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ABSTRACT
Scholarly big data is, for many, an important instance of Big
Data. Digital library search engines have been built to ac-
quire, extract, and ingest large volumes of scholarly papers.
This paper provides an overview of the scholarly big data
released by CiteSeerX, as of the end of 2015, and discusses
various aspects such as how the data is acquired, its size,
general quality, data management, and accessibility. Pre-
liminary results on extracting semantic entities from body
text of scholarly papers with Wikifier show biases towards
general terms appearing in Wikipedia and against domain
specific terms. We argue that the latter will play a more
important role in extracting important facts from scholarly
papers.

CCS Concepts
•Applied computing!Digital libraries and archives;

•Information systems ! Extraction, transformation and
loading; Deduplication; •Computing methodologies !
Lexical semantics;

Keywords
CiteSeerX, Digital Library Search Engine, Scholarly Big Data,
Citation Graph, Semantic Entity Extraction

1. INTRODUCTION
Big Data can be classified into several categories depend-

ing on the source, e.g., data from sensors, social interac-
tions, business interactions, electronic files, and broadcast-
ings. The scholarly data in this paper refers that extracted
from scholarly papers as electronic files. Characteristics of
Big Data are often described with three dimensions, “Vol-
ume”, “Variety”, and “Velocity”. Scholarly data has a large
volume; it was estimated in 2014 that the total number of
scholarly papers on the Web was about 120 million [11],
and about a quarter were freely accessible. Assuming that
most are in PDF and the average size of a scholarly paper
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is 1 MB, then all papers would be 120 TB and 30 TB for
those freely accessible. For comparison, this size is larger
than the NASA Earth Exchange Downscaled Climate Pro-
jections dataset (17 TB) available on AWS. Scholarly pub-
lications are growing at a rate of over 1 million annually
[13].

There are various types of scholarly data. Document text
is mainly unstructured while the paper as a whole, separated
by section identifiers, and itemizations, is semi-structured.
Metadata extracted and parsed from papers is structured.
Finally, while the volume of academic documents contin-
ues to grow, digital library search engines are expected to
respond to search queries on a sub-second time scale. Schol-
arly data is also very rich in facts and knowledge. As such
scholarly data can be considered an important instance of
big data.

Digital library search engines (DLSEs) are commonly used
to manage and search scholarly big data, either through
Web UIs, APIs, or digital copies. Examples of crawl-based
DLSEs include Google Scholar, Microsoft Academic Search,
Semantic Scholar, and CiteSeerX. These search engines ac-
quire their documents by the most part by actively crawl-
ing the Web. Information and metadata are automatically
extracted and indexed. Submission-based DLSEs, instead,
receive metadata directly from publishers, or from manual
input, such as Harvard ADS, PubMed, Web of Science, Else-
vier, and arXiv. This data is typically focused on particular
fields, such as astrophysics (Harvard ADS). Due to copy-
right, a large fraction of full papers in some of these DLSEs
is not public. As a result, crawl-based DLSEs are important
sources of research data for tasks such as citation recom-
mendation, e.g., [10, 4], author name disambiguation e.g.,
[25, 12], ontologies, e.g., [1], document classification, e.g.,
[3], and “Science of Science”, e.g., [21].

One of the limitations of many digital library data releases
is that they do not include full text and author name disam-
biguation. For example, the DBLP data [15] contains meta-
data of 4.8 million papers (as of 2015), but it only includes
header metadata (e.g., title, authors, year, and venue). The
recently released Microsoft Academic Graph [22] contains
over 100 million paper records (2015-11-06), which is the
largest academic publication metadata release so far but
author names are not disambiguated (which is non-trivial),
and the full text is not available. There are other schol-
arly paper providers such as CORE and OpenDOAR that
use an approach called “harvesting”. Di↵erent from “web
crawling”, these digital libraries passively receive data or
metadata from open access repositories, which could lead
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to a strong bias in document content. Empirically, not all
papers have full text, and data access is usually limited to
a web interface.

