
AlgorithmSeer: A System for Extracting and
Searching for Algorithms in Scholarly Big Data

Suppawong Tuarob,Member, IEEE, Sumit Bhatia,
Prasenjit Mitra, Senior Member, IEEE, and C. Lee Giles, Fellow, IEEE

Abstract—Algorithms are usually published in scholarly articles, especially in the computational sciences and related disciplines. The
ability to automatically find and extract these algorithms in this increasingly vast collection of scholarly digital documents would enable
algorithm indexing, searching, discovery, and analysis. Recently, AlgorithmSeer, a search engine for algorithms, has been investigated
as part of CiteSeerX with the intent of providing a large algorithm database. Currently, over 200,000 algorithms have been extracted
from over 2 million scholarly documents. This paper proposes a novel set of scalable techniques used by AlgorithmSeer to identify and
extract algorithm representations in a heterogeneous pool of scholarly documents. Specifically, hybrid machine learning approaches
are proposed to discover algorithm representations. Then, techniques to extract textual metadata for each algorithm are discussed.
Finally, a demonstration version of AlgorithmSeer that is built on Solr/Lucene open source indexing and search system is presented.

Index Terms—Algorithm search engine, ensemble machine learning, scholarly big data

Ç

1 INTRODUCTION

COMPUTER science and many of its applications are about
developing, analyzing, and applying algorithms. Effi-

cient solutions to important problems in various disciplines
other than computer science usually involve transforming
the problems into algorithmic ones on which standard algo-
rithms are applied. For example, algorithms for stock port-
folio optimization are used for diversifying search results in
information retrieval systems [37]. In the industrial design
disciplines, the Latent Dirichlet Allocation [8] is effectively
used to identify notable product features [34], [35]. Like-
wise, in bioinformatics Hirschberg’s algorithm [16] is
widely used to find maximal global alignments of DNA and
protein sequences. Furthermore, a thorough knowledge of
state-of-the-art algorithms is also crucial for developing effi-
cient software systems.

A significant number of scholarly articles in computer sci-
ence and related disciplines contain high-quality algorithms
developed by researchers. Bhatia, et al., estimated the number
of algorithms published in somemajor computer science con-
ferences between 2005-2009 (Table 1). With dozens of new
algorithms being reported in these conferences every year, it
would be useful to have automated systems that efficiently
identify, extract, index and search this ever increasing

collection of algorithmic innovations. Such systems could pro-
vide an alternative source for researchers and software devel-
opers looking for cutting-edge algorithmic solutions to their
problems.

Standard algorithms1 are usually collected and cataloged
manually in algorithm textbooks (e.g., [21]), encyclopedias
(especially the ones available online such as Wikipedia2),
and websites that provide references for computer pro-
grammers (e.g., Rosettacode.org3). We parsed Wikipedia
algorithm pages published in 2010, and found that roughly
1,765 standard algorithms were cataloged. The National
Institute of Standards and Technology (NIST)4 also has a
dictionary of over 289 standard algorithms. While most
standard algorithms are already cataloged and made
searchable, especially those in online catalogs, newly pub-
lished algorithms only appear in new articles. The explosion
of newly developed algorithms in scientific and technical
documents makes it infeasible to manually catalog these
newly developed algorithms.

Manually searching for these newly published algorithms
is a nontrivial task. Researchers and others who aim to dis-
cover efficient and innovative algorithms would have to
actively search andmonitor relevant new publications in their
fields of study to keep abreast of latest algorithmic develop-
ments. The problem is worse for algorithm searchers who are
inexperienced in document search. Ideally, we would like to
have a system that automatically discovers and extracts algo-
rithms from scholarly digital documents. Such a system could
prove to facilitate algorithm indexing, searching, and a wide
range of potential knowledge discovery applications and

! S. Tuarob is with the Faculty of Information and Communication Technol-
ogy, Mahidol University, Salaya 73170, Thailand.
E-mail: suppawong.tua@mahidol.ac.th.

! S. Bhatia is with IBM Almaden Research Center, San Jose, CA.
E-mail: sumit.bhatia@us.ibm.com.

! P. Mitra is with Qatar Computing Research Institute, Doha, Qatar.
E-mail: pmitra@qf.org.qa.

! C.L. Giles is with Information Sciences and Technology, The Pennsylvania
State University, PA 16801. E-mail: giles@ist.psu.edu.

Manuscript received 31 Mar. 2015; revised 2 Jan. 2016; accepted 12 Feb. 2016.
Date of publication 5 Apr. 2016; date of current version 27 May 2016.
Recommended for acceptance by Y.-R. Lin, H. Tong, J. Tang and K.S. Candan.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TBDATA.2016.2546302

1. We define a standard algorithm to be an algorithm that is well
known by people in a field and is usually recognized by its name,
including Dijkstra’s shortest-path algorithm, Bellman-Ford algorithm,
Quicksort algorithm, etc.

