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Abstract

With the recent surge in the volume of search queries
that explicitly or implicitly express users’ geographical
interests, to accurately infer users’ locality preference
becomes an increasingly important yet challenging issue.
We study two click-based models of the distribution of such
geographical interests by mining the user click stream data
in the search engine logs, addressing three important issues
in spatial Web search. First, search queries and documents
can be classified by the models according to their spatial
specificity. Second, the geographic center(s) of interests for
queries and documents can be inferred. Finally, the model
can be applied to generate relevance features for search
ranking. We evaluated our proposals on a large dataset
with about 10,000 unique queries sampled from the Yahoo!
Search query logs, and about 450 million user clicks on 1.4
million unique Web pages over a six-months period. We
report about 90% accuracy and about 3% false positive
rate in identifying search queries with or without specific
geographical interests, as well as statistically significant
improvement in relevance ranking over a strong baseline.

1 Introduction

The volume of local search - search queries with a
local flavor - has been constantly increasing over the past
few years. With the advance in the offerings by most
commercial search engines to conduct such local search,
there has been a growing interests in associating search with
an interest in a specific geographical locality, and applying
this knowledge to enhance the search experience for users.

The problem of inferring users’ geographical interests
is non-trivial and challenging. While some queries (e.g.
“auto repair san francisco”) contain an explicitly location
qualifier (“san francisco”), other queries may come with
spatial ambiguities. For example, a query “bay bridge”
may refer to the San Francisco-Oakland Bay Bridge in
California, the Chesapeake Bay Bridge in Maryland, or
the Escambia Bay Bridge in Florida. Similarly, a query

“chicago pizza” may refer to chicago style pizza or pizza
stores in Chicago, and for the same reason, the fact that
a Web page contains both the terms “chicago” and “pizza
doesn’t help resolve the ambiguity, either.

In the above and many other similar scenarios, it is clear
that the syntactic information alone derived from the queries
is not a sufficiently good indicator for users’ geographic
interests. This observation motivates us to exploit other
heuristics such as the user clicks to model their locality
preferences.

In contrast to a large body of existing work on
modeling users’ geographical interests based on syntactic
information, we study two click-based models for inferring
the geographical interests of the search engine users. We
exploit the geographical distributions of user clicks, and
empirically demonstrate that such distributions shed lights
on the geographical variations in users’ interests for a given
query or Web page. Specifically, we address the following
three problems:

• Given a large number of search queries or Web pages,
how do we model their geographical specificity?

• For queries and Web pages that are identified as having
a local flavor, how do we detect and disambiguate the
underlying geographical location(s) of interests?

• How do we improve search relevance ranking given a
model of the distribution of the geographic interests?

Organization The rest of the paper is organized as follows.
We briefly review the related literature in Section 2,
and introduce the dataset in Section 3. We visualize
the correlation between the geographical distributions
of user clicks and their locality preference in Section
4, and study two click-based models that capture such
correlation in Section 5. We discuss two applications
of these models: classifying queries according to their
geo-sensitivity (Section 6) and improving search relevance
ranking (Section 7). In Section 8 we present empirical
evaluations. We conclude our paper with directions for
future work in Section 9.
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2 Related Studies

Prior studies investigated the language of geographical
search queries, including the characteristics of the search
terms in geographical queries [14, 15], and geographical
query expansion and rewriting [5, 6, 16, 21]. Another group
of work studied geo-tagging Web resources [2, 4, 13, 18, 20]
and providing a visual model of the geo-referenced data on
the Web [1, 10, 11, 22].