The CiteSeerX data is in some cases unique compared
with the data sources above. The data release contains full
text of more than 7 million (as of the beginning of 2016)
open access scholarly documents and author metadata has
been disambiguated for the main database. For this data we
present preliminary results for semanticizing scholarly pa-
pers, as an application on the data, and as an e↵ort towards
building a scholarly knowledge base.

2. ACQUISITION AND EXTRACTION
The data in CiteSeerX is collected from two sources. A fo-

cused web crawler actively harvests open access documents
from the Web. The first set of seed URLs were manually cu-
rated HTML pages, mostly homepages of professors and re-
searchers in computer science. The crawler downloads PDF
documents linked to these pages, finds new URLs from these
pages, and saves useful parent URLs into the crawl database.
In this way, a large collection of PDF files form the crawl
repository. Each PDF file is associated with its original
URL, and a parent URL (if any), which can be re-crawled for
updates. Since 2012, we started to crawl a whitelist contain-
ing high quality URLs selected from all parent URLs [28].
Meanwhile, Heritrix, the web crawler of Internet Archive,
replaced our own crawler. Heritrx implements a sophis-
ticated thread pool manager that balances politeness and
aggressiveness. We also host a crawl website for individual
users and publishers to submit URLs and have received over
200,000 user URLs since 2009. Seed URLs are also adopted
from public data releases such as Wikipedia External Links
and Microsoft Academic Graph. Given current limitations,
we can crawl up to 200,000 PDF files per day using a single
server. The crawler strictly obeys robots.txt. Documents
are also downloaded directly from open access repositories,
such as PubMed Central, and arXiv. We automatically con-
struct URLs that link to the original pages of these papers.

After files are crawled, they are labeled with a crawl ID
and imported into the crawl repository. The associated
metadata, including the crawl time, original URLs, parent
URLs, URL hash, and content hash are saved into a crawl
database. The crawled documents are then processed by the
extraction module in batches. At first, the full text is ex-
tracted. Before 2015, we used PDFLib TET 3.0. Since 2015,
we have used Apache PDFBox 1.8.4, an open source toolkit
with comparable performance to TET 4.0 [27]. A rule-based
filter is applied on each document [29]. Academic documents
are passed to metadata extraction. Header metadata are ex-
tracted with SVMHeaderParse [9], including title, authors,
date (if available), and abstract. Also extracted is name,
a�liation, and address for each author. ParsCit [6] is used
to extract and parse references. For each reference, ParsCit
extracts authors, title, venue, venue type, year, book title,
location, journal, date, volume, pages, note, marker, raw
string, as well as citation context, which is the text around
where the reference is cited. After citation extraction, an
XML file is generated to concatenate header and citation
extraction results. The ingestion process reads all fields in
the XML file and inserts their values into the production
database. Near-duplicated documents (NDs) are ubiquitous.
These documents usually have the same (or similar) titles
and author lists but di↵erent checksums. To identify NDs,

the ingestion module generates string keys from each docu-
ment with title and author names, and groups papers with
one or more common string keys into a document cluster
with an ID (called CID). A new document is ingested with
a unique ID (called csxdoi), and is also assigned a CID.
Citation ingestion is handled in a similar way. Therefore,
a document cluster may contain documents or citations or
both. At the end of each ingestion cycle, a new XML file is
generated containing the revised metadata (clustering and
inference). This XML file, along with the original PDF,
and auxiliary files are copied into the production repository.
Currently, we ingest 20,000 to 30,000 documents per day
with a peak around 60,000.

3. DATA PRODUCTS

3.1 Raw Data
CiteSeerX o↵ers two levels of data: raw and processed.

The raw data includes the crawl repository and database.
The size of the crawl repository has increased remarkably
since 2008 (Table 1). The crawl database contains two
major tables: main_crawl_document (26 million rows) and
main_crawl_parenturl (2.5 million rows). While the crawl
database takes only 16 GB of space, the crawl repository
takes over 24 TB of space. Duplicate elimination is handled
such that a document is considered new as long as the con-
tent hash and the URL hash do not match existing record.
Then the document is imported. This preserves multiple
sources linking to the same document, as well as possible
updates of a document from the same URL. Crawl statistics
1 have country ranking by number of documents, domain
(or top level domain) rankings by number of documents, ci-
tations, and citation number per document. Users can also
submit URLs to be crawled from this portal.

