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The hot streak—loosely defined as ‘winning begets more 
winnings’—highlights a specific period during which an individual’s 
performance is substantially better than his or her typical 
performance. Although hot streaks have been widely debated in 
sports1,2, gambling3–5 and financial markets6,7 over the past several 
decades, little is known about whether they apply to individual 
careers. Here, building on rich literature on the lifecycle of 
creativity8–22, we collected large-scale career histories of individual 
artists, film directors and scientists, tracing the artworks, films 
and scientific publications they produced. We find that, across 
all three domains, hit works within a career show a high degree of 
temporal regularity, with each career being characterized by bursts 
of high-impact works occurring in sequence. We demonstrate that 
these observations can be explained by a simple hot-streak model, 
allowing us to probe quantitatively the hot streak phenomenon 
governing individual careers. We find this phenomemon to be 
remarkably universal across diverse domains: hot streaks are 
ubiquitous yet usually unique across different careers. The hot 
streak emerges randomly within an individual’s sequence of works, 
is temporally localized, and is not associated with any detectable 
change in productivity. We show that, because works produced 
during hot streaks garner substantially more impact, the uncovered 
hot streaks fundamentally drive the collective impact of an 
individual, and ignoring this leads us to systematically overestimate 
or underestimate the future impact of a career. These results not 
only deepen our quantitative understanding of patterns that govern 
individual ingenuity and success, but also may have implications for 
identifying and nurturing individuals whose work will have lasting 
impact.

According to the Matthew effect9,23,24, victories bring reputation and 
recognition that can translate into tangible assets, which in turn help to 
bring future victories. This school of thought supports the existence of a 
hot streak in a career, which is also consistent with literature in the field 
of innovation showing that peak performance clusters in time, typically 
occurring around the middle of a career8,11,21. On the other hand, the 
random impact rule uncovered in the arts10,21 and sciences10,18 predicts 
the opposite: the best works occur randomly within a career, and their 
occurrence is primarily driven by productivity. Following this school 
of thought, works after a major breakthrough are not affected by what 
preceded them, supporting the viewpoint of regression towards the 
mean. The two divergent schools of thought raise a fundamental ques-
tion: do hot streaks exist in creative careers?

To answer this question, we collected data sets recording the 
career histories of individual artists, film directors and scientists 
(Supplementary Information S1) and traced the impact of the artworks, 
films and papers they produced, approximated by auction prices15, 
IMDB ratings (https://www.imdb.com/)25 and citations garnered after 
10 years of publication (C10)13,16,18,26, respectively (see Methods). We 
started by investigating the timing of the three most impactful works 

produced in each career. In a sequence of N works by an individual, 
we denoted with N* the position of the highest-impact work within a 
career, N** the second highest and N*** the third. We found that each 
of the three highest-impact works was randomly distributed among 
all the works produced by an individual (Extended Data Fig. 1a–c), 
offering strong endorsement for the random impact rule10,18,21.

However, as we show next, the randomness in individual creativity 
is only apparent, because the timing between creative works follows 
highly predictable patterns. We measured the correlation between the 
timing of the two biggest hits within a career, and compared it with a 
null hypothesis in which N* and N** each occured at random. The nor-
malized joint probability, φ(N*, N**) = P(N*, N**)/(P(N*)P(N**)), is 
substantially overrepresented along the diagonal elements of matrices 
(Fig. 1a–c), demonstrating that N* and N** are much more likely to 
colocate with each other than would be expected from the random 
impact model across three domains. The diagonal pattern disappears 
if we shuffle the order of works within each career, thereby breaking 
the temporal correlations (Extended Data Fig. 1j–r).

To quantify the temporal colocation of hits observed in Fig. 1a–c, 
we calculated the distance between the two highest-impact works 
for every individual, measured by the number of works produced in 
between, ΔN = N*−N**. We compared Δ( )P N

N
 of real careers with 

Δ( )P N
NS  of shuffled careers by defining = /Δ Δ Δ( ) ( ) ( )R P PN

N
N

N
N

NS . For 

artists, directors, and scientists, all Δ( )R N
N

 exhibit a clear peak centring 
around zero and decay quickly as ΔN deviates from zero (Fig. 1d–f).  
Notably, Δ( )R N

N
 is mostly symmetric around zero (Fig. 1d–f), indi-

cating that the biggest hit is equally likely to arrive before or after the 
second biggest. The colocation patterns are not limited to the two high-
est-impact works within a career. We repeated our analyses for other 
pairs of hit works, such as N** versus N*** and N* versus N***, and 
uncovered the same colocation patterns (Extended Data Fig. 1d–i).

