examples [13].

In our algorithm, in each iteration, a small batch of in-
stances are randomly sampled from the unlabeled data, U
and the loss function defined using instances for which w1

makes confident predictions from this sampled set. This loss
is minimized using gradient descent to adjust w2. A simi-
lar process is then applied for adjusting w1 using confident
predictions from w2. In effect, as the algorithm proceeds,
we are adjusting the parameters of each classifier so that it
makes predictions that are aligned with those of the other
classifier’s confident predictions. Upon convergence, both
w1 and w2 are adjusted so that they make conforming pre-
dictions on the unlabeled data.

In our experiments, we used the differentiable, logistic sig-
moid function for f1 and f2. Typically, classifiers use the
parameter vector, w, for computing decision values for each
instance. That is, given an instance x, the dot product value,
〈w,x〉, is used for determining the label assignment for the
instance. This value can be ‘squashed’ to a number between
0 and 1 indicating that the probability that instance has a
particular label with the logistic function [3]:

P (t) =
1

1 + e−t
with

dP (t)
dt

= P (t) · (1− P (t))

Given, the simple form for the derivative, we can directly
use the values of f1 and f2 (that we compute anyway), for
computing the gradients in Algorithm 2. Although the effect
obtained by Algorithm 2 is similar to that of co-training, the
conformity loss directly measures the effect of co-training as
it is being applied. In contrast, Algorithm 1 is typically
terminated either when no more examples are available or
by tracking the performance on a validation dataset.

We provide a preliminary, experimental demonstration of
the connection between co-training and our proposed algo-
rithm in Section 5. A more detailed analysis, study of other
choices for the loss function L and the functions, f1 and
f2, are a subject of future work. Nevertheless, quantifying
the discrepancy in predictions from the two views and an
algorithm to directly address this aspect is an exciting step
in understanding when co-training works. We show in Sec-
tion 5 that our method can be used in lieu of a validation
dataset for tracking the performance of co-training.

5. EXPERIMENTS
We discuss 3 types of experiments: First, we study the

performance of content-based and URL-based features on
the training and validation datasets. Second, we show that
co-training can successfully address the problem of mismatch
in the training and deployment environments for homepage
classification. Finally, we show that our proposed algorithm
(Algorithm 2), achieves the same effect as co-training.

5.1 Datasets
We describe the datasets available for studying academic

homepage classification for the Computer Science discipline.
TheWebKB dataset was previously used by several researchers
for studying webpage and text classification including semi-
supervised learning and co-training [4, 27, 31, 33]. The We-
bKB collection contains academic webpages from Computer
Science departments of four universities: Cornell, Washing-
ton, Texas and Wisconsin, categorized into 7 categories (stu-
dent, faculty, staff, department, course, project, and other).
The “other” class comprises pages that cannot be fit into
the remaining six classes; for instance, a publications page
that links to a page belonging to a faculty page. This col-
lection was obtained in 1997 and is not quite representative
in terms of the types of webpages available on the academic
websites of the current day as shown in the error analysis we
present shortly. Another set of author-provided homepages
are available from the bibliographic resource for Computer
Science and related areas, DBLP6. Although this collection
of 6000 homepages is more recent, we do not have negative
instances as part of this dataset.

For the deployment scenario, we crawled the university
websites listed in Table 3. These websites were selected ar-
bitrarily from the list of top US graduate schools in Com-
puter Science (obtained from rankings in US News7). We
seeded our crawl with these URLs and used the open-source
crawling software, Heritrix8 (version 1.14.3), for obtaining
all web pages of content-type ‘text/html’, within a depth
of 5 starting at the parent URL. In total, we were able to
obtain 162, 369 webpages using this process. This crawl was
performed in April, 2012 and hence, represents a relatively
recent snapshot of content at these URLs. Note that, this
setup was used for the purpose of experiments. Our final
goal is to embed accurate classifiers into the crawler, so as
to avoid obtaining webpages that are not homepages.