Of particular interests to this study are several recent
studies on identifying the dominant location of search
queries [7, 19], website visitors’ geographic interests
patterns [17], and geo-sensitive ranking [12]. Gravano et
al. applied several machine learning methods to classify
search queries with regard to their localness, based on
a number of features derived from the associated search
results returned by a search engine [7]. Wang et al.
exploited the search results clicked by the users, and
extracted location names from these Web pages as potential
location candidates for annotating the associated search
queries [19]. More recently, Sheng et al. proposed a
click-based model to discover the geographical patterns
of the visitors’ interests for websites, and studied the
temporal change of these patterns [17]. Their work
showed that the click data contained strong signals of
users’ various interests for Web documents in different
geographic locations. Lee et al. proposed several variations
of the PageRank-style link-based ranking algorithms by
considering the geographic attributes of the hyperlinks [12].

In our work, we adopt a different methodology to
directly model the geographic distribution of users’ interests
by their past click patterns. The proposed models are
applicable to both search queries as well as Web pages.

3 Dataset

We randomly sampled from the anonymized Yahoo!
Search1 query log a set of 10,000 queries which were
believed to be representative and covering a broad
range of search topics. We then collected about 450M
user click records for these queries from the click logs
between November 2007 and April 2008, which contained
about 1.5M unique (query, URL) pairs. Each record
consisted of the following fields: query, URL, rank
of the URL in the search results, IP address, and the
aggregated number of clicks which originated from this
address. An example is (“florida international university”,
“http://www.stanford.edu/group/ree/reeusa03/posters/FIU.pdf”,
58, 4ae96544, 1). Note that we collapse multiple clicks
from the same search session into one.

We first removed the IP addresses of popular proxy
servers and large ISP hubs, and then geo-mapped each
of the remaining of the IP addresses onto a geographical

1http://search.yahoo.com

location (i.e., latitude, longitude, city/town, county, state,
zipcode, and country) using a proprietary IP lookup
database. In the previous example “florida international
university”, the geographical location is (25.727, -80.235,
Miami, Miami-Dade, FL, 33133, USA).

4 Visualize Geographic Interests Distribu-
tion

The geo-sensitivity of a query denotes that, to answer
the query, Web pages that either have explicit / implicit
association with certain geographical location(s) or are
considered more relevant to users in certain geographical
location(s) will be considered more relevant. To make it
more concrete, we define four categories of geo-sensitivity
for queries in Table 1. For the rest of this paper, we
will follow these definitions. If a search query falls into
either the explicit or the implicit sensitivity category, it is
referred to as a Geo-Sensitive Query (GSQ), otherwise a
Non-Geo-Sensitive Query (NGSQ).

Previously we discussed the disadvantage of relying
solely on the syntactic information of a query to infer its
geo-sensitivity. Assume that a user submits a query and the
search engine returns a list of Web pages, he/she is more
likely to click on Web pages that appear more relevant.
For the GSQs, whether a Web page is geographically
relevant is an important factor of the overall relevance
perceived by the user. Thus, given a search query, once
we aggregate a significant number of user clicks and
conduct a reverse-lookup of the IP addresses to find
out where they come from, it is possible to learn about
the locality preference of this query by “following the
herd”. For example, a GSQ “broward community college”
received the majority of user clicks originated from the Fort
Lauderdale, FL area, which could indicate that this query
was more geographically sensitive to the Fort Lauderdale
area than anywhere else. Thus, we examine the following
hypothesis:

Hypothesis 1. Given a search query or a Web page,
the geographic distribution of the user clicks it receives
approximates the geographic distribution of users’ interests
in it.

Hypothesis 2. The geographical distributions of user
clicks for NGSQs and GSQs have different patterns:
the distributions for NGSQs tend to resemble the user
population distribution, while the distributions for GSQs
tend to deviate from the population distribution.