2. http://www.wikipedia.org/
3. http://rosettacode.org/wiki/Rosetta_Code/
4. http://xlinux.nist.gov/dads/

IEEE TRANSACTIONS ON BIG DATA, VOL. 2, NO. 1, JANUARY-MARCH 2016 3

2332-7790! 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



studies of the algorithm evolution, and presumably increase
the productivity of scientists.

Identifying and extracting various informative entities
from scholarly documents is an active area of research. For
algorithm discovery in digital documents, Bhatia, et al.,
have described a method for automatic detection of pseudo-
codes (PCs) in Computer Science publications [6]. Their
method assumes that each PC is accompanied by a caption
(e.g., Fig. 1). Such a PC can then be identified using a set of
regular expressions to capture the presence of the accompa-
nied caption.

However, such an approach is limited in its coverage due
to reliance on the presence of PC captions and wide varia-
tions in writing styles followed by different journals and
authors. We found that 25.8 percent (71 out of 275) of the
PCs (see Section 4.4.1) did not have accompanied captions,
and would remain undetected by their proposed approach.

Furthermore, even though PCs are commonly used in
scientific documents to represent algorithms, a majority of
algorithms are also represented using algorithmic procedures
(APs). An algorithmic procedure (e.g., Fig. 2) is a set of
descriptive algorithmic instructions and differs from a PC
in the following ways:

! Writing style. PCs are usually written in a program-
ming style, with details omitted. Symbols, Greek let-
ters, mathematical operators, and programming
keywords (such as ‘for’, ‘begin’, ‘end’, ‘return’, etc.)
are usually used to compose PCs. On the other hand,
APs are usually written in a listing style, with a
descriptive manner. Each step usually begins with a
bullet point, or a number. APs lack the power to
express complex nested loops and are less concise
than PCs, but they are easier to comprehend by gen-
eral readers who do not have a programming
background.

! Location in documents. PCs are usually not part of the
running text; they may appear anywhere in the
documents. Because of this, most PCs have identifiers
which the context in the document can refer to.
These identifiers include captions (e.g., ‘Figure 3: The
hill-climbing algorithm.’), function names (e.g.,
‘APPROXMAX-SAT(g, S , p)’), and algorithm names

(e.g., ‘Algorithm BuildGalledNetwork’). On the con-
trary, algorithmic procedures mostly appear as part
of the running text, and hence do not have unique
identifiers. Hence, detecting APs would require a
different set of techniques.

Since algorithms represented in documents do not con-
form to specific styles, and are written in arbitrary formats,
this becomes a challenge for effective identification and
extraction. Here we propose a novel methodology based on
ensemble machine learning to discover algorithm represen-
tations such as PCs and APs automatically. Moreover, we
observe that two or more algorithm representations may be
used to describe the same algorithms. Hence, we also pro-
pose a simple heuristic that links different algorithm repre-
sentations that together constitute an algorithm. Automatic
discovery and extraction of these algorithm representations
will be useful for applications in digital libraries and docu-
ment engineering.

This paper has the following key contributions:

1) We propose a set of hybrid techniques based on
ensemble machine learning to discover PCs and APs
in scholarly documents. Specifically, three variations
of a methodology for detecting PCs include an exten-
sion of the existing rule based method proposed by
Bhatia, et al. [6], one based on ensemble machine
learning techniques, and a hybrid of these two. The
methods for discovering APs include a rule based
method and a machine learning based method. Fur-
thermore, a machine learning based strategy to iden-
tify sections in a scholarly document by detecting
section headers and using them as section bound-
aries is also discussed. Finally, we propose a heuris-
tic that links different algorithm representations
referring to the same algorithm together. A case
study of 258 scholarly documents selected from Cit-
eseerX repository is used to validate the efficacy of
these techniques.

2) We find that the textual metadata that can be
directly extracted from an algorithm representation
(especially PCs), is inadequate for effective
retrieval, and propose to use the synopsis genera-
tion method [4], which automatically generates a
comprehensive description for a document element,

Fig. 1. Example pseudo-code (PC), from [1].
Fig. 2. Example algorithmic procedure (AP), from [27].

4 IEEE TRANSACTIONS ON BIG DATA, VOL. 2, NO. 1, JANUARY-MARCH 2016



and the tag-based automatic metadata annotation
[32] technique, which automatically textually
enriches metadata records, to extract more mean-
ingful textual information for PCs. A case study of
6,285 PCs extracted from randomly sampled 20,567
scholarly documents is used to discuss and validate
these methods.

3) We describe how algorithm textual metadata is
indexed and made searchable, along with demon-
strating the test version of AlgorithmSeer.

2 BACKGROUND AND RELATED WORKS

Since literature on scholarly information extraction is exten-
sive, only works closely related to ours are discussed.