To validate the performance of our classifiers, we ran-
domly selected sets of 100 webpages from each of the 16
universities listed in Table 3 and manually labeled them.
From the remaining pages, another set of 500 pages were
randomly chosen for validating or tuning the methods pro-

6
http://www.informatik.uni-trier.de/∼ley/db/

7
http://www.usnews.com/

8
https://webarchive.jira.com/browse/HER
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(1) http://www.cs.wisc.edu, (2) http://www.cs.umich.edu, (3) http://www.cs.umd.edu, (4) http://www.cs.ucla.edu
(5) http://www.cis.upenn.edu, (6) http://www.cs.columbia.edu, (7) http://www.cs.princeton.edu, (8) http://www.eecs.berkeley.edu
(9) http://www.cs.washington.edu, (10) http://www.cs.brown.edu, (11) http://www.cs.utexas.edu, (12) http://www.cs.cornell.edu,
(13) http://www.eecs.mit.edu, (14) http://cs.illinois.edu, (15) http://www.cc.gatech.edu, (16) http://www.cse.ucsd.edu

Table 3: List of Seed URLs

Training(WebKB+DBLP) Unlabeled(Crawl) Test(Crawl) Validation(Crawl)
9263/4719 143145 1600/89 500/42

Table 4: Datasets Description: Entry a/b represents a instances out of which b are labeled positive
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Figure 3: Content+URL Features

posed in Section 4. For our experiments, we only consider
instances for which both the views are available, that is,
pages from which we are able to extract both URL and con-
tent features. A summary of the datasets 9 just described is
shown in Table 4.

5.2 Classification Experiments
We study the performance of our content-based and URL

features using the classification algorithms: Naive Bayes
(NB), Naive Bayes Multinomial (NBM), Random Forests
(RF), Support Vector Machines using a linear kernel (SVM)
and Maximum Entropy (MaxEnt). Naive Bayes and Naive
Bayes Multinomial are generative models whereas Random
Forests is an ensemble method using Decision Trees. Dis-
criminative algorithms such as Support Vector Machines [41,
11] and Maximum Entropy classifiers [31] are being used ex-
tensively for text classification problems in the recent times.
These methods output parameter vectors as part of the
training process that can be manipulated directly in our
Algorithm 2. Further details on different classification al-
gorithms and their parameters can be found in a standard
machine learning textbook (e.g. [3]). The Naive Bayes al-
gorithm is well-studied in context of co-training and its theo-
retical analysis, although co-training is a classifier-independent
technique. For text classification, the Naive Bayes Multino-
mial classifier is different from Naive Bayes in terms of its
modeling of term counts with multinomials [27].

Figure 1 shows the weighted F1 measure on our training
(five-fold cross-validation) and validation datasets using the
classification algorithms above with content-based features.
Figure 2 shows similar results with URL-based features. We
used classifier implementations provided by Weka [18], lib-
SVM [8] and Mallet [28]. Where applicable, we tuned the
parameters on the training datasets for the best performance
(e.g., the C parameter for SVM, the number of trees in RF).
Similarly, to handle potential imbalance in instances belong-
ing to different classes during co-training, we use appropriate
misclassification costs (e.g., using the CostMatrix option in
Weka and the “w” setting in libSVM).

As the figures illustrate, discriminative algorithms such as
SVM and MaxEnt generally outperform the generative mod-

9
all datasets, dictionaries and feature files are available upon request

els such as NB and NBM on the homepage identification task
using both content (Figure 1) and URL (Figure 2) features.
The performance of URL-based classifiers (Figure 2) is typ-
ically higher compared to that of content-based classifiers
(Figure 1), especially on the validation set that was collected
from the crawled data. We performed an error analysis on
the validation set and noticed that the content-based clas-
sifiers suffer from a high false-positive rate, and incorrectly
label negative instances as positive. The WebKB dataset in-
cludes negative instances coming from types such as course,
department, and project-related pages. However, about 212
out of the 500 validation instances could not be categorized
into any of the 7 types present in WebKB. Instead, we can
capture these pages under the following new types:

1. Webpages related to colloquium, seminars, lectures,
publications, papers, talks, slides.

2. Webpages that describe code, widgets, scripts, datasets.

3. Webpages related to department activities such as pic-
nics, pages with embedded photos, and personal pages.

4. Webpages pertaining to information on news, events,
highlights, faq, forms.

5. Webpages pertaining to alumni-related information,
job and contest calls.

Given that our validation set only comprises 500 instances, it
is reasonable to suspect that other types of webpages exist in
our crawled collection. We used Information Gain [3] on the
training and crawl-based datasets to understand the feature-
class correlation between the two datasets. The top-10 fea-
tures ranked by this measure, shown in Table 5, also point to
the difference between the two environments. However, our
aim is not to model new types of webpages, but rather, we
wish to learn a discriminator that isolates academic home-
pages from non-homepages. In our experiments, we noticed
that webpages belonging to the new types 1 and 2 above
were often misclassified as academic homepages. However,
surface patterns and cue words such as “seminars” in the
URLs are effective for classifying these instances correctly.

