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ABSTRACT
The vertex similarity measure is a useful tool to dis-
cover and justify the relationship of vertices in a com-
plex network. We propose the Relation Strength Simi-
larity (RSS), a new vertex similarity measure that uti-
lizes the network topology to discover similar vertices.
Compared to other vertex similarity measures, RSS has
the following advantages. First, it is an asymmetric
metric which allows the measure to be used in more
general social network applications. Second, it can be
employed on a weighted network, in which the rela-
tion strength of two neighboring nodes can be explic-
itly expressed. Third, users could adjust the “discovery
range” parameter for better performance based on their
domain knowledge. Using coauthorship network as ex-
perimental data, our method outperforms other vertex
similarity measures in terms of the ability to predict
future coauthoring behavior among scholars.

Categories and Subject Descriptors
E.1 [Data Structures]: Graphs and networks; G.2.2
[Discrete Mathematics]: Graph Theory—Graph al-
gorithms; H.4 [Information Systems Applications]:
Miscellaneous

General Terms
Algorithms, Experimentation, Measurement

Keywords
Coauthor network, Graph Theory, Link Analysis, Link
Prediction, Information Retrieval, Web of Linked Data
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Complex network is a graph in which each vertex acts
as an object and each edge corresponds to an interac-
tion between two objects. Scientists can infer the na-
ture of the vertices or relationship between vertices by
the graph statistical mechanics, such as vertex degree,
clustering coefficient, betweenness centrality, and short-
est path length [3]. Among all the graph mechanics, one
important graph measure is vertex similarity [15], which
measures how similar two vertices are. Vertex similar-
ity measure can be applied in several applications, such
as potential web linking information discovery [1], du-
plicate object identification [6], coauthoring behavior
inference [21], and knowledge capturing using represen-
tational components [7].

Vertex similarity problem can be categorized into two
classes: vertex feature based similarity and network
topology based similarity. Vertex feature based meth-
ods measure the similarity of two vertices based on their
attributes. For example, two people might be interested
in similar topics because they are both at the same age.
Topology based methods, on the other hand, measure
the similarity of two nodes based on the topology of
the graph. For example, we could intuitively say that
two nodes are more similar if they have more common
neighbors.

In this paper, we focus on investigating topology based
vertex similarity. We present Relation Strength Simi-
larity (RSS), a new vertex similarity measure that has
the following characteristics. First, it is an asymmetric
metric which allows the measure to be used in more gen-
eral social network applications. Second, it can be em-
ployed on weighted networks, in which the relationship
strength between two nodes can be explicitly expressed
using edge weights. Third, the “discovery range” pa-
rameter can be adjusted based on user’s domain knowl-
edge about the network.

To evaluate and compare RSS with other network topol-
ogy based vertex similarity measures, we use CiteSeerX1

dataset to build coauthor networks for experiment. Ex-

1http://citeseerx.ist.psu.edu/



perimental results show that our method outperforms
other vertex similarity measures in terms of the ability
to predict the future coauthoring behavior.

The rest of the paper is organized as follows. In Sec-
tion 2, we review previous work related to vertex fea-
ture based and network topology based vertex similar-
ity measures. The calculation, analysis, and example of
relation strength similarity measure are introduced in
Section 3. In Section 4, we evaluate and compare the
performance of relation strength similarity with other
topology based vertex similarity measures in terms of
their ability to predict potential links on coauthorship
network. Summary and future work appears in Sec-
tion 5.

2. RELATED WORK
2.1 Vertex Feature Based Similarity
Vertex feature based vertex similarity measures utilize
the distance between feature vectors to indicate the sim-
ilarity among vertices. In the simplest case, all the fea-
tures are treated equally important, and the inverse of
Euclidean distance between the feature vectors can be
a proxy of similarity. In more realistic cases, users usu-
ally need to analyze training data to produce a regres-
sion function. The distance between vertices is then
determined by the regression function and their feature
values. Research issues about feature based similarity
include distance function definition [17], feature selec-
tion and dimensionality reduction [10], inductive bias
problem [5], and so on. Vertex feature based measures
are popular in several fields. In [18], the author defined
the similarity between words by using the distribution
pattern of words as features. In [6], Bilenko et al. pro-
posed string-based similarity computation to identify
distinct records referring the same entity. For a com-
plete survey, please see [26].