2.1 Document Element Extraction in Scholarly
Documents

Identifying and extracting informative entities such as
mathematical expressions [3], [39] , tables [24], figures[12],
[17], and tables of contents[38] from documents have been
extensively studied. Kataria, et al. [17], employed image
processing and Optical Character Recognition (OCR)
approaches for automatic extraction of data points and text
blocks from 2D plots. They also proposed a method to index
and search for the extracted information. Sojka and L!ı"ska
proposed MIaS (Math Indexer and Searcher) that collects
and interprets mathematical expressions [26]. Since their
system only handles documents in the MathML (Mathemat-
ical Markup Language) format where mathematical expres-
sions have already been marked up, their approach is
inapplicable to our problem. Bhatia, et al., proposed a set of
methods used for detecting document-elements that have
accompanied captions, e.g., tables, figures, and pseudo-
codes [4]. A document-element is identified by detecting
the presence of the corresponding caption using a set of reg-
ular expressions. In this paper, we use their method as the
baseline for the PC detection task.

2.2 Search Systems for Scholarly Information
Aside from well known web search engines such as Google5

and Microsoft’s Bing6, various vertical search engines have
been proposed. CiteSeer7, now CiteSeerX, was developed as
a scientific literature digital library and search engine which
automatically crawls and indexes scientific documents pri-
marily in the field of computer and information science [22].

Liu, et al., presented TableSeer, a tool which automatically
identifies and extracts tables in digital documents [23]. They
used a tailored vector-space model based ranking algo-
rithm, TableRank, to rank the search results. An implementa-
tion of TableSeer that extracts and searches for tables in the
CiteSeerX document repository has been included in the
CiteseerX suite. BioText8 search engine, a specialized search
engine for biology documents, also offers the capability to
extract figures and tables, and make them searchable [15].
Khabsa, et al., described AckSeer, an acknowledgement
search engine that extracts, disambiguates, and indexes
more than 4 million mentioned entities from 500,000
acknowledgments from documents in CiteSeerX [18]. Chen,
et al., emphasized the importance of scientific collaboration
and introduced CollabSeer, a search engine for discovering
potential collaborators for a given author or researcher by
analyzing the structure of the coauthor network and the
user’s research interests [11].

Though useful algorithms could be found in many spe-
cialized search engines (e.g., CiteseerX9, Google Scholar10) and
algorithm-related discussion forums (e.g., Stack Overflow11,
Quora12), the search results can be contaminated with irrele-
vant items. Fig. 3 illustrates an example of a search session
(top five results) for shortest path finding algorithms using the
query “shortest path finding algorithm” on CiteseerX

search engine that currently hosts 5 million academic publi-
cations whose major proportion is computer science and
related disciplines. According to the figure, only two out of
five top results are relevant (actual papers that describe

TABLE 1
Approximate Number of Algorithms Published
in Different Computer Science Conferences
during 2005-2009, Reproduced from [4]

Conference No. of Algorithms

SIGIR 75
SIGMOD 301
STOC 74
VLDB 278
WWW 142

Not Relevant

Relevant

Fig. 3. Sample search results for the query “shortest path finding
algorithm” on CiteseerX.

5. https://www.google.com/
6. http://www.bing.com/
7. http://citeseerx.ist.psu.edu

8. http://biosearch.berkeley.edu
9. http://citeseerx.ist.psu.edu/
10. https://scholar.google.co.th/
11. http://stackoverflow.com/
12. https://www.quora.com/

TUAROB ETAL.: ALGORITHMSEER: A SYSTEM FOR EXTRACTING AND SEARCHING FOR ALGORITHMS IN SCHOLARLY BIG DATA 5



shortest path algorithms), while the other three results are
simply documents containing those search terms. Further-
more, these search engines would return the whole docu-
ments (papers or websites) as search results, requiring the
users to invest additional, unnecessary effort to read the
entire documents to find the desired algorithms. To the best
of our knowledge, we are the first to explore the possibility
of building a search engine specifically for algorithms
extracted from scholarly digital documents.

3 THE SYSTEM

In this article, a prototype of an algorithm search engine,
AlgorithmSeer, is presented. Fig. 4 illustrates the high level
of the proposed system. First, scholarly documents are proc-
essed to identify algorithm representations (Section 4).
Then, the textual metadata that provides relevant informa-
tion about each detected algorithm representation is
extracted (Section 5). The extracted textual metadata is then
indexed, and made searchable (Section 6).

Note that, even though the methods presented in this
paper are developed to handle algorithms in scholarly digi-
tal documents, the methods could be generalized to other
information sources that contain textual representations of
algorithms such as pseudo-codes found in web-pages (e.g.,
Stack Overflow, Wikipedia, etc.). Algorithm extraction in
html is different from algorithm extraction in free text,
though there are some similarities. For example, webpages
are usually composed in HTML which provides markup
tags (e.g., <tr>,<td>, etc.) that can be utilized to detect
boundaries of document elements, while such functionali-
ties do not exist in free text data. It is also possible that the
ideas presented in this paper could be developed for other
document elements such as tables and diagrams, as long as
textual information from such entities could be extracted.