Further, we studied the following approaches for improv-
ing performance of content-based classifiers for the new envi-
ronment: First, we learned classifiers on the combined set of
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URL Content
training crawl training crawl
TILDENODICT ALPHANUMBER gmt university
TILDENODICT SEQEND TILDENODICT server computer
ALPHANUMBER ALPHANUMBER ALPHANUMBER type science
NONDICTWORD HYPHENATEDWORD html department
courses ALPHANUMBER SEQEND content numImages
ALPHANUMBER SEQEND TILDENODICT SEQEND text numLinks
users NONDICTWORD QMARK date cs
users NUMBER professor box
NONDICTWORD SEQEND courses university ri
homes NUMBER SEQEND research providence

Table 5: Features ranked based on Information Gain on training and crawl datasets
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Figure 4: Self-training: Content
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Figure 5: Co-training: Content
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Figure 6: Co-training: URL
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Figure 9: GD: URL (MaxEnt)

features for each instance (content+URL). The performance
of these classifiers is shown in Figure 3. As the plots indi-
cate, using the combined set of features on the validation set
is better than using content features alone (Figure 1), but
still worse than using URL features alone (Figure 2).

Second, we trained a one-class SVM (linear kernel) for
identifying homepages. One-class classifiers learn discrimi-
nators for a class by using just the positive instances with-
out explicitly modeling the other classes [37, 44]. One-class
methods are typically used for detecting outliers and novelty
detection. However, one-class SVMs do not work as well as
binary classifiers for our problem on the training datasets.
Their performance on the validation sets is better, but not
comparable to the best performing classifiers on the valida-
tion datasets (see Figures 1, 2, and 3, 1C-SVM).

Finally, we employed self-training to train the content-
based classifiers using the unlabeled data. Self-training is an
iterative approach commonly used in semi-supervised learn-
ing. Unlabeled examples, predicted confidently by the clas-
sifier are added back to enlarge the training dataset used in
retraining the classifier in the subsequent iteration [43]. The
intuition behind self-training has been compared to pseudo-
relevance feedback employed in information retrieval [30,
26]. Although, this approach was successfully applied to
some problems before [43], for some applications, is known to
suffer from cascaded errors resulting in the final classifier be-
ing less effective than the initial one [45]. Our content-based

classifiers do not show any improvements with self-training
and, depending on the classification algorithm, even show
decreased accuracy on the validation set. This behavior is
illustrated in Figure 4.

We chose the better performing of all classification algo-
rithms: NBM, SVMs and MaxEnt as base classifiers for the
remaining experiments.

5.3 Co-training Experiments
We studied co-training (Algorithm 1) using the different

schemes, AddBoth, AddCross, andAddCrossRC for se-
lecting unlabeled instances for the next round. We use the
same type of algorithm for training classifiers on both views
(e.g., SVM for URL features as well as for content-based
features). We sampled 5000 instances from the unlabeled
dataset in each iteration and consider an instance for addi-
tion only if a prediction was made for this instance with a
confidence probability ≥ 0.9. Note that the labeled train-
ing set is WebKB+DBLP, whereas the unlabeled training
set is the data from our crawl. Figure 5 shows the per-
formance of content-based classifiers (within co-training) on
the validation set. Figure 6 shows similar results using URL-
based classifiers. As shown in the figures, co-training suc-
cessfully manages to pull up the performance of the content-
based classifiers using the unlabeled data. The URL classi-
fiers being more stable add relevant instances to the labeled
datasets over successive rounds, enabling the content-based
classifier to retrain itself over the iterations and learn to dis-
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criminate better among the current-day pages on the web.
Although the initial rounds do not result in improvements
in the performance for the URL classifier, once the content-
based classifiers are up in accuracy, they are able to provide
useful examples to the URL classifiers, in turn, resulting in
improvements even for the URL classifier (Figure 6).

Figure 7 shows the effect of different schemes for instance
selection during co-training iterations for the NBM algo-
rithm. Difference in performance on the validation dataset
was noticed for the co-training schemes with NBM as base
classifiers. For SVM and MaxEnt pairs, there was no observ-
able difference in the performance attained by the different
schemes, AddBoth and AddCross. The AddCross scheme
does either better or on par with the other schemes. In ad-
dition, since we use a similar scheme for adding instances in
Algorithm 2, we chose AddCross for comparisons with the
Gradient Descent based approach in the next section.

