
Text Extraction and Retrieval from Smartphone Screenshots:
Building a Repository for Life in Media

Agnese Chiatti† Mu Jung Cho** Anupriya Gagneja** Xiao Yang* Miriam Brinberg*

Katie Roehrick** Sagnik Ray Choudhury† Nilam Ram* Byron Reeves** C. Lee Giles†

†Information Sciences and Technology, Pennsylvania State University, {azc76,szr163,giles}@ist.psu.edu
*Human Development and Family Studies, Pennsylvania State University, {xfy5031,mjb6504,nur5}@psu.edu

**{Department of Communication, Department of Computer Science}, Stanford University,
{mujung.cho,anupriya,kroehr,reeves}@stanford.edu

ABSTRACT
Daily engagement in life experiences is increasingly interwoven
with mobile device use. Screen capture at the scale of seconds is
being used in behavioral studies and to implement "just-in-time"
health interventions. The increasing psychological breadth of digi-
tal information will continue to make the actual screens that people
view a preferred if not required source of data about life experi-
ences. Effective and efficient Information Extraction and Retrieval
from digital screenshots is a crucial prerequisite to successful use
of screen data. In this paper, we present the experimental workflow
we exploited to: (i) pre-process a unique collection of screen cap-
tures, (ii) extract unstructured text embedded in the images, (iii)
organize image text and metadata based on a structured schema,
(iv) index the resulting document collection, and (v) allow for Image
Retrieval through a dedicated vertical search engine application.
The adopted procedure integrates different open source libraries
for traditional image processing, Optical Character Recognition
(OCR), and Image Retrieval. Our aim is to assess whether and how
state-of-the-art methodologies can be applied to this novel data set.
We show how combining OpenCV-based pre-processing modules
with a Long short-term memory (LSTM) based release of Tesseract
OCR, without ad hoc training, led to a 74% character-level accuracy
of the extracted text. Further, we used the processed repository as
baseline for a dedicated Image Retrieval system, for the immediate
use and application for behavioral and prevention scientists.
We discuss issues of Text Information Extraction and Retrieval that
are particular to the screenshot image case and suggest important
future work.
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1 INTRODUCTION
Individuals increasingly record, share, and search through their
daily activities and behaviors through digital means. Given the
breadth of current technologies, this "life in media" (i.e., daily ex-
periences captured by technology) is fragmented across multiple
devices and applications. Fast-paced switching - as quickly as every
19 seconds on laptop computers [24] - often occurs between ei-
ther loosely-related or radically different content. However, holistic
examination of individuals’ mediatized lives remains largely unex-
plored. In this scenario, digital screenshots of individuals’ devices
represent an ideal target to (i) ensure in situ collection of diverse
data that are normally tackled within separate domains (e.g., exam-
ining use of all social media, rather than only a particular site), (ii)
investigate the interdependencies and fragmentation of activities
over time, forming a valuable data set for behavioral scientists and
intervention implementation, and (iii) more broadly, test theory,
specifically with respect to digital life (e.g., social interactions, learn-
ing, news consumption).
Frequent screen capture as a data collection method has the poten-
tial for providing more fine-grained, longitudinal data than tradi-
tional URL, query logging and app usage tracking methods. The
extraction, representation and effective retrieval of screenshot tex-
tual contents are then crucial steps eliciting the application of these
analyses to a number of use cases [13], including: medical diagnosis
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and early detection of disease, behavioral studies interrogating on
the nature and shape of human development in the digital era, mod-
els of task switching and its implications for attention and memory,
mining of political attitudes and voting across social media and
news media, assessments of the role of fake news in democratic
settings and so forth.
As discussed in [3], screenshots provide a unique combination of
graphic and scene text, motivating the evaluation of state-of-the-
art OCR methods on this particular data set. Further, Information
Extraction from digital screenshots raises the need for developing
a general purpose framework that handles a variety of fonts and
layouts, disambiguates icons and graphical contents from purely
textual segments, while dealing with text embedded in advertise-
ments, logos, or video frames.
In order to move from miscellaneous information fragments to a
more structured and interactive repository for further Knowledge
Discovery, it is important to consider the organization and accessi-
bility of the extracted data. We particularly focus on the retrieval
of screenshot images based on their textual content and metadata,
by describing the search engine architecture developed to this aim.
This paper presents a completeworkflow (from Image Pre-processing
to Image Retrieval) integrating existing open-source methods and
tools. The reviewed literature and related background concepts are
presented in Section 2. Section 3 illustrates the design and charac-
teristics of the data set at hand, while also describing the Image
Processing and Retrieval steps. Results from the evaluation of the
recognized raw text are discussed in Section 4. We conclude with
future research directions in Section 5.