4 ALGORITHM IDENTIFICATION IN SCHOLARLY

DOCUMENTS

This section discusses the methods for automatic discovery
of PCs and APs in scholarly documents. Fig. 5 displays the
high level diagram of the proposed system. The system spe-
cifically handles PDF documents since a majority of articles
in modern digital libraries including CiteseerX are in PDF
format. First, plain text is extracted from the PDF file.
Inspired by Hassan [14], we use PDFBox13 to extract text and
modify the package to also extract object information such as

font and location information from a PDF document. Then,
three sub-processes operate in parallel, including document
segmentation, PC detection, and AP detection. The docu-
ment segmentation module identifies sections in the docu-
ment. The PC detection module detects PCs in the parsed
text file. The AP detector first cleans extracted text and
repairs broken sentences (since the method assumes that a
document is represented with a sequence of sentences), then
identifies APs. After PCs and APs are identified, the final
step involves linking these algorithm representations refer-
ring the same algorithms together. The final output would
then be a set of unique algorithms.

4.1 Detecting Pseudo-Codes (PCs)
Most scientific documents use PCs for compact and concise
illustrations of algorithms. PCs are normally treated as doc-
ument elements separated from the running text, and usu-
ally are accompanied with identifiers such as captions,
function names, and/or algorithm names. Since PCs can
appear anywhere in a document, these identifiers usually
serve the purpose of being anchors which can be referred to
by context in the running text. Here, three approaches for
detecting PCs in scholarly documents are presented: a rule
based method (PC-RB), an ensemble machine learning
based method (PC-ML), and a combined method (PC-CB).
Note that though OCR based techniques (where each page
of the document is first converted into an image, where
image processing based techniques are used to locate the
boundary of the PCs, then an OCR technique is used to
extract the content within each candidate region) have been
explored, textual content can be directly and quite accu-
rately extracted from most PDF files. It seems that convert-
ing documents into images and applying OCR algorithms
would just add more noise to the extracted text.

4.1.1 Rule Based Method (PC-RB)

Recently, Bhatia et al. proposed a rule based PC detection
approach, which utilizes a grammar for document-element
captions to detect the presence of PC captions [7]. We refer
their method as our baseline (PC-BL) for the PC detection
task. Here, our proposed PC-RB extends the baseline by

Fig. 4. Architecture of the proposed system.

Fig. 5. Diagram of the proposed algorithm identification system.

13. http://pdfbox.apache.org/

6 IEEE TRANSACTIONS ON BIG DATA, VOL. 2, NO. 1, JANUARY-MARCH 2016



adding the following rules to improve coverage and reduce
false positive rate:

! A PC caption must contain at least one algorithm
keyword, namely pseudo-code, algorithm, and
procedure.

! Captions in which the algorithm keywords appear
after prepositions (e.g., ‘Figure 15: The robust envelope
obtained by the proposed algorithm’) are excluded, as
these are not likely captions of PCs.

Given a document (tagged with line numbers), the PC-RB
then locates PCs by detecting the presence of their captions.

4.1.2 Machine Learning Based Method (PC-ML)

The PC-RB yields a high precision, however it still suffers
from a low coverage resulting in a poor recall. We found
that 25.8 percent of PCs in our dataset do not have accompa-
nied captions. These PCs would remain undetected using
the PC-RB method. To get around this issue, we propose a
machine learning based (PC-ML) method that directly
detects the presence of PC contents (instead of their cap-
tions). Our motivation originated from the observation that
most PCs are written in a sparse manner, resulting in sparse
regions (we call them sparse boxes) in documents. Fig. 6
shows an example of sparse boxes on a sample scientific
article page. The PC-ML first detects and extracts these
sparse boxes, then classifies each box whether it is a PC box
or not. A PC box is a sparse box that contains at least 80 per-
cent content (in terms of number of lines) of a PC. The fol-
lowing sections explain how sparse boxes are identified, the
feature sets, and the classification models. The output of
the PC-ML is a tuples of hstart; endi line numbers of the
detected PC.

Sparse box extraction. We define a sparse box as a set of at
least N consecutive sparse lines. A sparse line is a line that
meets the following criteria: 1) the ratio of the number of
non-space characters to the average number of characters
per line is less than the threshold M, 2) not footers/headers,
and 3) enclosed by sparse lines. We found that N = 4 and M
= 0.8 work best for our dataset. The right sub-figure of Fig. 6
illustrates extracted text lines which are sparse lines

(highlighted in yellow), and non-sparse lines (highlighted
in white). Each set of consecutive sparse lines composes a
sparse box as illustrated in the left sub-figure. The efficacy
of the sparse box extraction method is evaluated in two per-
spectives: coverage and accuracy. Given a set of sparse boxes
B extracted from a document d, the coverage is defined as
following:

Coverage ¼ ljl 2 b; b 2 B; l is positivef gj j
fljl 2 b; l is positivegj j

: (1)

The line-wise recall is utilized to quantify how much PC
content can be captured within each extracted sparse box.
Our sparse box extraction method yields a coverage of
92.99 percent. Among all the sparse boxes detected in our
DS2 dataset (See Section 4.4.1), we found 237 (out of 275
(86.18 percent) actual PCs) PC boxes.

The accuracy evaluation quantifies how precisely each PC
is cut into a sparse box. For each PC box, we measure both
the upper boundary delta (the start line number of the
actual PC minus the start line number of the sparse box)
and lower boundary delta (the end line number of the actual
PC minus the end line number of the sparse box). 76.37 and
70.89 percent of PC boxes have upper and lower line deltas
of #2 lines respectively, suggesting that most PC boxes are
fully and precisely extracted by the proposed sparse box
cutting technique.