2.2 Network Topology Based Similarity
While vertex feature based approaches focus on the in-
trinsic properties of the vertices, other measures ex-
ploit the network topology to determine the similar-
ity among vertices. Several topology based approaches,
such as Jaccard similarity [24] and cosine similarity [23],
stands on the intuition that two vertices are more simi-
lar if they share more common neighbors. Adamic and
Adar [2] refined the measures by assigning more weights
to the vertices with fewer degrees. However, Adamic-
Adar’s measure cannot be normalized because in the-
ory the maximum similarity values between two nodes
could be infinity. Preferential attachment [4] is a phe-
nomenon that a high degree node is more likely to ac-
quire new links. The phenomenon was observed in sev-
eral large scale networks, such as World Wide Web [4],
citation network [22], and protein network [9]. Based on
the empirical observation, Newman [20] proposed that
the probability of a new edge established between two

vertices is proportional to the product of their degree.
Zhou et al. did a comprehensive empirically study on
the local topology based similarities [28].

Instead of using local neighboring information, the global
topology can also be used for vertex similarity calcula-
tion. Katz [14] proposed a measure based on the to-
tal number of simple paths between vertices with lower
weights to longer paths. Instead of calculating all the
simple paths, the measure can be directly calculated
by (I − aC)−1 − I, where I is the identity matrix, a
is a parameter to decide the importance ratio between
direct neighbors and indirect neighbors, and C is the
adjacent matrix. Several other global topology based
measures, such as SimRank [13], Leicht-Holme-Newman
(LHN) [15], and P-Rank [27] defined the similarity mea-
sures recursively: two vertices are similar if their imme-
diate neighbors in the network are themselves similar.
Although these methods bear some similarity to each
other, they have some important difference. SimRank
and LHN regard two vertices similar if they are ref-
erenced by similar vertices, whereas P-Rank considers
both in-link and out-link relationship. In addition, Sim-
Rank and P-Rank includes only paths of even length,
which could make a substantial difference for the final
similarity score. Several of these methods were com-
pared in [21].

Although global topology based measures see a boarder
picture of the whole network, they usually computa-
tionally expensive. Several approximations for global
topology based measures are proposed in recent study.
Gou et al. approximated LHN by clustering the social
network into virtual nodes to reduce the graph size [11,
12]. Li et al. approximated SimRank by incremental
updating [16], but this measure allows only link updat-
ing, i.e., it assumes that the total number of vertices in
graph is fixed.

Table 1 lists and compares the characteristics of several
well known vertex similarity measures. Only part of
these works can only be employed on unweighted net-
works. Our proposed measure, RSS, is the only asym-
metric measure.

3. RELATION STRENGTH VERTEX SIMI-
LARITY

3.1 Relation Strength Similarity Calculation
Relation strength similarity permits users to explicitly
assign the weights to every edge for initialization. If
users have no clue about the relative importance of the
edges, they could just näıvely assign the same weight to
all of them. Relation strength similarity is calculated
based on relation strength, a normalized edge weighting
score defining the relative degree of similarity between
neighboring vertices. The relation strength from vertex
A to vertex B is calculated as follows.



Table 1: A comparison of different topology based vertex similarity measures. (n: number of ver-
tices, K: maximum number of iteration, d: average degree (including in-degree and out-degree), r:
discovery range, assuming d << n, K << n, r << n)

Name Time Complexity Topology Range Asymmetric? Weighted Network? Ref.

RSS O (ndr) ∼ O (n) adjustable ! ! this paper
Jaccard O

(
nd3

)
∼ O (n) local [23]

cosine O
(
nd3

)
∼ O (n) local [24]

Adamic-Adar O
(
nd3

)
∼ O (n) local [2]

Pref. Attach. O
(
n2d

)
∼ O

(
n2

)
local [20]

Katz O
(
n3

)
global ! [14]

SimRank O
(
Kn2d2

)
∼ O

(
n2

)
global ! [13]

LHN O
(
n3

)
global [15]

P-Rank O
(
Kn2d2

)
∼ O

(
n2

)
global ! [27]

R(A,B) :=






αAB∑
∀X∈N(A) αAX

if A and B are adjacent

0 otherwise,
(1)

where αAB can be explicitly specified by users based on
known conditions or their best knowledge, and N(A) is
the set of A’s neighboring vertices. The value of relation
strength is normalized between 0 and 1.