2 BACKGROUND
Text in imagery is typically characterized as either machine-printed
(graphic) or scene text, i.e. captured on objects and native scenes
[22]. The overarching goal of Text Information Extraction [22], in
both cases, is to first assess the presence of any textual contents, to
localize them, and to ultimately recognize the string counterpart
of each provided glyph. Even though Text Detection and Optical
Character Recognition (OCR) have reached optimal performance
on scanned documents (with recognition rates exceeding 99%), the
processing of more complex or degraded images is still gathering
research interest [22], particularly in the context of natural scene
images, ancient manuscripts, and handwritten pieces [6, 20, 21],
where accuracy tends to drop around 60%. In the case of screenshots,
some traditional issues are mitigated, e.g., diverse text orientation
and uneven illumination, due to the high occurrence of "graphic
text" over "scene text". However, other challenges apply, such as
co-occurrence of icons and text and the variability in fonts and
layouts [22]. Further, screenshots represent a hybrid case study,
mixing graphic and scene test in varying proportions over time,
hence motivating the evaluation of existing techniques on a novel
collection.
Ultimately, the extracted text and the associated metadata con-
stitute the basis to represent and retrieve information within the
discussed corpus. Image Retrieval can generally be based on the
visual elements embedded in the image (i.e., Content-based Image
Retrieval or CBIR) or on its textual metadata, e.g. tags, surrounding
captions or headings. This latter branch of Information Retrieval is

also known as Concept-based Image Retrieval and, when built over
categorical labels, traditionally requires significant manual anno-
tation effort, as opposed to the increased computation complexity
implied by CBIR. Multimedia content recognition and indexing is
being already applied: for biomedical imagery cataloging and to
assist future diagnosis based on past clinical data [5, 8]; for word
matching over scanned and printed document images [11]; for sim-
ilarity search over large video collections [4].
The work presented in [23] shares some similarities with our cur-
rent pipeline, however Yeh et al. focus on GUI sub-elements of
screenshots, from a user interaction standpoint and without evalu-
ating the OCR robustness in the case of screenshots. To our knowl-
edge, none of the surveyed applications has exploited a combination
of text extraction and indexing to retrieve smartphone screenshots,
which offer a diverse range of textual contents (e.g. social media
posts, news, articles, health-related threads, text messages, video
captions and so forth), thus enabling countless free-text search
combinations.

3 DATASET AND PROCESS WORKFLOW
3.1 Dataset
The procedures described in this paper were applied to a set of
over one million images collected from 54 individuals participating
in an on-going study of media behavior. Software was installed
on participants’ Android smartphones and/or personal laptops to
monitor media exposure and use during a 10 day to 1 month period.
Screenshots were taken every 5 seconds, encrypted, bundled, and
transmitted to secure, cloud-based research servers. The interval
between screenshots, and resulting volume, variety, and velocity
of images, ensures sufficient granularity for time-series and math-
ematical modeling of these data [12, 24]. Further, device use has
consolidated towards smartphones over time and offers access to
a significant portion of daily activities, motivating our focus on
smartphone screenshots. The data are unique and, after informa-
tion extraction, have high-value potential for many research- and
consumer-oriented applications.

For purposes of the current paper, we selected a subset of screen-
shots for study, testing, and refinement of text extraction procedures.
Specifically, we partitioned a random subsample of 17 participants
and applied reservoir sampling to randomly select 150 images from
each day, thus accommodating the fact that the size of each daily
collection of screenshots is not known a priori. The analysis set
here consists of 13,172 smartphone screenshots representative of a
typical user’s behavior.