Do high impact works come in streaks within a career? We counted 
the number of consecutive works whose impact exceeded the median 
of all works within a career (Extended Data Fig. 2d–f). We calculated 
the length of the longest streak L for each career. We then shuffled the 
order of works within each career, and measured again their longest 
streaks Ls. P(L) was characterized by a much longer tail than P(Ls) 
(Fig. 1g–i), indicating that real careers are characterized by long streaks 
of relatively high-impact works clustered together in sequence. We 
tested the robustness of these results by controlling for individual career 
length, and by varying our threshold used to calculate L, and arrived 
at the same conclusions (Extended Data Figs. 2–4, Supplementary 
Information S2). Together, these results raise an important question: 
what mechanisms are responsible for the temporal regularities observed 
across diverse career histories?

Let us first consider a null model in which the goodness of works 
produced in a career (that is, log(price) for artists, ratings for directors, 
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and log(C10) for scientists) is drawn from a normal distribution 
σΓN( , )i i

2  that is fixed for an individual. The average Γi characterizes 
the typical impact of works produced by the individual, and σi captures 
the variance. This null model can reproduce the fact that each hit 
occurs randomly within a career10,18. However, it fails to capture any of 
the temporal correlations observed in Fig. 1. The main reason for this 
failure is illustrated in Fig. 2a–c, where we selected for illustration pur-
poses one individual from each of the three data sets and measured the 
dynamics of Γi during his or her career. We find that Γi is not constant 
throughout a career. Rather, it deviates from a baseline performance 
(Γ0) at a certain point in a career (t↑), elevating to a higher value ΓH 
(ΓH > Γ0), which is then sustained for some time before falling back to 
level similar to Γ0 (Fig. 2a–c):

Γ =


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

Γ ≤ ≤

Γ



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
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t t t

( )
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(1)H

0

This observation, combined with the shortcomings of the null model, 
raises an intriguing question: could a simple model based on equation 
(1) explain the temporal anomalies documented in Fig. 1?

To test this hypothesis, we applied equation (1) to real productivity 
patterns, allowing us to generatively simulate the impacts of the works 
produced by an individual (Supplementary Information S3.3). During 
the period in which ΓH operates, the individual seemingly performs at 
a higher level than his or her typical performance (Γ0), prompting us to 
call this model the hot-streak model (where the ΓH period corresponds 
to the hot streak). We introduced to each career one hot streak that 
occured at random with a fixed duration and magnitude, and repeated 
our measurements in Fig. 1 on careers generated by the model. We find 
that, whereas equation (1) introduces only a simple temporal variation, 

the hot-streak model is sufficient to reproduce all empirical patterns 
observed in Fig. 1 (Fig. 1d–i and Extended Data Fig. 1s–u). Given the 
myriad factors that can affect career impacts9–12,18,22,27–30, and the obvi-
ous diversity of careers we studied, the level of universality and accuracy 
demonstrated by the simple hot-streak model was unexpected.

The real value of the model arises, however, when we fit the model to 
real careers to obtain the individual specific Γ0, ΓH, t↑ and t↓ parameters 
(Supplementary Information 3.4), helping us to reveal several funda-
mental patterns that govern individual careers.

1. Hot streaks are ubiquitous across careers, yet at the same time usu-
ally unique within a career. The vast majority of artists (91%, Fig. 2d), 
film directors (82%, Fig. 2e) and scientists (90%, Fig. 2f) have at least 
one hot streak during their careers, documenting the practical rele-
vance of the uncovered hot streak phenomenon. However, despite its 
ubiquity, the hot streak is likely to be unique within a career. Indeed, 
when we relaxed our fitting algorithm to allow for multiple hot streaks 
(up to three) with different values of ΓH, we found that, among those 
who had a hot streak, 64% of artists, 80% of directors, and 68% of scien-
tists were best captured by one hot streak only (Fig. 2d–f), documenting 
the precious nature of hot streaks. Second acts may occur but are less 
likely, particularly for film directors. Occurrences of more than two hot 
streaks are rare across all careers.
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Fig. 1 | Hot streaks in artistic, cultural and scientific careers. a–c, φ(N*, 
N**), colour coded, measures the joint probability of the two highest-
impact works within a career for artists (a), directors (b), and scientists (c). 
φ > 1 indicates that two hits are more likely to colocate than would be 
expected at random. d–f, Δ( )R N