For any two vertices A and C, if A could reach C
through a simple path pm, we define the indirect re-
lation strength from A to C through path pm as

R∗
pm

(A,C) :=
K−1∏

k=1

R(Bk, Bk+1), (2)

where B1 is vertex A, BK is vertex C, path pm is formed
by K vertices B1, B2, . . ., BK−1, and BK .

The above equation requires computing all the paths
between two vertices. So far, an exhaustive search is
still the only way to solve the problem [19]. To make
the calculation tractable, we conceive a new discovery
range parameter, r, to control the maximum degree of
separation for indirect relation strength calculation, i.e.,
we only look for paths at most r hops away. Thus,
Equation 2 becomes this.

R∗
pm

(A,C) :=

{ ∏K
k=1 R(Bk, Bk+1) if K ≤ r

0 otherwise.
(3)

Users could adjust the discovery range based on their
domain knowledge. In our experiment, as discussed in
Section 4, we found that even with a small discovery
range RSS still outperforms other vertex similarity mea-
sures.

Assuming that there are M distinct simple paths p1,

p2, . . ., pM from A to C with path length shorter than
discovery range r, the relation strength similarity from
vertex A to vertex C is defined as the summation of the
relation strength and all the indirect relation strengths,
as defined in Equation 4.

S(A,C) := R(A,C) +
M∑

m=1

R∗
pm

(A,C). (4)

3.2 Analysis of Relation Strength Similarity
In this section, we first show that the value of RSS is
always between 0 and 1. Next, we study and compare
several characteristic of the RSS with other similarity
measures. Finally, we explain why introducing discov-
ery range is reasonable.

Although normalization seems to be a straightforward
step in defining a new measure, several vertex similarity
measures, such as Adamic-Adar [2], preferential attach-
ment [20], and Katz [14], cannot be normalized because
their maximum possible value could be infinity by their
nature. We show the value of RSS is always between 0
and 1 by rewriting Equation 4 as follows.

S(A,C) := R(A,C) +
M∑

m=1

R∗
pm

(A,C) (5)

= R(A,C) +
M∑

m=1

[
K∏

k=1

R(B(m)
k , B(m)

k+1)

]
(6)

≤ R(A,C) +
M∑

m=1

R(A,B(m)
2 ) (7)

≤
∑

∀X∈N(A)

αAX∑
∀X∈N(A) αAX

(8)

= 1, (9)

where B(m)
1 , B(m)

2 , . . . B(m)
K form pm, the mth path be-



tween A and C, A = B(1)
1 = B(2)

1 = . . . = B(M)
1 since

B(m)
1 is the starting vertex of path pm, C = B(1)

K+1 =

B(2)
K+1 = . . . = B(M)

K+1 since B(m)
K+1 is the ending vertex

of path pm, and N(A) is the set of neighboring vertices
of A.

Equation 7 holds because the indirect relation strength
of any two vertices through a simple path pm is less
or equal to the relation strength of any two adjacent
vertices along pm by Equation 2. If C is a neighboring

vertex of A, Equation 8 applies since vertices C, B(1)
2 ,

B(2)
2 , . . . , B(M)

2 form a subset of N(A) and therefore∑
X∈{C,B(1)

2 ,...,B(M)
2 } R(A,X) ≤

∑
∀X∈N(A) R(A,X). If

C is not adjacent to A, R(A,C) becomes 0 by Equa-
tion 1 and contributes nothing to the final measure.

Equation 8 still applies because vertices B(1)
2 , B(2)

2 , . . . ,

B(M)
2 form a subset of N(A).

Compared to other vertex similarity measures, the first
advantage of RSS is asymmetric, i.e., S(A,B) may not
equal S(B,A). This is because R(A,B), the relation
strength from A to B, may not be the same as R(B,A),
the relation strength from B to A, as shown in Equa-
tion 1. The asymmetric property is closer to the real
world scenario. We will illustrate a real life example in
Section 3.3 to help readers understand more about the
powerfulness of asymmetricity. Most of previous vertex
similarity measures [2, 13, 14, 15, 20, 23, 24, 27] are
symmetric by their nature.