To examine the above hypothesis, we visualize the
aggregated click records in our dataset using click maps.
The click map of a query visualizes the geographical
locations of search users who have issued the query and
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Table 1: Definitions of Query Geo-Sensitivity
Sensitivity
Category

Definition Examples

Explicit Queries about local business, organizations, product, and information of a
particular location, which explicitly specify a geographical location.

cleveland plain dealer, nissan dealer in
bay area, boston weather

Implicit Queries that implicitly specify a location with a popular or famous local
business or landmark.

bridgeport board of education, broward
community college, wilkes regional med-
ical center, darlington raceway

Local Queries that are not specific to a particular location but local information is
implicitly preferred; typically contain the name or type of a business, service,
or organization without a specific location.

car wash, AAA branch, movie showtime

Non-
Sensitive

Generic or navigational queries, and queries about information interesting to
users regardless of their physical locations.

yahoo, myspace, disneyland, new york
times

also clicked on (some of) the results. Each dot on the
click map of a query represents the aggregated user clicks
originated from the corresponding geographic location.

Figure 1(a) shows a click map of all the randomly
sampled search queries, in which the geographical
distribution of user clicks mostly follows the population
distribution in the U.S. Comparing Figure 1(a) with Figure
1(b) which shows a click map of the query “Google”,
the two resemble each other, indicating that the query
“Google” is not geographically sensitive to a particular
location.

In contrast, Figure 1(c), 1(d), 1(e), and 1(f) show
the click maps of four geo-sensitive queries: “Aspen
Grove Shopping Center”, “Sun Country Airlines”, “93.7
Houston”, and “University of San Francisco”, respectively.
The spatial distributions of the user clicks for these
queries all display a strong deviation from the population
distribution, and have unusually high density in some
regions. For example, “Sun Country Airlines” received
more than 30% of its clicks coming from Minneapolis,
MN (a hub of the airline), and “93.7 Houston” – a local
radio-station in Houston – received more than 80% of
its clicks from Houston, TX. As we examined the click
maps of more search queries, it was consistent that the
geographical distribution of user clicks were usually quite
different between GSQs and NGSQs.

5 Modeling the Geographic Interests

In this section we study two models of the geographical
distribution of users’ interests based on their clicks.

5.1 Vector model

We first define the set of geographical regions as R .=
{r}, where r denotes a physical location of an appropriate
granularity (i.e. how large the region is). The granularity
can be either iteratively tuned or chosen arbitrarily.

Next, we define the set of queries as Q .= {q},
where q = 〈c1, c2, · · · , ck〉 denotes a query q. q is a

k-dimensional vector, and each dimension ci represents
the probability of the query receiving user clicks from a
geographical region ri ∈ R. Here ci can be defined as

ci =
cri∑

rt∈R crt

· (1 + log
|Q|

|{q : cri 6= 0}|
), (1)

where cri
is the number of user clicks from ri for q.

The same model can also be applied to the set of Web
pages as D .= {d}, where d = 〈c′1, c′2, · · · , c′k〉 denotes a
Web page d, and each dimension c′i denotes the probability
of the Web page receiving user clicks from a geographical
region ri ∈ R, with a definition of c′i similar to ci.

5.2 Maximum-likelihood model

Backstrom et al. presented a generative model to derive
the geographic center and spatial dispersion of search
queries [3]. The model was based on the observation of
the view event in the search logs: a user issues a query from
an IP address which is mapped to a physical location.

In this paper, we extend this model to apply it on the click
events recorded in the search logs: a user issues a search
query and then clicks on a certain search result Web page.
The intuition is that compared with the action of issuing a
query, user clicks represent stronger signals of endorsement
with regard to the locality preference of the user.

Let Q .= {q} denote the set of queries in the query logs.
Each query q has a geographic center of ”interests” C, from
where most of the user clicks for this query are observed.
And the observed number of user clicks from anywhere else
is in reverse proportion to its distance d away from C. Now
the probability of observing a click by a random user at
distance d from C is

p = C · d−α, (2)

where C is the observed number of user clicks originated
from C, and the exponent α is a spreading factor which
specifies how fast the number of clicks decreases further
away from C.
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Figure 1: (a) The click map of all the randomly sampled search queries. (b) Query “Google”. (c) Query “Aspen Grove Shopping Center”. (d) Query
“Sun Country Airlines”. (e) Query “93.7 Houston”. (f) Query “University of San Francisco”. Regions with unusually high density of clicks for the
geo-sensitive queries are marked by the black circle.