3.2 Image Pre-processing
To enhance the quality of extracted text, we setup a procedure to
process the raw screenshots and feed the OCR engine with graphic
segments where the textual content could be more easily distin-
guished from the background. This data preparation routine was
built on top of the OpenCV library for Image Processing [7]. The
overall workflow is depicted in Figure 1, with pre-processing con-
sisting of conversion to gray scale, binarization, and segmentation
respectively.
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Figure 1: Overall Architecture for Smartphone Screenshot Processing, Indexing and Retrieval.

3.2.1 Conversion to grayscale. Conversion of the images from
RGB to grayscale is a prerequisite to binarization, which ultimately
leads to better discrimination of the foreground from the back-
ground (i.e., the end goal of text/object detection).

3.2.2 Binarization. Binarization methods are conceived to trans-
form grayscale images to binary format (i.e., black and white). The
association of each pixel to black or white pixel sets can typically
follow a global or a local approach to adaptive thresholding [18].
In the former case, the cutoff is constant within the same image,
whereas in the latter case the threshold value can vary based on the
local illumination conditions of the image. Since we could assume
a uniform illumination relative to each screenshot, we applied a
combination of simple inverse thresholding with Otsu’s global bi-
narization. Finally, we skipped the skew estimation step, given the
predominantly horizontal layout of the target text, thus leading to
a more scalable pre-processing of the incoming images.

3.2.3 Segmentation. This step identified rectangular bounding
boxes wrapping the textual content of the images, i.e., the standard
shape format used by existing OCR engines for text detection [10].
We adopted a Connected Component based approach (similar to the
methodology followed in [17]): (i) the white pixels were first dilated
to create more organic white regions (Figure 1), (ii) the uniform
regions were then detected, and (iii) a rectangle was drawn around
the identified area. To limit the duplicated recognition of the same
regions (i.e., when a smaller rectangle is completely enclosed in
a larger area), we included an additional check to filter out the

innermost rectangles. However, overlapping rectangles were still
identified (Figure 4d), leading to partially duplicated text, when
bounding boxes were ultimately passed to the OCR engine.

3.3 Optical Character Recognition (OCR)
After pre-processing, each segmented region was fed to the OCR
engine, using the Python wrapper for Tesseract. Tesseract recog-
nizes text in a "two-pass process" [16] that integrates character
segmentation with the recognition module, and uses backtracking
to improve the quality of the output. First, attempts are made to
recognize single words separately. Second, part of the words (based
on a quality evaluation) are then passed to an adaptive classifier as
training data. This increases the ability of the classifier to recognize
the remainder of the text in the page.
We relied on the stable release of Tesseract (v. 3.03) for our first
OCR run, but the alpha release of Tesseract 4.0 was also tested on
the considered sample set. The timing of our analysis provided an
opportunity to compare the baseline engine with an updated ap-
proach, which integrates a LSTM-based module for line recognition
in the pipeline, in a similar fashion to the OCRopus framework
[1]. We were then able to assess the improvement introduced by a
Neural-Net component, without increasing the computation and
time expenses. Tesseract 4 has already been trained on approxi-
mately 400,000 lines of text that include 4,500 fonts. We exploited
the pre-trained OCR architecture as-is, without re-training.
For each screenshot, we obtain a Unicode text file formatted for
easy comparison with the ground truth data.
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Figure 2: GUI of manual transcription tool (illustrative
screenshots).

3.4 Ground Truth Data Collection
Gold standard text was needed to ultimately evaluate the quality
of the text extracted from the screenshots. Gold standard data is
often collected through crowdsourced transcription services (e.g.,
Amazon Mechanical Turk), or, in some cases, through third-party
commercial APIs for text extraction (e.g., Microsoft Cogntive Ser-
vices). However, as our data are highly sensitive and require privacy
protection, we customized a free, and open-source localturk tool
[19] and involved three human annotators trained in human sub-
jects research and confidentiality.