In addition, RSS can be employed on weighted graph.
Several previous works treat neighboring vertices equally
important in the initial setting [2, 15, 20, 23, 24]. They
neglect the fact that neighboring vertices may still have
different strength of relation. Different from these ap-
proaches, the initial setting of our method allows users
to explicitly specify the known relation strength be-
tween objects based on application. Take coauthorship
network for example, the weights of edges could be used
to represent the number of coauthored papers between
two authors. For gene promoter network, weighted edges
could stand for bp-sharing between promoters.

Finally, users could adjust the discovery range by their
domain knowledge. Compared with previous work [2,
23, 24], the local topology based measures are too re-
strictive in the sense that they only look for vertices
with two degree of separation. The global topology
based measures [13, 14, 15, 27] are not computation-
ally feasible for large or dynamic networks. Our al-
gorithm allows users to control the discovery range to
achieve balance between the two. Although introducing
discovery range parameter disregards the effect of long
paths between vertices, the approximation is reasonable
because once the path length is too long, the product
form in Equation 2 would make R∗

pm very small, and

Figure 1: Relation strength similarity example

therefore contributes little to the final similarity mea-
sure (Equation 4).

3.3 A RSS Example
Let’s consider a real world scenario happening in aca-
demic circle. A young faculty usually has fewer connec-
tions with other researchers compared to a senior fac-
ulty. Therefore, each connection for the young faculty
is relatively important. In addition, a young faculty is
usually more eager to establish connections with senior
faculties, whereas a senior faculty might be less inter-
ested in forming new links, since he or she has have
several connections.

Before continuing the scenario, let’s take a look at the
example illustrated in Figure 1. To simplify the expla-
nation, we assume all the edge weights equal 1, and all
the links are reciprocal.

We want to calculate the relation strength similarity
from vertex A to vertex B. By Equation 1, we know
the R(A,C), relation strength from A to C equals 1/2,
since A has 2 equally important adjacent vertices. Sim-
ilarly, we could get R(C,D) = R(D,B) = R(A,E) =
R(E,B) = 1/2. Because path A−C −D−B and path
A − E − B are the only two simple paths from A to
B, by Equation 4 we get S(A,B) be R(A,C) ·R(C,D) ·
R(D,B)+R(A,E)·R(E,B), which is 0.375. Using sim-
ilar steps, one can verify that S(B,A) is 0.1875, which
is smaller than S(A,B).

Let’s go back to the academic scenario. The young fac-
ulty’s character is like vertex A in the graph. Compared
with a senior faculty (vertex B), the relation strength
of A to A’s neighbors is 1/2, which is twice as impor-
tant as B to B’s neighbors (1/4). In addition, RSS also
displays that the young faculty A would be more eager
in getting in touch with the senior faculty B than the
other way around.

Compared with other similarity measures, the local topol-
ogy based measures considers only path A−E−B and



Table 2: Statistical mechanics of the training
graph.

Statistical Measure Value

Number of Nodes 26, 082
Number of Edges 59, 742
Average Degree 4.58

Average Clustering Coefficient 0.48
Average Shortest Path Length 10.99

Diameter 36

fails to consider a longer path A − C − D − B in the
example. Moreover, most of the similarity measures
would determine the young faculty and the senior fac-
ulty have equal motivation to establish connection with
each other because the symmetric nature of these mea-
sures. Our proposed RSS measure successfully explains
the real world asymmetric situation.

4. EXPERIMENTS
Evaluating similarity measures is difficult because ver-
tex similarity result is usually lack of interpretability [8].
To compare RSS with other measures, we use CiteSeerX
dataset to build the coauthorship network and study
the performance of different measures in terms of their
ability to predict future collaboration behaviors. To
eliminate the author ambiguity problem, we use ran-
dom forest learning [25] to disambiguate the authors
with similar names.

4.1 Experimental Setup
We retrieve the papers published between 1995 and
1997 by CiteSeerX dataset and build a training coau-
thorship network, G0, by the authors of the papers. The
statistical mechanics of the training network is shown
in Table 2.