Feature selection for PC box classification. A set of 47 fea-
tures (listed in Table 2) is extracted from each sparse box.
These features are classified into 4 groups: font-style based
(FS), context based (CX), content based (CN), and structure
based (ST). The FS features capture various font styles used
to compose PCs. The CX features detect the presence of PC
captions. The CN features capture the PC specific keywords
and coding styles. The ST features characterize the sparsity
of PCs and the symbols used.

Classification models. Each sparse box is classified whether
it is a PC box or not. We train 12 base machine learning clas-
sification algorithms with the features described in Table 2.
These algorithms include Logistic Model Trees (LMT), Multi-
nomial Logistic Regression (MLR), Repeated Incremental Prun-
ing to Produce Error Reduction (RIPPER), Linear Logistic
Regression (LLR), Support Vector Machine (SVM), Random For-
est (RF), C4.5 decision tree, REPTree, Decision Table (DT), Ran-
dom Tree (RT), Naive Bayes (NB), and Decision Stump (DS).

In addition to the base classifiers listed above, we also
combined them using standard ensemble techniques such
as uniform weighted majority voting (VOTE) and probability
averaging (PAVG) [19]. First, the 12 base classifiers are
tested with 10 percent held-out data from the training data
and ranked by their F1 scores. Then, the first 2, 3, . . . , 12
ranked classifiers in each ranked list are combined using
the ensemble methods. Note that other ensemble techni-
ques such as Adaboost, Bagging, and Rotation Forest were
also explored but overall the VOTE and PAVG methods
performed much better, agreeing with a prior empirical
study of ensemble classifications by Kittler et al. which
found that these two ensemble methods outperformed
others (i.e., multi-staging, product, maximum, median, and
minimum rules) on the identity verification and handwrit-
ten digit recognition tasks [19].

Fig. 6. Example of sparse regions (i.e., sparse boxes), taken from [20].
The left figure is an actual PDF page. The right figure illustrates the
extracted text.

TUAROB ETAL.: ALGORITHMSEER: A SYSTEM FOR EXTRACTING AND SEARCHING FOR ALGORITHMS IN SCHOLARLY BIG DATA 7



4.1.3 Combined Method (PC-CB)

Though the PC-ML method can capture PCs even though
they do not have accompanied captions, some PCs which are
not first captured in a sparse box would still remain unde-
tected. Mostly, such PCs are either written in a descriptive
manner (hence do not result in sparse regions in the docu-
ment), or figures (the text extractor cannot extract images). In
our dataset DS2 (See Section 4.4.1), 35 PCs (out of 275 actual
PCs) cannot be captured using the sparse box extraction.
However, 27 (out of 35) of these undetected PCs have accom-
panied captions and hence might still be detected using the
PC-RB method. We propose a combined method (PC-CB) of
the PC-RB and the PC-ML using a simple heuristic as follows:
STEP1 For a given document, run both PC-RB and PC-ML.

STEP2 For each PC box detected by PC-ML, if a PC cap-
tion detected by PC-RB is in proximity, then the PC box and
the caption are combined.

4.2 Detecting Algorithmic Procedures (APs)
An AP is used to represent a relatively simpler algorithm,
or describe an algorithm in a higher level, since it lacks the
power to precisely express complex computational opera-
tions such as nested loops, recursion, and functions. An
AP is usually composed in an order-listing style, with
descriptive wordings. Most APs usually have a sentence at
the beginning to introduce the algorithm enclosed within.
Such a sentence is referred to as an algorithmic procedure
indication sentence (e.g., To solve the subproblem, we

propose a pseudopolynomial dynamic programming

TABLE 2
Features for PC Box Classification Can Be Divided into Four Groups: Font Style Based (FS),

Context Based (CX), Content Based (CN), and Structure Based (ST)

Grp Feature Description

FS INDENTATION VARIANCE Variance of the positions of the first character in each line
FIRST 4CHARS INDENTATION VARIANCE Variance of the average of the positions of the first 4 characters
NUMDIFF FONTSTYLES # of different font styles. Ex. ’XXXX’ has 2 font styles.
NUM FONTSTYLE CHANGES # of char pairs whose font styles are different. Ex. ’XXXX’ has 3 font style

changes.
FRAC NUM FONTSTYLE CHANGES Fraction of number of font style changes to number of lines.

CX HAS CAPTIONNEARBY Has a caption near (within three upper/lower lines) the sparse box.
HAS PC CAPTIONNEARBY Whether there is a pseudo-code caption near the sparse box.
HAS PC NAMENEARBY Has is an algorithm name (e.g., ‘Algorithm ABC’) near the sparse box.