The human annotators securely accessed a dedicated Virtual
Machine hosting the transcription tool. Figure 2 showcases the
GUI interface used for transcribing the images. The GUI’s left side
showed the full screenshot, annotated with a set of bounding boxes
produced by our Image Pre-processing module, while the individ-
ual boxes requiring transcription were displayed on the right side.
Bounding boxes were presented to annotators in the same scanning
order followed by our Image Pre-processing module when detecting
the rectangular segments to be passed to the OCR engine, i.e., from
top to bottom and from left to right. This precaution ensured con-
sistency between the collected ground truth text and the generated
text to be evaluated.
The annotators followed detailed instructions to complete the tran-
scription tasks. Specifically, annotators were instructed to preserve
capitalization and punctuation, use special character marks to dis-
ambiguate icons and graphic contents from text, and notate lo-
cations where text spanned beyond the segmentation cuts. The
complete image with bounding boxes allowed annotators to check
and note if any portions of text had been missed by the bounding
box procedure and were not included in the transcription request.

Similarly, partially overlapping boxes could arise in the set (Figure
4d). Annotators were instructed to take the full picture as refer-
ence, to transcribe the overlapping text only once, and to mark
any cases that were not covered by the instructions. These checks
(i.e., ordering of bounding boxes, handling of overlapping bound-
ing boxes, updating transcription rules dynamically, unanticipated
situations) facilitated the subsequent analysis of segmentation inac-
curacies. In this first experimental setup, each annotator transcribed
an independent set of images. In other words, agreement across
different annotated sets was not evaluated. However, after a first
run of evaluation and error analysis, the ground truth collection
was cross-checked and manually corrected. This validation step
supported the later assessment of the degree of human-error em-
bedded in the process.
Leveraging quality with the expensiveness of the transcription task
[15], we obtained complete transcriptions of 1,360 screenshots. In
sum, comprehensive ground truth data to evaluate our text extrac-
tion pipeline was produced for 10 percent of the analysis sample.

3.5 Extracted Text Evaluation
To evaluate the quality of our generated text against the gold stan-
dard transcribed text, we defined OCR accuracy both at the char-
acter and at the word level, as a complement of the error rates,
and further discriminating between order-dependent and order-
independent error rate at the word-level evaluation.
Word Error Rate (WER) WER is based on the Levehnstein dis-
tance [9] between the provided text and the reference text:

WER =
iw + sw + dw

nw
(1)

where iw , sw and dw refer to the number of words to be inserted,
substituted and deleted to transform the given text into the ref-
erence text. Among all the possible permutations, the values that
minimize the sum iw + sw + dw are actually chosen. The resulting
number of transformations is then normalized by the number of
words in the reference text (nw )

Character Error Rate (CER) Similarly, the same metric can be
defined at the single character level:

CER =
i + s + d

n
(2)

where word counts are replaced by character counts, following the
same rationale defined for the WER metric. Thus, the error rate
will typically be higher at the word level, as failures in recognizing
single characters ultimately impact the recognition of words as a
whole.

Position-independent WER (PER) The position-independent
WER is based on a bag-of-words approach that does not take the
provided order of words into account when evaluating the word-
level error rate. Hence, this metric loosens one of the constraints
of the standard WER. As a result, this metric tends to overestimate
the actual word-level accuracy.

Hence, improving the accuracy of our text extraction framework
essentially translates into minimizing the error rates, both at the
character and at the word level. Furthermore, we prioritize the
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improvement on the standard WER over its positional-independent
counterpart, with the intent to preserve the syntactic and semantic
attributes of the extracted text, and support meaningful Natural
Language Processing and Topic Evolution analyses of the obtained
documents.
To record these three metrics, we used the ocrevalUAtion open
source tool [2]. Besides the described metrics, this tool also re-
ports error rates by character, and aligned bitext for each document
match, facilitating the comparison of the generated output against
the reference text [2]. We set up the evaluation so that punctuation
and case differences were counted as well, when calculating the
scores.
Finally, computational time was recorded and evaluated as an addi-
tional factor contributing to the overall process efficiency.