Due to space constraints, we do not show the compari-
son between co-training without the mis-classification costs
accounted for. Not surprisingly, not accounting for class
imbalance results in mistakes on the positive instances due
to the large number of negative instances in the training
data and the performance on this class reduces drastically
over the co-training iterations for both the AddBoth and
AddCross schemes. The performance on AddCrossRC
is not affected due to the ratio constraint being maintained
over the iterations since we started with an almost balanced
training dataset (see Table 4). However, the performance
with the AddCrossRC is not as good as the AddCross
scheme with class imbalance accounted for.

5.4 Gradient Descent Experiments
Figures 8 and 9 show a run of Algorithm 2 with initial

weight vectors obtained with MaxEnt classifiers. These ini-
tial vectors are obtained by running the MaxEnt trainer over
the labeled (training) dataset. The figures show the classifi-
cation performance on the validation set after the termina-
tion of each iteration (from 1 to 20) of Algorithm 2, which
minimizes the loss function in each round. Similar plots with
the initial weight vectors obtained from SVMs are shown in
Figures 10 and 11.

The figures also show the comparison of the proposed gra-
dient descent algorithm with co-training. We plot the max-
imum F1 score that was obtained with co-training exper-
iments (previous sub-section) alongside the curves in Fig-
ures 8-11, to illustrate that our proposed algorithm in effect
attains similar performance improvements that are possible
with co-training. Although these plots show the F1 varia-
tion over the validation set, note that, the validation set is
not used for tracking the optimization process. Instead, the
algorithm can terminate either after a pre-set number of it-
erations or by explicitly tracking the objective value for con-
vergence. Each iteration of the algorithm involves running
mini-batch gradient descent twice, once for each classifier.

We observed the objective values to be converging in about
20 iterations when the algorithm is initialized with the weight
vectors from MaxEnt whereas it takes about 50 iterations
with those from SVM. These values correspond to the #oIters
in Algorithm 2. The #iIters and α values for Mini-batch
Gradient Descent were set to 50 and 0.1, respectively, in all
experiments. About 1% of unlabeled data was randomly
sampled in each round and examples that were predicted
with 90% confidence were used for computing the loss func-
tion that is minimized with Gradient Descent. The #iIters

and α values affect the rate of convergence for Gradient De-
scent. We chose these values based on experimentation, in-
stead of adaptively using techniques such as line search [34].
Experimenting with these parameters is left for future work.
With the settings just described, the run times for conver-
gence were similar to that of co-training. In general, de-
pending on the classification algorithms used, the co-training
experiments took times ranging between 5min-4hrs on a 16-
core, 800MHz, 32GB RAM, AMD Opteron, Linux server.

We plot the F1 on the validation dataset against the com-
puted objective function value in Figure 12. The plot depicts
the close correspondence between reducing the discrepancy
between predictions based on the two views and the improv-
ing performance on the validation dataset. We also illustrate
the connection between the effect of co-training and our pro-
posed loss function by plotting the value of our loss function
on unlabeled data available in that iteration as co-training
progresses in Figure 13. This plot highlights the fact that
when co-training works, it seems to be due to the reducing
discrepancy between the predictions from the two views used
in co-training. The list of top-10 features that undergo the
most change in the MaxEnt weight vectors after Algorithm 2
converges are shown in Figure 15.

5.5 Evaluation on the Test Set
Method Precision Recall F1
NBM-Before 0.8910 0.4700 0.5890
NBM-After-CT 0.9350 0.7980 0.8470
SVM-Before 0.9413 0.4947 0.6048
SVM-After-CT 0.9147 0.8167 0.8559
SVM-After-GD 0.9175 0.8826 0.8977
MaxEnt-Before 0.8806 0.4167 0.5380
MaxEnt-After-CT 0.9234 0.9295 0.9262
MaxEnt-After-GD 0.9272 0.9401 0.9158
GET-1 0.8668 0.5598 0.6719
GET-2 0.8761 0.5614 0.6724
MaxEnt-Combined-Before 0.9469 0.7219 0.7938
MaxEnt-After-ST 0.9418 0.7098 0.7849
GET-1 0.9273 0.4765 0.5895
GET-2 0.9365 0.7591 0.8201