CN NUM PCWORDS # of PC keywords (e.g., forall, for, if, else, iftrue, endif, etc.)
FRAC PCWORDS TONUMWORDS Fraction of pseudo-code keywords to number of words.
FRAC PCWORDS TONUMLINES Fraction of pseudo-code keywords to number of lines.
NUMALGOWORDS # of algorithm keywords (e.g., algorithm, pseudo-code,etc.)
FRAC ALGOWORDS TONUMWORDS Fraction of # of algorithm keywords to # of words
FRAC NUMALGOWORDS TONUMLINES Fraction of # of algorithm keywords to # of lines
NUM LINES BEGINWITH PCWORDS # of lines beginning with a pseudo-code keyword
FRAC NLINES BEG. W/ PCWORDS TO NLINES Fraction of # of lines beginning with a PC word to # of lines
NUM FUNCTIONS # of functions. Ex. Scan(f, x)
FRACTIONNUM FUNCTIONS TONUMLINES Fraction of # of functions to # of lines

ST NUMCHARS # of characters
FRAC NUMCHARS TONUMLINES Fraction of # of characters to # of lines
NUM SYMBOLS # of symbols
FRAC NUM SYMBOLS TONUMCHARS Fraction of # of symbols to # of characters
NUMALPHABETS # of alphabets
FRAC NUMALPHABETS TO NUMCHARS Fraction of # of alphabets to # of characters
NUMDIGITS # of digits
FRAC NUMDIGITS TO NUMCHARS Fraction of # of digits to # of characters
NUMALPHANUMERS # of alphanumeric characters
FRAC NUMALPHANUMBERS TONUMCHARS Fraction of # of alphanumeric characters to # of characters
NUMNON-ALPHANUMBERS # of non-alphanumeric characters
FRAC NON-ALPHANUMBERS TONUMCHARS Fraction of # of non-alphanumeric characters to # of characters
NUMGREEKCHARS # of Greek characters
FRAC NUMGREEK TONUMCHARS Fraction of # of Greek characters to # of characters
NUMARROWS # of arrow symbols
FRAC NUMARROWS TONUMCHARS Fraction of # of arrow characters to # of all characters
NUMMATHOPS # of math operators (e.g., þ;%;S;&; etc.)
FRAC NUMMATHOPS TONUMCHARS Fraction of # of math operators to # of characters
NUM 1-CHARWORDS # of 1-character words (e.g., ‘x xx x’ has 2 1-character words)
FRAC NUM 1-CHARWORDS TONUMLINES Fraction of # of single-char words to # of lines
FRAC NUM 1-CHAR LINES TO NUMLINES Fraction of # of 1-character lines to # of all lines
NUM IJK # of characters ‘i’, ’j’, and ‘k’
FRAC NUM IJK TONUMLINES Fraction of # of ‘i’, ’j’, ‘k’ characters to # of lines
NUMCODING SYMBOLS # of coding symbols (e.g., {,},[,],@,/)
FRAC NUMCODING TONUMLINES Fraction of # of coding symbols to # of lines
NUM LINES ENDWITHDOT Number of lines ending with ‘.’
FRAC NUMLINES EWDOT TONUMLINES Fraction of # of lines ending with ‘.’ to # of lines
NUM LINES BEGINWITH NUMBER # of lines beginning with a number
FRAC LINES BWNUMBER TONUMLINES Fraction of # of lines beginning with anumber to # of lines

8 IEEE TRANSACTIONS ON BIG DATA, VOL. 2, NO. 1, JANUARY-MARCH 2016



algorithm as follows:). Our AP detection approaches
aim to detect such indication sentences, and use them to
locate the accompanied APs.

Two methods are developed for detecting AP indication
sentences: a rule based method (AP-RB) and a machine
learning based method (AP-ML). Both methods rely on the
sentences correctly extracted from the document. However,
most scholarly documents are multi-columned and contain
document elements such as tables and diagrams. It is often
seen that the extracted text may contain garbage/noisy lines
and broken sentences. Hence, before extracting sentences,
garbage text fragments are removed from the document.
We also develop a heuristic that stitches up an incomplete
sentence which are broken into multiple lines. After the
extracted text is cleaned and broken sentences are mended,
sentences are extracted using LingPipe14 sentence extractor.

4.2.1 Rule Based Method (AP-RB)

Often, AP indication sentences exhibit certain common
properties:

! The sentences usually end with follows:, steps:, algo-
rithm:, follows:, following:, follows., steps:, below:.

! The sentences usually contain at least an algorithm
keyword.

We create a set of regular expressions to capture senten-
ces according to the rules above.

4.2.2 Machine Learning Based Method (AP-ML)

Unfortunately, some AP indication sentences do not con-
form to the rules described in Section 4.2.1. Therefore, an

alternative approach based on machine learning is pro-
posed to directly learn to capture the characteristics of APs.

Feature selection for AP detection. A set of 26 features is
extracted from each sentence. The features can be catego-
rized into two groups: content based features (CN) and con-
text based features (CX). The content based features are
extracted from the sentence itself, and are designed to learn
the characteristics of the AP indication sentences. The con-
text based features are extracted from the 28 lines below the
line where the sentence appears. The number 28 is the aver-
age number of lines of APs observed in our data set. Table 3
lists all the features.