Table 1: Document collection since 2008 (two-digit

year). Indexed documents represent unique ones

among all the ingested. Numbers are in millions.

Year 08 09 10 11 12 13 14 15

Crawled 1.9 2.9 5.6 6.2 7.9 13.0 21.0 25.8

Ingested 0.6 1.4 1.7 1.9 2.4 3.8 5.1 6.9

Indexed 0.5 0.8 1.0 1.2 1.5 2.9 4.0 5.7

The raw data collection is heterogeneous in the sense that
it contains multiple document types. To characterize the
heterogeneity, we randomly selected 2000 documents from
the crawl repository, visually inspected them, and classi-
fied them into various categories [3]. The pie chart in Fig-
ure 1 indicates that over half of the crawled documents are
academic, including papers, books, reports, slides, theses,
abstracts, and posters, which can potentially be ingested.
The rest (others+non-en) is about 42% including miscel-
laneous types such as advertisements. “Non-en” stands for
documents not written in English or mixed with non-English
languages (seen in some theses). The crawl repository can
be used for document classification experiments and improv-
ing web crawling. URLs in the crawl database can be used
to generate whitelists and schedule crawl jobs.

3.2 Production Databases
The processed data includes production databases and a

repository. There are two principal databases, citeseerx
1http://csxcrawlweb01.ist.psu.edu
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Figure 1: Categories for sampled crawled docu-

ments.

and csx_citegraph. The citeseerx database stores meta-
data directly extracted from papers. It also includes a table,
cannames, for storing disambiguated authors. The csx_citegraph
stores the citation graph – a citation relational network of
publications after de-duplication [26]. The sizes of major
tables are summarized in Table 2.

Table 2: Major database tables and their sizes by

the end of 2015 in millions.

database.table Description Rows

citeseerx.papers header metadata 6.8

citeseerx.authors author metadata 20.6

citeseerx.cannames authors (disambiguated) 1.2

citeseerx.citations reference items in papers 150.2

citeseex.citationContext citation context 131.9

csx citegraph.clusters citation graph (nodes) 45.7

csx citegraph.citegraph citation graph (edges) 112.5

Because each document cluster represents a unique pub-
lication, it is an eligible node in the citation graph. By the
end of 2015, the citation graph contains about 45.7 million
nodes, and 112.5 million edges. In Figure 2, we present
the in-degree (k

in

) and out-degree (k
out

) distributions of
this graph calculated using SNAP [14]. The slope by fit-
ting data points of 0  log(k

in

)  2.5 (data points beyond
2.5 introduce too much noise) using least square linear fit is
� = �2.37, significantly greater than the slope obtained by
[2], which is �1.71, and generally consistent with the slope
reported by [23], which is �2.28. Note that there are 0.7
million nodes and 1.7 million edges used by [23], and the
work by [2] was based on a much smaller size of CiteSeer in
2004. The out-degree distribution is clearly non-linear, with
a shallow slope (� ⇡ �0.22) by fitting points with k

out

 10
and a steeper slope (� ⇡ �3.20) beyond k

out

� 30. Again,
the high out-degree linear part is steeper than the slope re-
ported by [2] (� = �2.32 using points with k

out

> 18) and
more consistent with the slope reported by [23] (� = �3.82),
although they did not mention the fitting range.

The citeseerx.cannames table contains metadata of 1.2
million disambiguated authors, conflated from 20 million au-
thor names. Disambiguating all CiteSeerX authors takes less
than 2 days [12]. It is non-trivial to directly evaluate the
disambiguation results based on CiteSeerX data. Recently,
we compared our algorithm with one of the best name dis-
ambiguation algorithms [25]. Our results outperformed all
evaluation datasets in terms of recall and overall F-1 mea-
sure.

Figure 2: Distributions of in-degree (red) and out-

degree (green) of the full citation citegraph.