3.6 Image Retrieval System
3.6.1 Document Parsing. To provide an organized structure to

the data set and to link the extracted contents with each source
image file, we mapped the image features and metadata into a
defined XML schema, consisting of: (i) a unique identifier (i.e., ob-
tained by concatenating each subject ID with the date and time of
screen capture), (ii) a timestamp marking the date and time when
the screenshot was taken, (iii) the text extracted from the images
through OCR (Section 3.4), when present, (iv) an optional cate-
gory describing the activity depicted by the considered frame (i.e.,
whenever the considered image had been manually classified), and
(v) two file paths linking to previous and next image on the same
subject’s timeline. The parsing module was developed in Python,
exploiting the built-in ElementTree library. XML documents we
formatted in a compliant format with Apache Solr, the open source
software used to index our collection. An example of resulting data
structure is as follows:
<add>

<doc>
<field name="id">...</field>
<field name="timestamp">...</field>
<field name="category">...</field>
<field name="text">...</field>
<field name="previous_image">...</field>
<field name="next_image">...</field>
</doc>

</add>

3.6.2 Indexing. The XML documents produced in the previous
step were then indexed through the Apache Solr 6.3 distribution,
which follows an inverse indexing approach. As opposed to a for-
ward index, an inverted index consists of keyword-centric entries,
referencing the document containing each considered term. While
all data fields listed in Section 3.6.1 were stored within the Solr
engine, only the textual content embedded in the images and their
attached categorical labels were indexed to enable textual search
over those attributes.

3.6.3 Similarity Scoring and Ranking. Once the index is built,
user queries are compared against the collection based on a pre-
determined similarity definition, ultimately impacting the returned
results. In this application, we computed the similarity between the
input textual queries and the inverted index entries through the

Okapi BM25 term-weighting scheme [14]. For a document D and
query Q containing qi ,...,qn keywords, the score is then defined as:

score(D,Q) =
n∑
i=1

id f (qi ) ·
f (qi ,D) · (k1 + 1)

f (qi ,D) + k1 · (1 − b + b · |D |
avdl )

(3)

where avdl is the average document length and k1 and b are free
parameters (kept to default built-in values in this case). Equation 3
is based on the same underlying principles of the term frequency-
inverse document frequency (tf-idf ) heuristic, when determining
the relevancy of words within each considered document. Partic-
ularly, the id f score recipient, for each keyword qi is computed
as:

id f (qi ) = log
N − n(qi ) + 0.5
n(qi ) + 0.5

(4)

where n(qi ) represents the number of documents containing qi and
N is the total size of the corpus. Tf-idf increases proportionally
with the frequency of occurrence of a term within a document
and is normalized based on the term occurrence throughout the
whole corpus. However, BM25 has been proven more effective than
tf-idf in mirroring the user’s perceived relevancy towards returned
contents, due to the introduced regularization parameters [14].
Further, the aforementioned approachwas combinedwith Solr built-
in Query Boosting function, to purposefully increase the ranking
of term-matching on categorical fields over term-matching on the
screenshot embedded contents. For instance, if the user provided the
keyword "Web", multiple candidate documents might be selected,
solely based on the BM25 scores. However, if one document was
labeled with the term "Web", that document would obtain a higher
ranking in the returned result list.

3.6.4 Search engine GUI. The results were presented to the users
through a dedicated interface, integrating the Solr-based back-end
with the Python-based Django Web framework. Snippets of the
developed Graphic User Interface are shown in Figure 3. For each
retrieved image, certain metadata are listed, including the id, times-
tamp and category. Each thumbnail can be expanded to full-size
resolution, aiding further exploration of the retrieved textual con-
tent. Links to the previous and following frame on the same sub-
ject’s timeline emphasize the potential for temporal zooming and
longitudinal analyses offered by this novel data set [13], which
provides domain-independent elements of sequence, context and
interdependence.

4 OCR RESULTS AND DISCUSSION
As introduced in Section 3.4, we compared the performance of two
different releases of the Tesseract OCR engine before and after
validating the manually transcribed text. This experimental setup
aimed to quantify the improvement introduced by a NeuralNet-
based module for line recognition (i.e., the additional component
introduced with Tesseract 4 compared to Tesseract 3.03) when the
other parameters were kept constant.

First, we compared the two Tesseract-based solutions, applied
as-is, with our framework, which added the aforementioned Image
Pre-processing steps upfront. As illustrated in Tables 1 and 2, the
Image Pre-processing framework proposed here improved the over-
all accuracy, both at the character and word level [3]. Hence, this
improvement justifies the additional computational steps implied
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Table 1: Comparison of baseline Tesseract 3 and 4: before and after applying the noise removal heuristic.