Therefore, given a query q and the past user clicks for
this query, we can infer the center of interests as well as the
corresponding spreading factor in a maximum-likelihood
fashion,

arg max pm(1 − p)n, (3)

where m is the number of observations of a click by the user
at distance d from C, and n is the number of observations
otherwise. Similarly, we can apply this model for each Web
page d ∈ D that has registered user clicks in the search logs.

For more details on this model, we refer readers to the
original paper [3].

6 Classify queries based on geo-sensitivity
Witnessing the distinctive patterns of geographical click

distributions of GSQs, we discuss how to algorithmically
derive the geo-sensitivity for queries under a classification
scheme. Accepting Hypothesis 2, can we differentiate
GSQs from NGSQs, and infer the locality preference of a
query based on its geographical click distribution?

Without loss of generality, the task to identify the
geo-sensitivity of a search query can be cast into a binary
classification problem, formally defined as follows:

Definition Given a set of queries Q = {q}, classify q into
one of the two classes: (1) a class of geo-sensitive queries
GSQ (GSQ ⊆ Q), and (2) a class of non-geo-sensitive
queries NGSQ (NGSQ = Q− GSQ).

Vector Model. Let vector p = 〈dp
1, d

p
2, · · · , dp

k〉 denote
the user population, with each dimension dp

i represents

the population in a geographical region ri same as in
q. By accepting Hypothesis 2, we chose to approximate
the population distribution using the aggregated click
probability distribution of all the queries in NGSQ, i.e.,
the vector summation of all vectors q′ ∈ NGSQ and
normalized:

p =
∑

q′

|NGSQ|
,∀q′ ∈ NGSQ (4)

Given a query q, we can then measure the distance D
between its geographical click probability distribution q
and the user population distribution p approximated by
Equation 4:

D = dist(p,q) (5)

where dist can be an appropriate standard distance
measure of choice, e.g. chi-squared χ2, KL Divergence.
We can then classify q as GSQ or NGSQ based on D.

Maximum-likelihood Model. The spreading factor α
is an indicator of how local a query or a Web page is: a
larger α indicates a query or a Web page of more local
interests. Thus, given a labeled training set of NGSQs, we
can calculate the “norm” (e.g. mean, mode) of α for such
queries, and then use it as a threshold to determine if a
given query is a GSQ (if it has a larger-than-threshold α) or
a NGSQ (otherwise).
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Figure 2: (a): Classification accuracy and false positive rate of the vector model classifier. (b): Classification accuracy and false positive rate of the
maximum-likelihood classifier. (c): Percentage of all queries and GSQs with increased, decreased, and unchanged DCG scores. It is not surprising
to see that there is more relevance improvement when we apply the model on a set of queries comprised entirely of GSQs.

7 Improve relevance ranking for
geo-sensitive queries

We discussed how to algorithmically identify geo-
sensitive queries in the previous section. In this section, we
propose to improve the quality of search relevance ranking
for the geo-sensitive queries by taking into account the
geographic interests of the users.

We see in Section 4 that for a search query, the pattern
of its geographical click distribution could indicate the
locality preference of the users. For example, the query
“amc mercado 20” receives more user clicks from Santa
Clara, CA than any other area, which may indicate that this
query about a local movie theater is indeed more interesting
to search users in the same geographical region. Thus,
the click map of this query will likely show high density
of clicks in the Santa Clara region. For the same reason,
Web pages that are relevant to the AMC Mercado 20 movie
theater will more likely register clicks from local search
users than users from other locations (e.g. search users in
New York). Thus, the geographic distribution pattern of
the aggregated user clicks on these pages may also show
a concentration of clicks in the Santa Clara area. This
observation suggests us study the correlation between the
geographic distribution of interests of the query and of the
corresponding Web pages as a measure of their relevance.