Table 6: Before/After performance on the test set with
Content Features

So far, we have been showing performance results using
the validation set (Table 4) for the sake of illustration. We
summarize our evaluation with our final classifiers on the
test dataset in Figure 14 and Table 6. The table shows the
weighted precision, recall and F1 measures [26] whereas the
figure illustrates the improvements in F1 via bar charts. We
compare the original content-based classifiers trained on the
training datasets (the ‘Before’ entries) with our proposed
methods. The ‘After-CT’ entries use the classifiers obtained
after co-training was employed with unlabeled data and ter-
minated after convergence was attained on the validation
datasets (typically in about 20 iterations). The ‘After-GD’
entries use the weight vectors obtained after running Algo-
rithm 2 starting with the original weight vectors.

We also compared MaxEnt with “expectation regulariza-
tion”, a technique proposed by Mann, et al [25]. In this semi-
supervised learning method, additional regularization terms
are added to the objective function while learning classifiers
of the exponential family. These additional terms encourage
the predictions on unlabeled data to meet certain expecta-
tions that capture label priors or feature-correlations. The
expectations are expressed as soft constraints while learn-

479



 0

 0.2

 0.4

 0.6

 0.8

 1

 5  10  15  20

F
1

Iteration

Content-GD
Content-CT

Figure 10: GD: Content (SVM)
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Figure 14: Performance of our
methods on the test datasets
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Figure 15: Features that are most
affected after running Algorithm 2
on MaxEnt weight vectors

ing the classifiers [14]. For example, for our problem, we
could specify constraints, which indicate that the feature
‘homepage’ in the HTML title strongly suggests that the
class-label is positive.

We obtained the code for automatically generating con-
straints from the labeled data using information gain and an
implementation of the expectation regularization framework
with MaxEnt classifier (GETrainer) from the authors10. Us-
ing the parameter settings suggested by the authors, the
performance of the GETrainer on the test dataset is listed
in the“GET-1”and“GET-2” rows in Table 14. Labeled data
can be used to extract constraints but class labels are not re-
quired for learning the GETrainer. The “GET-1” row refers
to the performance using unlabeled data from the crawl en-
vironment while training, where as the “GET-2” row shows
the performance when the labeled dataset was used during
training. Based on the performance of the GETrainer on the
validation dataset with different number of constraints, we
chose the number of constraints to be 8000 for the “GET-1”
setting and 6000 for “GET-2”.

Figure 14 and Table 6 indicate that the “expectation reg-
ularization” technique is succesful in capturing feature con-
straints and improves the performance of our content-based
classifier. We also evaluated the GETrainer using feature
vectors containing both content-based and URL features.
For the combined set of features, the GE method achieves
an improved performance although it is not very high com-
pared to that obtained with the original classifier (‘Before’
entry). However, larger benefits are obtained by harnessing
the split of features in terms of the two views.

6. SUMMARY AND FUTURE WORK
We studied the problem of adapting a classifier trained

on a labeled dataset of webpages to a related environment
containing newer types of webpages in the context of fo-
cused crawling for researcher homepages. We showed that

10We thank G. S. Mann, G. Druck and A. McCallum for sharing
their implementation with us.

co-training techniques, which use two different views of the
data, can effectively incorporate unlabeled data to improve
the classification performance in the deployment (crawling)
scenario. Although our evaluation is specifically for home-
page classification, we posit that our findings hold for other
problems or domains. It is reasonable to expect a mismatch
in training/test environments in any focused crawling situ-
ation, given the changing rate of content on the Web. Intu-
itively, we can expect our techniques to work well when the
following criterion is met: a view v1 must be able to pre-
dict at least one unlabeled example confidently that view v2
cannot and vice versa. When this condition is satisfied, the
views can “help each other” over the iterations.

We also proposed a novel formulation of co-training in
terms of a loss function. This loss can be directly minimized
via a mini-batch gradient descent algorithm. Our results
indicated that even without a validation set, one can track
the effect of the co-training process via our loss function.

In future, it would be interesting to explore other aspects
of our algorithm for learning “conforming pairs of classi-
fiers” as well as other forms of the loss function and function
choices for comparing classifier predictions. It would also
be interesting to explore classifiers’ performance when small
fractions of the newer types of webpages, manually labeled,
will be added to the training sets. For focused crawling, our
motivating scenario, we will study the benefits of folding
in our proposed URL and content-based classifiers into the
crawl process both in terms of yield and efficiency.
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