Classification models. We use the same set of base classi-
fiers and ensemble methods as described in Section 4.1.2.

4.3 Linking Algorithm Representations
A simple heuristic is implemented to link algorithm repre-
sentations referring to the same algorithm together. Specifi-
cally, two algorithm representations are linked if:

1) They represent the same algorithm. For example, an
AP may be used to provide more detail to a PC.

2) They are part of the same algorithm. For example, an
algorithm may be broken into sub-parts, each is rep-
resented using a different algorithm representation.

It is assumed that there can be at most one algorithm con-
tained in a document section. Our linking algorithm first
assigns each algorithm representation to a section. Algo-
rithm representations which fall into the same section are
then linked. We are aware that this assumption needs statis-
tical justification which we leave for future investigation;
hence, this section would focus on the general idea of the
algorithm linking method, rather than the strict assumption.
We first briefly discuss how a document is segmented into

TABLE 3
Features for Detecting AP Indication Sentences Can Be Divided into Two Groups: Content Based (CN) and Context Based (CX)

Grp Feature Description

CN MATCHAP SENTENCE RULES Wether it is an AP indication sentence
HAS ALGOWORDS Wether it contains an algorithm keyword (e.g., ’algorithm’, ’procedure’, etc.)
HAS STEPWORDS Wether it contains a stepwise indication word (e.g., ‘followings’, ‘steps’, etc.)
ENDWITH COLON Whether it ends with a colon (i.e., ‘:’)
ENDWITH STEPWORDS Whether it ends with a stepwise keyword
ENDWITH LISTING PLURAL Whether it ends with plural list-indicating noun (e.g., ‘properties’, ‘results’, etc.)
IS CAPTION Wether it is a caption
NUMWORDS Number of words
IS NUMWORDS LESSTHAN T Whether the number of words is less than the threshold T (we use T ¼ 35)

CX NUM STEP SENTENCES # of sentences starting with a bullet point, a listing number/alphabet, or the word
‘Step’

NUM PC KEYWORDS # of pseudo-code keywords (e.g., forall,for,if,else,iffalse,iftrue,endif,etc.)
FRAC PCWORDS TONUMLINES Fraction of # of pseudo-code keywords to # of lines
NUMALGOWORDS Number of algorithm keywords (e.g., algorithm,pseudo-code,procedure,etc.)
FRAC ALGOWORDSNUMWORDS Fraction of number of algorithm keywords to # of words
NUM SYMBOLS Number of symbols
FRAC SYMBOLS TONUMLINES Fraction of number of symbols to number of lines
NUMGREEKCHARS Number of Greek characters
FRAC GREEKCHARS TONUMCHARS Fraction of number of Greek characters to # of lines
NUM 1-CHARWORDS Number of single-character words (e.g., ‘x xx x’ has 2 single-character words)
FRAC 1-CHARWORDS NUMLINES Fraction of number of single-char words to # of lines
NUMMATHOPS Number of math operators (e.g., +,-, S, etc.)
FRAC NUMMATHOPS NUMCHARS Fraction of number of math operators to # of lines
NUMNON-ALPHANUMBERS Number of non-alphanumeric characters
FRAC N-ALPHANUMBERS Fraction of number of non-alphanumeric characters to number of lines

14. http://alias-i.com/lingpipe/

TUAROB ETAL.: ALGORITHMSEER: A SYSTEM FOR EXTRACTING AND SEARCHING FOR ALGORITHMS IN SCHOLARLY BIG DATA 9



sections, then explain how algorithm representations are
assigned to corresponding sections and linked.

4.3.1 Identifying Sections in Scholarly Documents

A machine learning based approach is used to identify sec-
tion boundaries by detecting section headers. The algorithm
was first proposed by Tuarob et al. [31]. Most scholarly
documents have following common properties:

1) Each section has a section header, usually with a sec-
tion number.

2) Section headers usually have distinct font styles from
the surrounding content.

3) A majority of sections are common sections such as
Abstract, Introduction, Background, Conclusions, and
References.

From such properties, 22 features are identified to char-
acterize section headers in scholarly documents. The fea-
tures can be divided into three groups: pattern based (PAT),
style based (STY), and structure based (STR). The PAT fea-
tures are used for capturing section headers which are stan-
dard sections or section headers with section numbers. The
STY features filter out lines that look like section headers
but are in fact fragments of sentences, lines in tables of con-
tents, or textual fragments from tables/diagrams. The STR
features concern the locations of the section headers. For
example, lines that occur between the Abstract/Introduction
and the References sections are better candidates than those
outside this region. These features also filter out footers and
headers.

A number of data balancing techniques and classification
algorithms were considered, including weighted balancing,
random under-sampling, random over-sampling, resam-
pling, and the Synthetic Minority Oversampling TEchnique
(SMOTE) [10]. The classifiers are tested on 117 PDF schol-
arly documents randomly selected from CiteseerX reposi-
tory, containing various types of scholarly documents
namely conference papers, journals, theses, and academic
articles, using document-wise 10 fold cross validation.
Table 4 lists notable results of the classification with differ-
ent combinations of classifiers and data balancing strategies.
The bold numbers are the highest among each classifier. The
figure withy represents the best performance. We found that
the Random Forest classification algorithm [9] with 100 trees
using a variant of weighting balancing techniques (where
minority class instances are given higher weight), achieved

the best classification performance with 93.74 percent Preci-
sion, 91.06 percent Recall, and 92.38 percent F1. Such a clas-
sification model is used in this paper to identify sections in
scholarly documents.