Vector Model. We denote a search query
q by a k-dimensional probability distribution
q = 〈d1, d2, · · · , dk〉, and denote a Web page w by
w = 〈dw

1 , dw
2 , · · · , dw

k 〉, where each dimension di or
dw

i represents the probability of registering user clicks
from a geographical region ri. Thus, we can measure
the similarity in geographical click distributions of the
query and the Web page as the cosine similarity of the two
vectors:

D(q,w) =
q ·w

‖q‖‖w‖
(6)

where · denotes the dot product operation and ‖ · ‖ denotes

the magnitude. Note that other vector distance metrics can
also be applied.

Maximum-likelihood Model. Given a query q and a
Web page w, let pq = Cq · d

−αq
q and pw = Cw · d−αw

w

denote the click probability at a point at distance dq

and dw away from the centers of interests Cq and Cw,
correspondingly. We can measure the proximity of two
centers of interests with regard to the corresponding
spreading factors as

P(q,w) = Cqd
−αq
c · Cwd−αw

c , (7)

where dc is the distance between Cq and Cw. Intuitively,
P(q,w) becomes maximal when dc approaches 0, i.e.
when the centers of interests for the search query and the
Web page converge.

8 Experimentation and Discussions

8.1 Query Geo-sensitivity Classification

To establish the ground-truth for evaluating the
classification accuracy, a test-set of 1,000 queries were
randomly sampled from the search logs, and each query in
the test-set was reviewed by a team of professional editors
and classified as either GSQ or NGSQ according to the
geo-sensitivity definitions outlined in Table 1.

We limited the scale of evaluation to geographic
locations within the contiguous United States. Based on
the classification results in pilot tests comparing various
granularity settings, we fixed the region granularity as
a State. Thus, q is a 48-dimensional vector, and each
dimension represents the probability of user clicks from
the corresponding State. Same for p. We chose χ2 as the
distance metric.

We first calculated p using the 10K queries training
dataset, and then applied the proposed classification
methods on the 1K queries test set. Evaluated against
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label vector model maximum-likelihood model
GSQ metro community college, utah power, dixon middle school,

kcci, idaho lottery, alaska weather, salt lake tribune newspaper,
oklahoma county assessor, SLED, job openings in alabama,
utah jazz, CCSU, iowa dmv, oregonian, green bay press gazette

MJR Waterford Cinema 16 Waterford MI, whittemore speedway,
mercedes benz san antonio, berkeley nj, job openings in
alabama, speaker of baseball, deaf smith county, idaho lottery,
maui vacation rental, city of brawley, south plains college,
wtvm, utah power, kcci, puerto vallarta hotel

NGSQ online dictionary, internet explorer, adobe, winzip, famous
quotes, microsoft word, the notebook, ipod shuffle, mcafee,
spanish translator, xbox, us postal service, poker, matrix, colors

wwe, elton john, meditation, geri halliwell, salary, taxi, charlie
sheen, supreme court, Uma Thurman, eliza dushku, toledo
spain, torrent search, the producers, baseball, mcafee

Table 2: Top 15 queries classified as geo-sensitive or non-sensitive by the vector model and the maximum-likelihood model.

the ground-truth editorial labels, the two models showed
quite promising accuracy. In Figure 2(a) and 2(b), the
X-axis represents D for the vector model and α for the
maximum-likelihood model; the Y-axis on the left applies to
the accuracy curve, and the Y-axis on the right applies to the
false positive rate curve. Here the classification accuracy is
the ratio of queries that were correctly classified as either
GSQ or NGSQ, and the false positive rate is the ratio of
NGSQs that were incorrectly labeled as GSQs. The vector
model achieved 90% accuracy and 4.8% false positive rate
when D = 3.0 (see Table 3 for the confusion matrix), while
the maximum-likelihood model achieved 87.8% accuracy
and 2.8% false positive rate when α = 1.6. For most
queries, the vector model was an order of magnitude faster
to compute than the maximum-likelihood model.