N
 measures the temporal distance between 

highest-impact works relative to the null model’s prediction. Real careers 
show a clear peak around 0 (red dots), which is well captured by the hot-
streak model (solid lines). Different shades of red correspond to different 
pairs of hit works. Blue dots denote the same measurement but on shuffled 
careers, and blue lines are predictions from shuffled careers generated by 
our model. g–i, The distribution of the length of streaks P(L) for real 
careers and P(Ls) for shuffled careers. The hot-streak model (red lines) and 
its shuffled version (blue lines) closely reproduce P(L) observed in real 
(red dots) and shuffled careers (blue dots).
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Fig. 2 | The hot-streak model. a–c, Γ(N) for one artist (a), film director (b)  
and scientist (c), selected for illustration purposes. See Extended Data 
Fig. 9 for randomly selected careers. d–f, Histogram of the number of 
hot streaks in a career. We also measured several performance metrics 
for individuals who had one or two hot streaks, and found no detectable 
difference (Extended Data Fig. 10). g–i, The distributions of durations 
of hot streaks P(τH). Red lines are log-normal fits as a visual guide. The 
insets show cumulative distributions ≥ ↑( )P

N

N
, indicating that the start of a 

hot streak N↑ is distributed randomly among N works in a career. j–l, The 
distributions of the number of works produced during hot streaks P(NH), 
compared with a null distribution in which we randomly pick one work as 
the start of the hot streak. j, Artists (n = 3,166). k, Directors (n = 5,098). 
l, Scientists (n = 18,121). Two-sided Kolmogorov–Smirnov tests indicate 
that we cannot reject the hypothesis that the two distributions are drawn 
from the same distribution (P = 0.12 for artists, P = 0.12 for directors, and 
P = 0.17 for scientists).
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2. The hot streak occurs randomly within a career. We estimate the 
beginning of hot streaks, by measuring N↑, the position of work pro-
duced when a hot streak starts (t↑). We find that, across artistic, cul-
tural, and scientific careers, N↑ is randomly distributed in the sequence 
of N works within a career (Fig. 2g–i, insets). This finding reconciles 
two seemingly divergent schools of thought9,10,18, providing a further 
explanation for the random impact rule: if the hot streak occurs ran-
domly within a career, and the highest impact works are statistically 
more likely to appear within a hot streak, then the timing of the highest 
impact works is also random.

3. Across different domains, hot streaks are considerably shorter than 
the typical career length recorded in our database. We measure the 
duration distribution of hot streaks (τH = t↑−t↓), finding P(τH) peaks 
around 5.7 years for artists, 5.2 years for directors, and 3.7 years for sci-
entists, which is largely independent of when it occurs within a career 
(early, mid or late career; Fig. 2g–i).

4. Unexpectedly, individuals are not more productive during hot 
streaks. We measured the distribution of the total number of works 
produced during hot streaks P(NH). We then constructed a null distri-
bution, by randomly picking one work in a career and designating its 
production year to be the start of the hot streak. We found that the two 
distributions aligned well with each other (Fig. 2j–l). Therefore, indi-
viduals show no detectable change in productivity during hot streaks, 
despite the fact that their outputs in this period are significantly better 
than the median, suggesting that there is an endogenous shift in indi-
vidual creativity when the hot streak occurs. For additional properties 
of hot streaks, see Methods and Extended Data Fig. 5.

To investigate the impact of hot streaks on individual careers, we 
focused on scientific careers and measured the collective impact of a 
scientist, g(t), defined as the total number of citations over time col-
lected by all papers published by an individual (Fig. 3a). g(t) can be 
derived analytically by combining the hot-streak model (equation (1)) 
and an existing model16 for the citation patterns of papers (see Methods 
and Supplementary Information S5), consisting of two terms:

= + Δg t g t g t( ) ( ) ( ) (2)0

g0(t) captures a career’s collective impact in the absence of a hot streak 
(that is, Γ(t) = Γ0). Contributions from the hot streak are encoded 
in Δg(t), driven by both the timing and magnitude of hot streaks 
(see Methods). Varying hot-streak parameters leads to substantial 
changes in the collective impact of a career (Fig. 3b). Hence the hot-
streak model captures a wide range of impact trajectories that are 
followed by real careers (Fig. 3c), and the accuracy of the model is 
documented by several metrics (see Methods). Given that individuals 
improve substantially during hot streaks, the uncovered phenomena 
can be particularly crucial for understanding the long-term impact of 
a career (Extended Data Fig. 6).

We further tested several alternative hypotheses, each associated 
with possible origins of the uncovered hot streaks (see Methods and 
Supplementary Information S6). Of all hypotheses considered, the hot-
streak model is the simplest and least flexible. However, it is the only 
model whose predictions are consistent with real careers (Extended 
Data Figs 7, 8). The identification of the true origins of hot streaks is 
beyond the scope of this work. As such, the hot streaks uncovered here 
should be treated in a metaphorical sense, highlighting an intriguing 
period of outstanding performance during individual careers without 
implying any associated drivers. Crucially, though, the findings pre-
sented here hold the same, regardless of the underlying drivers.