Approach Character-level Word-level
ER Accuracy ER Accuracy PER Accuracy

Baseline Tesseract 3 36.13% 63.87% 47.21% 52.79% 38.78% 61.22%
Baseline Tesseract 3 + heuristic 33.45% 66.55% 43.42% 56.58% 36.01% 63.99%
Baseline Tesseract 4 33.68% 66.32% 41.54% 58.46% 33.93% 66.07%
Baseline Tesseract 4 + heuristic 31.73% 68.27% 38.38% 61.62% 31.46% 68.54%

Table 2: Comparison of Tesseract 3 and 4 with Image Pre-processing: before and after applying the noise removal heuristic.

Approach Character-level Word-level
ER Accuracy ER Accuracy PER Accuracy

ImgProc+Tesseract 3 33.02% 66.98% 44.50% 55.50% 39.63% 60.37%
ImgProc+Tesseract 3 + heuristic 31.95% 68.05% 41.26% 58.74% 37.33% 62.67%
ImgProc+Tesseract 4 31.15% 68.85% 40.27% 59.73% 35.56% 64.44%
ImgProc+Tesseract 4 + heuristic 30.68% 69.32% 38.95% 61.05% 35.06% 64.94%

Figure 3: Search Engine Graphic User Interface(illustrative
screenshots).

by the proposed solution.
After a careful inspection and error analysis of the outputs pro-
duced in the two cases, we identified a lower robustness of the
pre-processing framework in the presence of peculiar fonts chosen
as a default on users’ phones (an example of such cases is shown
in Figure 4a ), as opposed to the baseline (i.e., non pre-processed)
alternatives. This observation suggested that the binarization and
segmentation parameters can be further fine-tuned to improve the
handling and recognition of font sets that are used by particular
individuals. On the other hand, the proposed framework enhanced
the recognition of text that is embedded in video frames (as depicted
in Figure 4b), when compared to the baseline performance of the
two Tesseract releases.

Further, we wanted to discriminate between the accuracy defi-
ciencies caused by the human error inherent to the transcription
process and the error rates directly associated with the adopted
Image Processing framework. Table 2 shows the results obtained
when applying Tesseract 3.03 and Tesseract 4 to the pre-processed
smartphone screenshots, i.e., after segmenting the regions of inter-
est that were candidates for carrying fragments of textual content.
The introduction of the LSTM-based line-recognition component
slightly improved the OCR accuracy both at the single-character
and word level.

Analysis of the returned errors showed that the most prominent
faults seem associated with: (i) the presence of icons and other
graphic features in line with the text, (ii) defects in the reference
transcriptions, (iii) presence of peculiar fonts, (iv) textual contents
that are difficult to distinguish from their backgrounds (e.g., both are
a light color), and (v) partially overlapping segmented regions leading
to duplicated characters (as described in Section 3.3.3 - Figure 4d).

To quantify the incidence of the first category of errors, we
developed a naive heuristic to post-process our text and filter out the
first line when it matches specific regular expressions that plausibly
represent the top banner of smartphone displays. An example of
the critical regions and text generated by the OCR engine when text
was mixed with icons is provided by Figure 4c. Specifically, top lines
were removed only when other textual content besides the upper
banner was found. This process elicited a better measure of net
accuracy on the textual contents of interest, by eliminatingmarginal
and noisy content. However, when the top banner (i.e., typically
icons, clock and battery level) was the only textual information
included in the screenshot, it was not filtered out. Overall, applying
this heuristic provided a more reliable proxy of the actual accuracy
obtained by the current framework.

Inherent human error associated with our manual transcription
procedures also contributed to quality loss. Thus, the produced
transcriptions were manually validated and the evaluation step
repeated after correction. The results, depicted in Table 3, demon-
strate the significant incidence of inadequate reference text on the
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Table 3: Comparison of Tesseract 3 and 4 with Image Pre-processing, after correcting the human-annotated scripts

Approach Character-level Word-level
ER Accuracy ER Accuracy PER Accuracy

ImgProc+Tesseract 3 27.42% 72.58% 39.12% 60.88% 33.81% 66.19%
ImgProc+Tesseract 3 + heuristic 27.35% 72.65% 37.67% 62.33% 32.09% 67.91%
ImgProc+Tesseract 4 25.16% 74.84% 33.85% 66.15% 28.77% 71.23%
ImgProc+Tesseract 4 + heuristic 25.69% 74.31% 34.38% 65.62% 28.76% 71.24%