3.3 Production Repository
Another data product is the production repository, con-

taining about 7 million academic documents along with their
metadata. The total size of the repository is about 9 TB.
The PDF files takes 6.7 TB (5.4 TB compressed); the full
text files takes 516 GB (165 GB compressed); the XML
files takes 256 GB (31 GB compressed). The other files
include body text (.body), reference text (.cite), original
text extraction results from PDFLib TET (.tetml), version
metadata files (e.g., v1.xml) and postscript files (.ps for old
papers). The quality of the repository is evaluated by the
accuracy of documents classified as academic and the rate
of near-duplicates.

3.3.1 Classification accuracy

To evaluate the document classification accuracy, we ran-
domly selected 1000 documents from the repository (Sam-
ple P) and manually classified them into categories defined in
[3]. The results presented in Table 3 indicate that over 90%
documents in CiteSeerX are academic and over 80% are pa-
pers. Non-academic documents are ingested because of the
performance of our rule-based filter. As a result, a fraction of
non-academic documents containing“references”, “bibliogra-
phy”, and/or their variants are misclassified. Also, a fraction
of academic documents is missing because the text does not
contain designated terms. To quantify the fraction of false
negatives, we randomly sampled 300 documents not identi-
fied as academic (Sample N) and manually classified them
into the same categories as Sample P (Table 3). The results
indicate that although the majority of dropped documents
are non-academic (⇡ 80%), the classifier misses a consider-
able fraction of academic documents (⇡ 20%). To improve
the classification accuracy, we have developed a more so-
phisticated binary and multi-type classifier using machine
learning and structural features. The 10-fold cross valida-
tion results give over 90% of both precision and recall for
binary classification tasks [3]. We have integrated this clas-
sifier into a new extraction framework [27].

3.3.2 Near-duplication rate

. The ingestion pipeline uses the keymapping algorithm
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Table 3: Classification results of Samples P and N.

Categories paper book report slides thesis

Sample P 83.0% 0.7% 4.5% 0.8% 2.6%

Sample N 12.3% 0% 0.7% 5.7% 0.3%

Categories resume abstract poster non-en others

Sample P 0% 0.3% 0.2% 0.3% 7.5%

Sample N 0.7% 0.3% 0% 0.3% 70.7%

[29] to de-duplicate and cluster documents. Directly evalu-
ating this approach and calculating the near-duplication rate
is non-trivial due to the di�culty to build the ground truth
by labeling documents in a su�ciently large and unbiased
sample. Here, we infer and derive the near-duplication rate
indirectly by labeling two samples. Sample A was drawn
randomly from clusters containing exactly two documents
(S = 2); Sample B was drawn randomly from clusters con-
taining more than two documents (S > 2). We sampled in
this way for two reasons. First, the number of S = 2 clus-
ters is almost three times as many as the number of S > 2
clusters (Table 4). If we drew the sample from all S � 2
clusters uniformly, there would be too few S > 2 clusters,
which leads to big uncertainties and extremely low confi-
dence level. Second, the evaluation of S = 2 clusters is more
straightforward than S > 2 clusters because the decision of
the former is binary, but the latter involves cases in which
not all documents are near-duplicates.

Table 4: Distribution of document cluster sizes.

S 1 2 3 4 > 4

N
C

(million) 5.08 0.45 0.10 0.03 0.03

Percentage 92.8% 7.91% 1.76% 0.53% 0.53%

Each sample contains 100 clusters. Sample A contains
200 documents; sample B contains 430 documents. For
each document, we manually extracted title, authors, year,
and venue, if available. We visually inspected documents
(not just metadata) in each cluster and judged if they are
true near-duplicates. For Sample B, we calculate a partial-
grade by dividing the number of correctly clustered docu-
ments by S. A cluster is then 100% correct if and only
if all documents are true near-duplicates. Table 5 shows
that the larger the cluster size, the more likely the docu-
ments inside are not near-duplicates, i.e., they are distinct
documents. The table column “D-ratio” is defined as the
number of distinct documents D divided by the number of
clusters N

C

. D-ratio values in Samples A and B mean that
assuming we correctly de-duplicate all documents, we should
gain 16% more clusters in Sample A, and 126% more clus-
ters in Sample B. The number of distinct documents of the
whole repository can then be estimated by scaling up by
D-ratios. Assuming all the S = 1 clusters are distinct, the
total number of unique documents is estimated as (in mil-
lions) 5.08+0.45⇥1.16+0.16⇥2.26 ⇡ 5.96, so the duplication
rate is (1�5.96/6.70)⇥100% ⇡ 11%. Here we assume there
is no cross-cluster near-duplicates, i.e., there is no duplicate
of any document in Cluster X with Cluster Y.