Online content
Any Methods, including any statements of data availability and Nature Research 
reporting summaries, along with any additional references and Source Data files, 
are available in the online version of the paper at https://doi.org/10.1038/s41586-
018-0315-8.
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MEthodS
Data description. We compiled three large-scale data sets of individual careers 
across three major domains involving human creativity. The first data set (D1) 
consists of auction records curated from online auction databases, allowing us to 
reconstruct the career histories of 3,480 artists through the sequence of works they 
each produced, together with the impacts of the artworks, approximated by ham-
mer prices in auctions15. D2 contains profiles of 6,233 film directors recorded in the 
IMDB database, each career being represented by the sequence of films directed 
by the individual. As metrics that quantify the impact of a film correlate closely 
with each other25, here we use the IMDB rating to measure the goodness of a film. 
Finally, our third data set (D3) includes publication records of 20,040 individual 
scientists through a large-scale name disambiguation effort that combined the Web 
of Science (https://clarivate.com/products/web-of-science/) and Google Scholar 
(https://scholar.google.co.uk/) data sets. The impact of each paper is measured by 
citations garnered after 10 years of its publication13,16,18,26 (C10). Further details 
on data collection and curation are provided in Supplementary Information S1.

To study the impact of works across the three domains, we measured the dis-
tributions of hammer prices, IMDB ratings and paper citation counts in our data 
sets. Both hammer price (D1) and C10 (D3) follow fat-tailed distributions, well 
approximated by a log-normal function (Extended Data Fig. 2a, c), and the IMDB 
rating follows a normal distribution ranging between 1 and 10 (Extended Data 
Fig. 2b). To make sure C10 is not affected by citation inflation14,18,31, we also meas-
ured a rescaled C10 (see Supplementary Information S1.3) and found that it also 
followed a fat-tailed distribution (Extended Data Fig. 2c, inset). Therefore, we take 
the logarithmic of hammer price and C10 (log(price) and log(C10)) to approximate 
the goodness of an artwork and scientific publication. Note that the choice of loga-
rithmic for hammer prices and C10 is meant to be consistent with prior studies14,18, 
and does not affect any of the conclusions of the paper. Indeed, the logarithmic 
function is a monotonically increasing function, hence it does not change the 
rank ordering of top hits in a career. Note that while the data sets we used in this 
paper cover a large collection of career histories across a wide range of domains, 
the data-driven nature of our study indicates that the scope of our data is limited to 
individuals who have had sufficiently long careers to provide enough data points 
for statistical analyses (Supplementary Information S1).
Additional properties of hot streaks. How much does an individual deviate from 
his or her typical performance during a hot streak? Do people with higher Γ0 also 
experience more performance gain from hot streaks? We explored correlations 
between Γ0 and ΓH, finding them to be well approximated by a linear relationship 
(Extended Data Fig. 5a–c). Hence, individuals with better typical performance also 
perform better during their hot streaks. It is interesting to note that the coefficients 
are slightly less than 1 (Extended Data Fig. 5a–c). Hence ΔΓ ≡ ΓH − Γ0 decreases 
with Γ0 (Extended Data Fig. 5a–c, insets), suggesting that individuals with smaller 
Γ0 benefit more from hot streaks. These results are again independent of when the 
hot streak occurs along a career (Extended Data Fig. 5a–c).

The temporally localized nature of the hot streak is also captured by its propor-
tion over career length τH/T (Extended Data Fig. 5d–f). We compared the duration 
of hot streaks with typical career length, finding that the median hovers around 
20% (0.17 for artists, 0.23 for directors, and 0.20 for scientists).
Analytical solutions for the collective impact of a scientific career, g(t). Brought 
into the spotlight by popular websites such as Google Scholar, g(t) is playing 
an increasingly important role in driving many critical decisions, from hiring, 
promotion and tenure to awarding of grants and rewards. Many factors are 
known to influence it, ranging from productivity17,28 to citation disparity and 
dynamics13,14,16,22,23,29 and temporal inhomogeneities along a career11,17,18,21,22,30. 
As our goal is to understand impact, here we bypass the need to evaluate the 
inhomogeneous nature of productivity17,18 by rearranging the publication time 
of each paper, such that an individual produces a constant number of papers 
each year, denoted by n (Fig. 3a). To calculate g(t), we need to incorporate the 
citations patterns of papers into our hot-streak model (equation (1)). A recent 
study16 suggested that the citation dynamics of a paper published at time t0 can 
be approximated by
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where m is a global parameter describing the typical number of references a paper 
contains, and Φ(·) is the cumulative normal function, characterized by μ and σ, 
which capture the typical citation life cycle of a paper. The paper’s ultimate impact 
is determined by its fitness16, λ. To adapt equation (3) into our framework, we 
replace λ with Γ(t0), and for simplicity assume that μ and σ are fixed for different 
papers published by an individual. The resulting model, combining equations (1) 
and (3), can be solved analytically (Supplementary Information S5), allowing us 
to express g(t) in terms of hot-streak parameters:
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Equation (4) consists of two terms. g0(t) captures a career’s collective impact in 
the absence of hot streaks (that is, Γ(t) = Γ0). Contributions from the hot streak 
are encoded in Δg(t), driven by both the timing and magnitude of hot streaks  
(t↑, t↓, ΓH, and ΓH − Γ0).
Evaluating the accuracy of the hot-streak model. We quantify the accuracy of 
our model in equation (4) using three metrics.