To generate the testing network, we build a coauthor-
ship network by authors who has publications between
1998 and 2000. The authors who has publications in
interval [1998, 2000] but not in [1995, 1997] are disre-
garded since they are not presented in the training net-
work. We repeat the same procedure to produce two
more testing coauthorship network in interval [2001, 2003]
and interval [2004, 2006]. The three testing coauthor-
ship networks are labeled as G1, G2, and G3 respec-
tively.

We use the number of coauthored papers as the weight
of each edge. Therefore, the relation strength from au-
thor A to author B becomes

R(A,B) :=
nAB

nA
, (10)

where nAB is the number of A and B’s coauthored pa-

Table 3: Prediction accuracy by determining top
500 similar node pairs will connect in the testing
graph

G1 G2 G3

Random Select 0.004% 0.002% 0.001%
Jaccard 0.604% 0.097% 0.001%

Adamic-Adar 0.498% 0.001% 0.0003%
SimRank 0.310% 0.001% 0.0004%

RSS (r = 2) 4.001% 0.701% 0.001%
RSS (r = 3) 3.793% 0.626% 0.0007%

Table 4: Prediction accuracy by determining top
5, 000 similar node pairs will connect in the test-
ing graph

G1 G2 G3

Random Select 0.004% 0.002% 0.001%
Jaccard 0.776% 0.167% 0.046%

Adamic-Adar 0.650% 0.068% 0.042%
SimRank 1.140% 0.201% 0.084%

RSS (r = 2) 1.983% 0.547% 0.099%
RSS (r = 3) 2.445% 0.658% 0.145%

pers, nA is number of A’s published papers.

4.2 Evaluation Method
We calculate different vertex similarity measures among
vertices on the training graph G0 and use the informa-
tion to infer future collaboration behavior.

For each similarity measure, we rank all the node pairs
by their similarity scores from the highest to the lowest.
We determine the top-n node pairs as the authors who
will collaborate in the future. Comparing the judgment
with the testing graph, we could calculate each simi-
larity measure’s success rate, which is used as a proxy
of the performance of the measure. Since coauthoring
behavior is reciprocal, it does not make sense to include
both S(A,B) and S(B,A) in the ordering list. There-
fore, we only include the larger one of the two. In addi-
tion, we only care about new collaboration behaviors in
the experiment. For two authors who have publications
in the training network, their collaboration behavior in
the testing network is excluded in the performance eval-
uation.

We compare two local topology based similarity mea-
sures (Jaccard similarity and Adamic-Adar similarity)
and one global topology based similarity measure (Sim-
Rank) with our RSS measure by setting discovery range
(r) to 2 and 3.

4.3 Experimental Results



100 200 500 2000 5000 20000

0
2

4
6

8

top n

re
la

tiv
e 

pe
rfo

rm
an

ce
 ra

tio
Jaccard
Adamic−Adar
SimRank
RSS (r=2)
RSS (r=3)

(a) Performance ratio of similarity mea-
sures in G1 (between 1998 and 2000)
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(b) Performance ratio of similarity mea-
sures in G2 (between 2001 and 2003)
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(c) Performance ratio of similarity mea-
sures in G3 (between 2004 and 2006)

Figure 2: Relative performance ratio of different similarity measures for top-n returns. (reference
measure: Jaccard similarity)
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(b) Authors first collaborate in G2 (be-
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(c) Authors first collaborate in G3 (be-
tween 2004 and 2006).

Figure 3: The distance distribution of two vertices in G0 before their first collaboration.

In addition to the network topology issues, there are a
lot of reasons for two authors to (or not to) collaborate.
For example, a PhD student generally works with his
or her adviser and well connected with part of the fac-
ulties in the department. After graduating, the student
usually changes to another institution and starts to get
in touch with new faces. This kind of transition be-
havior cannot be inferred from network topology alone.
Therefore, the accuracy of predicting new links by only
topology based similarity measures is relatively low. A
similar result was also reported in Nowell and Klein-
burg’s paper [21].