(a) (b)

(c) (d)

Figure 4: Examples of discovered patterns after error analysis (illustrative screenshots): (a) fancy fonts, (b) text embedded in
videos is extracted more effectively when integrating the pre-processing routine, (c) smartphone upper banners add marginal
noise, (d) inaccurate segmentation can lead to overlapping bounding boxes.

overall scores, when compared to Table 2. Typical transcription
faults include the occurrence of typos or oversights leading to a
partial transcription of text that was actually present on the image.
As a result of partial transcriptions, text, which was correctly rec-
ognized by the OCR engine, was absent from the reference text,
artificially increasing the error rate. These inaccuracies were cor-
rected through a posterior validation check. Please note, part of
the error and burden related to transcriptions, was caused by the
transcription tool’s GUI and procedural instructions, which need
further refinement, based on the observations collected during this
exploratory phase.

After removing the transcription error effect from the set, the
solution which integrates an LSTM-based line-recognition system
still provided the highest performance. Tests with Tesseract 3.03 and
4 were run in parallel on two identical Debian, quad-core Virtual
Machines.

The computation times to process the sample (i.e., 13,172 phone
screenshots), without applying ad hoc training in either of the two

cases, were comparable for all pipelines. In sum, there were not
any notable tradeoffs between Tesseract 3.03 and 4.0 in terms of
process efficiency.

5 CONCLUSIONS AND FUTURE WORK
This paper introduced a complete workflow for text extraction
and retrieval from smartphone screenshots. The pipeline is based
on OpenCV image-processing and Tesseract OCR modules. We
evaluated the quality of the extracted text, and showed how word
and character accuracy improved through refinement of image pre-
processing procedures andNeuralNet based line-recognition system
introduced in the newly released Tesseract 4.0. Detailed analysis
of word and character errors suggest that further improvements
are possible, both generally and in the data production process.
Additional error analyses identified and isolated themost prominent
factors contributing to quality loss. Ultimately, a search engine
application was developed based on the inherent characteristics of
the data at hand, for the immediate use for the involved analysts.
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Human error embedded in the ground truth data production pro-
cess was present and unanticipated. The findings that correction
of human errors provided improvements in accuracy that were of
similar size as other technical refinements suggests some reconsid-
eration of how ground truth (and training) data are produced for
new data streams. Given the costs, in terms of time and accuracy,
there is much incentive to develop iterative solutions that reduce
human involvement in the loop to correction of automatically-
generated transcriptions (following a similar approach to the one
described in [15] for video annotations).

Future work on the more technical aspects of the text extraction
process for screenshots include fine-tuning and sensitivity analysis
of the Image Pre-processing parameters, which should increase the
solution’s robustness in the presence of diverse fonts, embedded
icons, and mixed graphic contents. Preprocessing may be particu-
larly important for text extraction from laptop screens, for which
the method is generalized, due to the possibility that multiple win-
dows may be visible in a laptop screenshot. Problematically, each
window might have different background and foreground contrasts,
thus significantly introducing marginal noise. Thus, methods that
effectively and accurately partition and segment the main active
window will need to be developed and refined. As well, the results
of this study suggest there is some need for re-training Tesseract-
based solutions so that they better handle characters and words
that only appear in specific sub-portions of the data (e.g., individual
users’ device preferences and idiosyncratic font use). These addi-
tions and accommodations will expand computation complexity
and time and therefore need to be evaluated with respect to added
value.
We further intend to make our data and experimental procedures
as accessible as possible. Given inherent the privacy concerns, we
will evaluate and use Web-scraping technologies to form a publicly-
available sample data set for testing the implemented workflow.

In sum, this paper describes the procedures followed for ex-
tracting and indexing text from a new kind of document - digital
screenshots - that appears to hold high value for studying human
behavior. As the pioneer exploration into extracting useful informa-
tion from the first screenshot repository, the application of Image
Pre-processing, OCR and CBIR tools was successful. While we are
only at the beginning of learning what these data hold, these initial
results are promising and produce excitement about how Informa-
tion Extraction methods may be adapted for these data and con-
tribute to new knowledge about how, when, and why individuals
engage with digital life.
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