Here we argue that the clustering quality does not only
depend on the algorithm, but also on extraction quality. Our
new extraction framework employs GROBID [18], which ex-
hibits superior performance over SVMHeaderParse [17] on
header extraction. We expect the keymapping algorithm
achieve better performance with improved metadata.

Table 5: Near-duplicate evaluation of two samples.

Sample S N
C

True %True D-ratio

A 2 100 84 84% 1.16

B overall > 2 100 70 70% 2.26

B 3 58 44 76% 1.40

B 4 27 22 81% 1.44

B 5 5 2 40% 2.00

B 6 3 0 0% 4.67

B 7 1 0 0% 5.00

B 8 2 1 50% 4.50

B 9 1 0 0% 8.00

B 13 1 1 100% 1.00

B 21 1 0 0% 20.00

B 39 1 0 0% 39.00

3.4 Data Management and Access
Scalability is the top concern of scholarly big data. To

keep our data highly available through the Web service, we
use a dedicated server with 48GB of RAM, 16 cores, and
1TB storage to host the master database. The database is
replicated in real time on another two servers. The search
data is hosted by Apache Solr 4.9 hosted on two high end
servers, one replicating the other. We have also deployed
SolrCloud using 7 virtual servers on a private cloud, which
will be in production after tuning. SolrCloud is extremely
scalable up to hundreds of millions of documents, and has
been leveraged by industrial companies. The repository used
to be handled as a bulk device in GFS2. Recently, we de-
signed and implemented a RESTful API, which overcomes
the stability issue caused by the fencing function of GFS2.

Data redundancy and backups are crucial for an informa-
tion system like us as re-producing the data takes incredibly
long period of time and some data are not restorable once
they are lost. The database is dumped periodically using
the standard MySQL tool in .sql format, which keeps data
integrity and compatibility. The production repository is
synced to a backup repository on a weekly basis. We keep
at least three copies of production repository and database
dump, and two copies of the crawl repository, as well as other
related data. We will keep applying these strategies to future
data. The production data is accessible from Amazon S3,
which is updated every 2–3 months. All data requesters pro-
vide basic information such as their names, institutions, and
a brief explanation of intended use by submitting a “contact
us” message on the CiteSeerX front page.

4. SEMANTICIZATION
DLSEs are evolving to be intelligent to question answer-

ing systems with regards to concepts, experts, methodolo-
gies, and paper and citation recommendations. An appro-
priate question could be “What papers should I read to un-
derstand digital library search engines?”. Large scale com-
mercial search engines such as Google have built semantic
search engines capable of answering a number of general
questions. There has been work on semanticizing syntac-
tic patterns in NLP processing [24], but it is usually based
on tagged sentences, which are preprocessed by lexical or
semantic parsers. Such a semantic search engine is a knowl-
edge base populated with entities extracted from full text
or from other metadata. For our data, we utilize the UIUC
Wikifier [5, 19] for entity linking on a sample of CiteSeerX
papers. There are similar tools such as Semanticizer [8]. but
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we choose the UIUC Wikifier because of its relatively stable
performance and wide usage. As an open source tool, Wik-
ifier has been used and studied in various entity extraction
tasks [16, 20, 30]. Basically it identifies entities and disam-
biguates them into the most corresponding Wikipedia pages
based on local and global statistics of the given text and
entity relations.