GSQ NGSQ
Labeled as GSQ 91 41

Labeled as NGSQ 59 809

Table 3: The confusion matrix of the classification results using the
vector model with D = 3.0.

Table 2 shows the top 15 queries that were classified
as either GSQ or NGSQ, order by D. There are several
GSQs that are worth mentioning. For example, “kcci”
is a local TV station in Des Moines, IA. “SLED” is
the acronym for the South Carolina Law Enforcement
Division. “CCSU” is the shorthand for Central Connecticut
State University. And “wtvm” is a television station in
Columbus, Georgia. All these queries would probably
not have been easily identified as geographically sensitive
had we relied only on the syntactic information of the
queries. It is also worth noting that the top queries identified
using the two models did not have much overlap. In
particular, the maximum-likelihood model picked up much
more celebrities’ names as NGSQs (five out of the top 15)
than the vector model. We plan to further investigate this
interesting difference.

8.2 Relevance Ranking Improvement

To measure the improvements with regard to search
relevance ranking, we used a popular metric Discounted
Cumulative Gain (DCG) [8, 9]. DCG allows us to attach
more importance to documents that are ranked higher in
the list, and to differentiate various levels of subjective
relevance judgment made by the human evaluators. For a
given query q, DCG is defined as

DCG(q, N) =
N∑

d=1

2R(d) − 1
ln(1 + d)

(8)

where R(d) is the editorial rating of the d−th Web page in
the top N ranked search results. Intuitively, a higher DCG
score indicates a better relevance ranking.

We evaluated the relevance improvement on approxi-
mately 8,900 search queries sampled from the query logs
of Yahoo! Search. For each of these queries, we calculated
the DCG scores for a baseline ranking algorithm, and an
alternative ranking algorithm that took into account the
geographic distribution of users’ interests. The baseline
ranking algorithm was a proprietary decision-tree-based
ranking algorithm trained on a very large number of
features, and generated the same search ranking as Yahoo!
Search. On the other hand, the alternative ranking algorithm
learned to utilize D(q,w) in Equation 6 as an important
ranking feature, in addition to the existing features being
used by the baseline algorithm. We then compared the DCG
scores of the alternative algorithm to the baseline.

Due to confidentiality, we are not allowed to report the
absolute DCG values on this data set, and we will quantify
the performance changes in relative terms. On average,
the alternative ranking algorithm outperformed the baseline
algorithm by 1%, statistically significant with α = 0.05.
See Figure 2(c) for a breakdown by query class and Table
4 for a sample of the geo-sensitive queries with increased
DCG scores.

9 Conclusion and Future Work

We studied two click-based models of the geographic
distribution of users’ interests. Given a search query or a
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query DCG@1 DCG@10
greeks pizza muncie +2.7% +3.7%

st louis massage school +1.0% +13.9%
el paso texas flooding + 2.2% +27.1%

Table 4: Examples of geo-sensitive queries with DCG improvement.

Web page, by mining the geographic distribution of past
user clicks, we can indirectly model the distribution of
users’ interests. We then discussed two applications of
the click-based models. We first applied the models to
classify search queries based on their locality preference
and identify users’ distribution of interests for such queries.
We then used the model to generate meaningful metrics
for measuring the proximity between a search query and
a Web page with regard to users’ locality preference, with
the goal to improve search ranking relevance. We presented
the results from our empirical experiment on a large dataset,
and both the two models demonstrated promising results.

The maximum-likelihood model is computationally
expensive, but nicely complements the vector model due
to its ability to express proximity. The vector model,
on the other hand, is computationally efficient but does
not consider the proximity among dimensions due to the
arbitrarily-defined boundaries. We plan to further evaluate
the two models and investigate their utilities for relevance
ranking.
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