To account for the inherently noisy career trajectories, we first assign an impact 
envelope to each career, explicitly quantifying the uncertainty of model predictions 
(Extended Data Fig. 6g). We simulated g(t) for each individual by assigning a 
Gaussian noise σN(0, )s

2  to the fitted Γ0 and ΓH. For each paper i we randomly 
draw its Γi from a normal distribution, depending on whether the paper was 
published within the hot streak (ΓH during hot streak, Γ0 otherwise). The standard 
deviation σs represents the inherent noise of the goodness parameter defined in 
Supplementary Information S3.5. For each individual, we simulated g(t) for 1,000 
realizations, allowing us to obtain a distribution of g(t), with one standard devia-
tion offering an uncertainty envelope. We repeated the same procedures for the 
null model. We measure the fraction of g(t) that falls within the envelope, finding 
that the distribution peaks close to 1 (Extended Data Fig. 6h), which indicates that 
most career trajectories are well encapsulated within the predicted envelopes.

The superior accuracy of our model is also captured by the mean absolute 
percentage error (MAPE). We compared the distribution of MAPE between the 
data and the predictions of the model (Extended Data Fig. 6f), finding again that 
the hot-streak model outperformed the null model. The improvement was most 
pronounced for an early onset of hot streaks (Extended Data Fig. 6i), which is also 
consistent with our model’s predictions.

To account for model complexity, we also calculated the Bayesian information  
criterion (BIC) measure, which penalizes the number of parameters in the model. 
Compared with the null model, the hot-streak model has systematically smaller 
BIC (Extended Data Figs 6e), documenting that the hot-streak model better  
captures the collective impact of a career than the null model.
Implications of hot streaks for long-term career impact. The analytical frame-
work presented here not only offers a new theoretical basis for our quantitative 
understanding of dynamical patterns governing individual career impact, but also 
may have implications for comparing and evaluating scientists (Extended Data 
Fig. 6). Indeed, for individuals whose hot streaks are yet to come, ignoring the 
hot streak may lead to underestimation of their impacts (Extended Data Fig. 6a, 
b), especially given the ubiquitous nature of hot streaks (Fig. 2f). On the other 
hand, an early onset of a hot streak leads to a high impact that peaks early but 
may not be sustained unless a second hot streak occurs (Extended Data Fig. 6c).
Testing alternative hypotheses. To explore the possibility that alternative hypoth-
eses might explain the observed patterns, we tested several models that capture dif-
ferent dynamics of hot streaks (Supplementary Information S6.3), each associated 
with possible origins of the uncovered hot streaks. (A) A right trapezoid (Extended 
Data Fig. 7b) captures a sudden onset of a hot streak with a more gradual decline, 
as innovators may stumble upon a groundbreaking idea, which manifests itself in 
the forms of multiple artworks, films, or publications. Hence from an evolutionary 
perspective, the duration of a hot streak may characterize the time it takes for the 
temporary competitive advantage to dissipate. (B) An isosceles trapezoid model 
(Extended Data Fig. 7c) captures hot streaks that evolve and dissolve gradually 
over time, which may approximate social tie dynamics, as one individual’s hot 
streak could be the result of a fruitful, repeated collaboration27,32. (C) Furthermore, 
individual performance may peak at a certain point in a career, prompting us to 
test inverted-U shape (Extended Data Fig. 7d) and tent functions (Extended Data 
Fig. 7e). (D) Last, a left trapezoid function (Extended Data Fig. 7f) captures a 
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gradual startup period with a sharp cutoff, corresponding to career opportunities 
that can augment impact but last for a fixed duration.