We ran Wikifier on 24859 paper full text randomly se-
lected from CiteSeerX repository, of which 21300 are suc-
cessfully processed. The average size of an input file is
53 kB. The output of each file includes all Wikipedia terms
identified, along with a link score. We set an empirical
cut-o↵ of 0.8 to remove less meaningful terms, e.g., “Sym-
bols (album)”, and removed single character symbols such
as “⌦” since we are focusing on words. Figure 3 shows the
frequency-rank (f–R) diagram of about 280,000 Wikipedia
entities extracted. The entities do not follow Zipf’s law.
Instead, the term frequency drops quickly at R > 1000.
The top 10 frequent terms are “Algorithm”, “Cell (biology)”,
“Matrix (mathematics)”,“Protein”,“United States”,“Energy”,
“Temperature”, “One half”, “Need To”, and “Theorem”.

General knowledge extraction focuses on high frequency
entities. Facts extracted based on these entities are more
general and less context dependent. However, for scholarly
papers, such a fact extractor may not work well because
statements are more meaningful when they are placed in
a global or local context. This is partially (if not all) at-
tributed to the fact that many domain specific terms are
not in Wikipedia, e.g., “Digital Library Search Engine”. The
hard drop at R > 1000 indicates that only considering terms
appearing inWikipedia is not su�cient to cover the full spec-
trum of meaningful entities. The missing entities are likely
to be very contextual and domain dependent. Thus, it is
necessary to curate a set of domain specific terms, which
will appear at low frequency that are crucial for making
meaningful extractions.

The poor scalability of the extractor limited experiments
on a larger sample. We ran our experiment on a Linux server
with 24 cores and 48 GB of RAM. Only a small fraction of
runtime was parallelizable. To run the extractor on all Cite-
SeerX data may require optimization or launching multiple
instances. Another issue is that the tools are trained with
annotated news datasets or the Wikipedia dataset. A la-
beled entity linking dataset for scholarly papers would be
useful.

To build a semantic entity extractor for scholarly papers,
we start from a sample of about 30,000 conference and jour-
nal papers published in WWW, VLDB, and ACL. High qual-
ity text is first extracted with Xpdf [7]. The full text of
each paper is parsed to n-grams with n = 1 · · · 5. A 10-
dimensional feature vector is then created for each n-gram,
including tf, df, tf-idf, first letter capitalized, all letters capi-
talized, appearance of citation, mixed upper/lower cases, gen-
eralized dice coe�cient (GDC), gram locations, and Point-
wise Mutual Information (PMI). By filtering out n-grams
containing non-alphanumerical characters, we have a list of
8000 candidate entities. The next step is to label them to
build a ground-truth dataset so as to enable model training.

5. CONCLUSION AND FUTURE WORK
We describe a corpus of scholarly big data released by

CiteSeerX, and report on preliminary results for extracting

Figure 3: The frequency-rank diagram of about

280,000 Wikipedia entities extracted from a text

sample selected from CiteSeerX repository.

semantic entities from a sample of about 25,000 papers. Fu-
ture work will be to significantly increase the size of the
data to 7 million and hopefully to all open access docu-
ments on the Web (about 30 million). The data variety
will be improved by extracting non-textual content such as
figures, tables, and algorithms using many developed tools,
including ours. We will improve data quality using better
extractors and investigate empirically what are ”meaningful”
terms. We will develop a data correction module, which au-
tomatically detects and corrects metadata errors using avail-
able reference data available from DBLP, publishers, and the
Web of Science.

We believe better semanticization can come from an an-
notated a corpus of scholarly papers used as training data.
We intend to investigate the di↵erence and similarity of pa-
pers of various subjects, such as computer science, physics,
and chemistry in order to find a proper set of semantic en-
tities for a specific knowledge domains before establishing
their semantic relations. Also, we intend to construct a fine
grained hierarchical ontology for computer science papers,
for which many of our semantic entities are based.
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[14] J. Leskovec and R. Sosič. Snap.py: SNAP for Python,
a general purpose network analysis and graph mining
tool in Python. http://snap.stanford.edu/snappy,
June 2014.

[15] M. Ley. DBLP - some lessons learned. PVLDB,
2(2):1493–1500, 2009.