To make the comparison more meaningful, we show the
accuracy of random select measure, which randomly
pick up two non-adjacent vertices in the training net-
work. As shown in Table 3, by determining the top 500
similar node pairs will connect, Jaccard similarity is
more than 150 times better than random select in test-
ing network G1, which represents the coauthoring be-
havior between 1998 and 2000. For G2 (the coauthoring
behavior between 2001 and 2003), Jaccard similarity is
48 times better than random select. Although Jaccard
similarity has similar performance with random select
in G3, it is 46 times better than random select when
we determine top 5, 000 similar node pair will connect,

as shown in Table 4. The predicting accuracy of other
similarity measures is also listed.

Since different number of returns may cause different
accuracy, we show the relationship between the number
of returns and the relative performance ratio. Using
Jaccard similarity as the reference measure, the relative
performance of other similarity measures with number
of returns ranging from 10 to 30, 000 is displayed in
Figure 2.

As shown in Figure 2(a) and Figure 2(b), Two RSS re-
sults (with discovery range equals 2 and 3 respectively)
both outperform Jaccard similarity by a factor of 1 to 7,
depending on the number of returns. The performance
of Adamic-Adar and SimRank is similar to Jaccard sim-
ilarity, although they tend to be better as the number
of returns increases.

While G1 and G2 are the coauthoring behavior of near
future, G3 represents the farther future. Therefore, the
coauthoring behavior in G3 is less predictable, as shown
in Figure 2(c). For the top 500 returns, all the simi-
larity measures have no advantage over random select
(refer the last column of Table 3). The similarity mea-
sures start to perform better as the number of returns



increases. As the number of returns reaches 5, 000, Jac-
card similarity is 46 times better than random select.
Our proposed RSS is 145 times better even discovery
range is set to a small number 3.

An interesting discovery is that SimRank seems have no
apparent advantage over Jaccard and Adamic-Adar for
G1 and G2, although SimRank considers global topol-
ogy. To further investigate the finding, we plot the dis-
tance distribution between two authors in training net-
work (G0) if the two authors have no coauthored paper
in G0 and have coauthoring behavior in G1, G2, or G3.
As shown in Figure 3(a), authors tend to work with
people who are not far away in the coauthoring net-
work. The collaborators within distance 4 account for
50% of the new established links. Although these new
links would shrink the distance between an author and
other non-neighboring people, the training graph G0

cannot be aware of these updates. Therefore, the distri-
bution in Figure 3(b) and Figure 3(c) looks like authors
start to work with people of a larger distance as time
goes by. For testing network G3, the majority of the
collaborators are of distance 7 to 9. Since local topol-
ogy based similarity measures (Jaccard and Adamic-
Adar) can only look for nodes at most two hops away,
global topology based similarity (SimRank) starts to
outperform these methods. This tells us that while lo-
cal topology based measures are good at predicting near
future collaborating behaviors, global topology based
measures could be a better option if we want to predict
connections of farther future.

5. CONCLUSION AND DISCUSSION
In this paper, we introduce relation strength similar-
ity (RSS), a new vertex similarity measure that could
better capture the potential relationship of real world
structure context. RSS is unique in three aspects. First,
it is an asymmetric measure which could be used for
a more general purpose social network analysis. Sec-
ond, it allows users to explicitly specify the relation
strength between neighboring vertices for initialization.
Third, the discovery range parameter could be adjusted
by users based on their domain knowledge for computa-
tion efficiency and performance concern. We illustrate
a real life example to demonstrate that RSS could bet-
ter explain a scholar’s degree of interest to collaborate
with other scholars.

The vertex similarity measures are evaluated in terms
of their ability to predict future collaboration behavior
among scholars. Although the collaborating behavior
cannot be interpreted by network structure alone, intro-
ducing vertex similarity measure can be a great help for
future collaboration prediction. Experimental results
show that RSS outperforms both local topology based
similarity measures (Jaccard and Acadmic-Adar) and
global topology based similarity (SimRank) by a factor
of 1 to 7, even with small discovery range. We also dis-

cover that local topology based measures are good at
predicting collaborations of near future, whereas global
topology based method is a better option if we are ask-
ing for a long term prediction.

We plan to investigate the influence of new links and old
links in terms of their ability to predict collaboration as
future work.
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