We tested the validity of the four alternative hypotheses (A–D) by comparing 
each model’s prediction with empirical observations on the relative order of the 
top six hits within a career. The symmetric patterns of φ and Δ( )R N

N
 observed in 

real careers suggest that the biggest hit is equally likely to appear before or after the 
second-biggest hit. The randomness of the relative ordering among hits is not 
limited to the two biggest hits. Indeed, we measured the position of the top three 
hits (Ñ : mover) relative to the top six hits of the career, and compute ÑP( ) for each 
of the three hits for artists, directors and scientists. We found a lack of predictive 
patterns for ÑP( ) across the three domains, suggesting that the relative orders 
among the top six hits in real careers are random (Extended Data Fig. 7g, o, w). We 
tested hypotheses A–D systematically to describe real careers (Supplementary 
Information S6.3), and found that the hot-streak model was the only model whose 
predictions were consistent with real careers (Extended Data Fig. 7h–m, p–u, x–ac). 
As such, the hot-streak model also offers a superior fit to the data than the other 
models (Extended Data Fig. 7n, v, ad).

We also tested whether Markov models could account for our observations 
(Supplementary Information S6.2). We explored multiple variants of Markov 
models by introducing short-range correlations between the impacts of adja-
cent works, correlations between the volatility of their impacts, and hidden 
Markov model with two states, finding again that the hot-streak model stood 
out in its ability to describe the observed patterns (Extended Data Fig. 8 and 
Supplementary Information S6.2). Together, these results demonstrate that none 
of these alternative hypotheses alone can account for the empirical observations 
in real careers.
Code availability. Code is available at https://lu-liu.github.io/hotstreaks/.
Data availability. The data are available at https://lu-liu.github.io/hotstreaks/.
 

 31. Pan, R. K., Petersen, A. M., Pammolli, F. & Fortunato, S. The memory of science: 
inflation, myopia, and the knowledge network. Preprint at https://arxiv.org/abs/ 
1607.05606 (2016).

 32. Palla, G., Barabási, A.-L. & Vicsek, T. Quantifying social group evolution. Nature 
446, 664–667 (2007).
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Extended Data Fig. 1 | Additional results on hot streaks in artistic, 
cultural, and scientific careers. a–c, The cumulative distribution 
P(≥Ni/N) for the order of the top three highest impact works within a 
career for artists (a), directors (b) and scientists (c). Ni denotes the order 
of the ith highest-impact work within a career. The colours denote different 
hit works, and the dashed grey line denotes P(≥Ni/N) for a uniform 
distribution. d–f, φ(N**, N***) for the second- and third-highest-impact 
works within a career. φ(N**, N***) is also overrepresented along the 

diagonal. g–i, φ(N*, N***) for the first- and third-highest-impact works 
within a career. j–r, We shuffled the order of each work in a career while 
keeping their impact intact. The diagonal patterns in d–i and Fig. 1a–c 
disappeared for shuffled careers. s–u, φ(N*, N**) predicted by the hot-
streak model successfully recovered the diagonal patterns observed in a–c. 
For d–u and Fig. 1a–c, we applied the same binning procedure to data, 
using bins that ranged from 0 to 1 with increments of 0.1.
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Extended Data Fig. 2 | Measuring the length of streaks using different 
thresholds. a, The distribution of auction price P(Price) for artists. Blue 
dots denote data, and the red line is a log-normal distribution with average 
μ = 7.9 and standard deviation σ = 1.5. b, The distribution of film rating 
P(Rating) for directors. The red line is a normal distribution with average 
μ = 7.1 and standard deviation σ = 1.2. c, The distribution of raw and 
rescaled C10 (inset) for scientists. The red line is a log-normal distribution, 
with μ = 2.3 and σ = 1.3 for c and μ = −0.4 and σ = 0.8 for the inset.  

d–f, Definitions of the longest streak L for artists (d), directors (e)  
and scientists (f). Dots are coloured orange above the threshold, blue 
otherwise. The lower panel highlights the longest streak in a career.  
g–i, P(L) for real careers and P(Ls) for shuffled careers using the mean 
impact within a career as the threshold. j–l, As in g–i, but using the top 
10% impact as the threshold to calculate L and Ls. In all cases, P(L) has 
a wider tail than P(Ls), indicating that high-impact works in real careers 
tend to cluster together.
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Extended Data Fig. 3 | Varying career length. To test the robustness of 
our results, we repeated our measurements by controlling for the career 
length of individuals. a–i, Artists and directors with careers of at least  
20 years and scientists with careers of at least 30 years. a–c, P(≥Ni/N) of 
the top three highest-impact works within a career. d–f, Δ( )R N