[16] Y. Li, C. Wang, F. Han, J. Han, D. Roth, and X. Yan.
Mining evidences for named entity disambiguation. In
Proceedings of the 19th ACM SIGKDD international
conference on Knowledge discovery and data mining,
pages 1070–1078. ACM, 2013.

[17] M. Lipinski, K. Yao, C. Breitinger, J. Beel, and
B. Gipp. Evaluation of header metadata extraction
approaches and tools for scientific pdf documents. In
Proceedings of the 13th ACM/IEEE-CS Joint
Conference on Digital Libraries, JCDL ’13, pages
385–386, New York, NY, USA, 2013. ACM.

[18] P. Lopez. Grobid: Combining automatic bibliographic
data recognition and term extraction for scholarship
publications. In Proceedings of the 13th European
Conference on Research and Advanced Technology for
Digital Libraries, ECDL’09, pages 473–474, Berlin,
Heidelberg, 2009. Springer-Verlag.

[19] L.-A. Ratinov, D. Roth, D. Downey, and
M. Anderson. Local and global algorithms for

disambiguation to wikipedia. In ACL, 2011.
[20] A. Sil and A. Yates. Re-ranking for joint named-entity

recognition and linking. In Proceedings of the 22nd
ACM international conference on information &
knowledge management, pages 2369–2374. ACM, 2013.

[21] R. Sinatra, P. Deville, M. Szell, D. Wang, and A.-L.
Barabasi. A century of physics. Nat Phys,
11(10):791–796, 10 2015.

[22] A. Sinha, Z. Shen, Y. Song, H. Ma, D. Eide, B.-J. P.
Hsu, and K. Wang. An Overview of Microsoft
Academic Service (MAS) and Applications. In
Proceedings of the 24th International Conference on
World Wide Web, WWW ’15 Companion, pages
243–246, Republic and Canton of Geneva,
Switzerland, 2015.

[23] L. Subelj, D. Fiala, and M. Bajec. Network-based
statistical comparison of citation topology of
bibliographic databases. Scientific Reports, 4:6496,
Sep 2014. Article.

[24] N. Vitucci, M. A. Neri, R. Tedesco, and G. Gini.
Semanticizing syntactic patterns in NLP processing
using SPARQL-DL queries. CEUR Workshop
Proceedings, 849, 2012.

[25] M. Wick, S. Singh, and A. McCallum. A
Discriminative Hierarchical Model for Fast
Coreference at Large Scale. In Proceedings of the 50th
Annual Meeting of the Association for Computational
Linguistics: Long Papers - Volume 1, ACL ’12, pages
379–388, Stroudsburg, PA, USA, 2012. Association for
Computational Linguistics.

[26] K. Williams and C. L. Giles. Near duplicate detection
in an academic digital library. DocEng ’13, pages
91–94, 2013.

[27] J. Wu, J. Killian, H. Yang, K. Williams, S. R.
Choudhury, S. Tuarob, C. Caragea, and C. L. Giles.
Pdfmef: A multi-entity knowledge extraction
framework for scholarly documents and semantic
search. In Proceedings of the 8th International
Conference on Knowledge Capture, K-CAP 2015,
pages 13:1–13:8, New York, NY, USA, 2015. ACM.

[28] J. Wu, P. Teregowda, J. P. F. Ramı́rez, P. Mitra,
S. Zheng, and C. L. Giles. The evolution of a crawling
strategy for an academic document search engine:
whitelists and blacklists. In Proceedings of the 3rd
Annual ACM Web Science Conference, WebSci ’12,
pages 340–343, New York, NY, USA, 2012. ACM.

[29] J. Wu, K. Williams, H.-H. Chen, M. Khabsa,
C. Caragea, A. Ororbia, D. Jordan, and C. L. Giles.
Citeseerx: Ai in a digital library search engine. In The
Twenty-Sixth Annual Conference on Innovative
Applications of Artificial Intelligence, IAAI ’14, 2014.

[30] J. G. Zheng, D. Howsmon, B. Zhang, J. Hahn,
D. McGuinness, J. Hendler, and H. Ji. Entity linking
for biomedical literature. BMC medical informatics
and decision making, 15(Suppl 1):S4, 2015.

6