N
 among the 

top three highest-impact works in a career. g–i, P(L) for real careers and 
P(Ls) for shuffled careers. j–r, As in a–i but for artists and directors with 
careers of at least 30 years and scientists with careers of at least 40 years. 
These results demonstrate that the patterns observed in Fig. 1 hold for 
individuals with different career lengths.
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Extended Data Fig. 4 | Artistic careers from different eras. a, Δ( )R N
N

 for 
artists who started their careers before 1850. b, P(L) for real careers and 
P(Ls) for shuffled careers for artists who started their careers before 1850. 
c, Δ( )R N

N
 for artists who started careers between 1850 and 1900. d, P(L) for 

real careers and P(Ls) for shuffled careers for artists who started their 
careers between 1850 and 1900. These results demonstrate that the 
patterns observed in Fig. 1 hold for artists from different eras.
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Extended Data Fig. 5 | Additional properties of hot streaks.  
a–c, Correlations between ΓH and Γ0 for artists (a; n = 3,166), directors  
(b; n = 5,098) and scientists (c; n = 18,121). The blue background denotes 
the kernel density of data, dots represent binning results of data, and  
the red lines depict a linear fit. Inset, the relationship between  

ΔΓ ( = ΓH − Γ0) and Γ0. d–f, The distribution of τH/T, representing the 
duration of hot streaks over total career lengths. The temporally localized 
nature of a hot streak is also captured by its proportion over career  
length τH/T.
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Extended Data Fig. 6 | Comparison of g(t) between the null model and 
the hot-streak model. a–c, g(t) of three scientists in our data set with mid-
career (a), late-career (b) and early-career (c) onset of hot streaks. Red 
dots denote data, the blue line is the null model’s prediction based on early 
performance, and the red line captures the predictions from the hot-streak 
model, with dashed grey lines denoting the start and end of hot streaks. 
d, The difference between our hot-streak model and the null model for 
each individual, Δg(t). Dashed lines with corresponding colours denote 
the start of the hot streak. d illustrates the discrepancies in estimating an 
individual’s future impact if we ignore the uncovered hot streaks. e, The 
distribution of the BIC measure, P(BIC), showing that the hot-streak 
model outperforms the null model in describing g(t) after accounting for 

model complexity. f, The distribution of the MAPE measure, P(MAPE), 
showing that the hot-streak model outperforms the null model in 
describing g(t). g, The uncertainty envelope of g(t) for an individual in 
our data set. Blue dots denote data, and the red line is the fitting result of 
equation (4). Shaded area illustrates predicted uncertainty (one standard 
deviation). h, The fraction of g(t) falling within the envelope for the null 
model (blue) and our hot-streak model (red). Fraction = 1.0 indicates that 
the entire g(t) trajectory falls within the envelope. i, Average MAPE of our 
hot-streak model and the null model for individuals with early-career, 
mid-career and late-career onset of hot streaks. The difference is largest  
for individuals with early-onset hot streaks and smallest for those with 
late-onset ones.
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Extended Data Fig. 7 | Testing alternative hot-streak dynamics.  
a–f, Illustrative examples of Γ(N) for the hot-streak model (a), right 
trapezoid function (b), isosceles trapezoid function (c), quadratic function 
(d), tent function (e) and left trapezoid function (f). g, The distribution of 
the relative position ÑP( ) of the three highest-impact works among the six 
highest-impact works within a career for artists, where Ñ  denotes the 
relative order among the top six hits. h–m, ÑP( ) predicted by 
corresponding models shown in a–f, respectively, according to artists’ real 
productivity profiles. To test whether data agree with model predictions, 
we measured their statistical difference using the P value of the 
Kolmogorov–Smirnov test for discrete distributions. We colour the 

distributions green if we cannot reject the hypothesis that the data and the 
model predictions come from the same distributions, and red otherwise. 
Among the six models, the hot-streak model is the only model whose 
predictions are consistent with the data in terms of the relative ordering 
among the six highest-impact works observed in real careers. n, The 
proportion of real careers that are captured by the model with the smallest 
BIC among different hypotheses. The hot-streak model again stands out as 
the best model to describe real careers. We repeated the analyses for 
directors (p–v) and scientists (x–ad), the conclusions remained the same 
across all three domains.
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Extended Data Fig. 8 | Testing Markovian hypotheses. Here we test 
whether the observed patterns can be explained by Markovian dynamics 
that introduce correlations between neighbouring data points. We first 
test the assumptions of the Markovian hypothesis from the data (a–f). 
a–c, The distribution of N, N + 1 differences between adjacent data points 
observed in real careers for artists (a, n = 3,480), directors (b, n = 6,233) 
and scientists (c, n = 20,040). d–f, The autocorrelation measured in real 
careers for artists (d, n = 3,480), directors (e, n = 6,233), and scientists 
(f, n = 20,040). a–f suggest that there is little short-range correlation 

in data across the three domains. We test three variants of Markovian 
models (g–l). The details of these models are outlined in Supplementary 
Information S6.2. g–i, φ(N*, N**) of the top two highest-impact works 
within a career for three Markovian models using scientists’ profiles as 
input. j–l, The distribution of the longest streak length P(L) and P(Ls) 
using median impact within a career as threshold for the three Markovian 
models. g–l demonstrate that the three Markovian models failed to capture 
the observed colocations among hits.
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Extended Data Fig. 9 | Additional examples of Γ. a–c, Each subplot 
denotes the fitting result on Γ sequence for a randomly selected career for 
artists (a), directors (b) and scientists (c). Blue dots denote the moving 

average Γ(N) from data and red lines denote the best fitting result of the 
hot-streak model for each individual.
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Extended Data Fig. 10 | Individuals with one or more hot streaks.  
a–c, The distribution of average impacts for individuals with one or 
more than one hot streaks for artists (a), directors (b) and scientists (c). 
Blue dots denote individuals with one hot streak, and red dots denote 
individuals with at least two hot streaks. d–f, The distribution of the 
number of works P(N) within a career for individuals with one or more 
than one hot streak for for artists (d), directors (e) and scientists (f).  
g–i, The distribution of career length P(τ) for individuals with one or more 

than one hot streaks for artists (g), directors (h) and scientists (i). j–l, The 
distribution of P(ΓH) for individuals with one or more than one hot streaks 
for artists (j), directors (k) and scientists (l). Between those who have one 
or two hot streaks, there is no detectable difference in terms of typical 
performance metrics, including impact, productivity and career length, 
suggesting that the hot streak captures an orthogonal dimension to current 
metrics characterizing individual careers.

© 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
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Statistical parameters
When statistical analyses are reported, confirm that the following items are present in the relevant location (e.g. figure legend, table legend, main 
text, or Methods section).

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

An indication of whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistics including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) AND 
variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Clearly defined error bars 
State explicitly what error bars represent (e.g. SD, SE, CI)

Our web collection on statistics for biologists may be useful.

Software and code
Policy information about availability of computer code

Data collection Profiles of artists were automatically downloaded from www.artprice.com and www.findartinfo.com. Profiles of movie directors were 
directly downloaded from www.imdb.com/interfaces. Profiles of scientists were automatically collected from Google Scholar. The Web of 
Science data was obtained through a purchase agreement with Thomson Reuters. Data collection was conducted using Python 2.7.

Data analysis All data analyses were conducted using Python 2.7.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers 
upon request. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A list of figures that have associated raw data 
- A description of any restrictions on data availability

Data are available at https://lu-liu.github.io/careerbursts/ 
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Behavioural & social sciences study design
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Study description This is a quantitative study of individual career histories based on existing datasets

Research sample We compiled a comprehensive database consisting of three large-scale datasets of individual careers across three different domains: 
Dataset D1 contains profiles of artists obtained from online auction databases, Artprice (www.artprice.com) and Findartinfo 
(www.findartinfo.com). We analyzed 3,480 artists with at least 15 works and 10 years of career length, with careers dating back to as far 
as 1460. Dataset D2 contains profiles of movie directors recorded in the IMDB database (www.imdb.com/interfaces). We focused on 
6,233 directors who have at least 15 movies and 10 years of career length dating back to as far as 1890. Dataset D3 contains the 
publication and citation records of 20,040 individual scientists, obtained by combining Google Scholar and Web of Science. We chose 
20,040 scientists with at least 15 papers and 20 years of career length for our analysis. Data are available at http://personal.psu.edu/ 
lpl5107/data/.

Sampling strategy SI, Section S1.1-S1.3 - The sample size in this paper was chosen to have enough statistics for individual careers and to follow closely the 
same procedures used by existing studies in this area.

Data collection Profiles of artists were automatically downloaded from www.artprice.com and www.findartinfo.com. Profiles of movie directors were 
directly downloaded from www.imdb.com/interfaces. Profiles of scientists were automatically collected from Google Scholar. The Web of 
Science data was collected from a local database. The experiments were not randomized. Researchers were not blinded to allocation 
during experiments and outcome assessment.

Timing Data for artists and directors were collected in spring 2017. Google Scholar and Web of Science were collected in summer 2015.

Data exclusions The analysis has no data exclusions. Selection criteria within datasets are described in SI, Section S1.1-S1.3.

Non-participation There are no participants in this study.

Randomization This is a data driven study, not a randomized experiment.
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