4.3.2 Using Document Sections for Linking Algorithm
Representations

Assigning an AP to a section is easy, since it is part of the
running text. Unlike APs, PCs are normally located sepa-
rately from the running text; hence, they could appear out-
side the sections that discuss them. To get around this
problem, a PC is mapped to the section that contains the
largest number of reference sentences that refer to it. Once
each algorithm representation is assigned to a section, algo-
rithm representations which are mapped to the same sec-
tions are then linked.

4.4 Experiments on Algorithm Identification
The experiments are divided into three parts: PC detection,
AP detection, and algorithm representation linking. All the
experiments are performed on a Windows machine with an
Intel Core i7-2600 CPU (3.4 GHz) and 16 GB of ram. We use
the LibSVM15 implementation for SVM, and Weka16 imple-
mentation for other classification algorithms.

4.4.1 Datasets

Two datasets are used in the algorithm detection tasks:
[DS1] consists of 100 scholarly documents manually

selected from the CiteseerX repository to represent diverse
types of scholarly articles and algorithm representations.
This data set is used to construct rules and regular expres-
sions for our rule based methods, and determine feature
sets for our machine learning based methods.

[DS2] consists of 258 scholarly documents randomly
selected from the CiteseerX repository. This data set consists
of 275 PCs, 86 APs, and 282 unique algorithms. We use this
data set to evaluate our proposed algorithm detection
methods.

4.4.2 Evaluation of PC Detection

10-fold document-wise cross validation is used to validate
the three variants of PC detection approaches on the dataset
DS2. Standard precision, recall, and F1 are used for evaluat-
ing the performance. Let Tg be the set of all PCs, Tr be the
set of detected PCs, so that the correctly detected PCs are
Tg

T
Tr. These metrics are defined as follows:

precision ¼
jTg

T
Trj

jTrj
; recall ¼

jTg
T
Trj

jTgj
; F1 ¼

2 ' precision ' recall
precisionþ recall

:

(2)

Table 5 lists notable results of our proposed methods
against the PC detection baseline (PC-BL). As expected, our
rule-based method (PC-RB) yields high precision with a
cost of low recall. Using machine learning techniques (PC-
ML), the overall performance (in terms of F1) is improved.
The combined method (PC-CB) of PC-RB and a majority

TABLE 4
Notable Classification Results

Classifier Balancing Precision Recall F-measure ATT (s)

RandomForest none 0.9374 0.8912 0.9137 66.47
RandomForest WEIGHT 0.9374 0.9106 0.9238y 52.96
RandomForest ROver 0.9403y 0.9002 0.9198 106.68
RandomForest RUnder 0.6248 0.9500 0.7538 2.58
NaiveBayes none 0.4420 0.8744 0.5872 1.19
NaiveBayes ReS 0.1581 0.9629y 0.2717 1.01
SVM none 0.8570 0.8828 0.8697 6.74
SVM RUnder 0.5861 0.9304 0.7192 5.68
RIPPER none 0.9118 0.8623 0.8863 62.39
RIPPER RUnder 0.4931 0.9343 0.6455 1.75

ATT denotes Average Training Time per fold.

15. http://www.csie.ntu.edu.tw/ cjlin/libsvm/
16. http://www.cs.waikato.ac.nz/ml/weka/

10 IEEE TRANSACTIONS ON BIG DATA, VOL. 2, NO. 1, JANUARY-MARCH 2016



voting of LMT, Random Forest, and RIPPER base classifiers
performs the best in terms of F1, outperforming the state-of-
the-art baseline by 28.33 percent (in terms of F1). It is
noticed that base classifiers which inherit from the rule/tree
based families perform well in this task as opposed to those
from the network and function based families. This is
because the features are rule-extracted in nature which
result in a fixed feature space (as opposed to dynamic fea-
tures, such as word features, that grow with the corpus
size).

It is worth noting that the ensemble methods result in
greater improvement compared to only using individual
experts. Fig. 7 compares the performances (in terms of F1)
between the ensemble methods and the best base classifiers
for PC-ML (i.e., with MLR classifier) and PC-CB (i.e., with
LMT classifier). The X-axis denotes the first k base classifiers
used in each ensemble method. Note that, the fact that the
combination of LMT, Random Forest, and RIPPER accumula-
tively yields the best result means that each individual
expert learns a different aspect of the data, and hence is able
to correct each other when making collective decisions. Not
surprisingly, these base classifiers are inherited from differ-
ent classes of machine learning algorithms (function, tree,
and rule based respectively). We conclude that the ensem-
ble methods are useful for these specific problems, when
the best base classifiers are combined. However, the perfor-
mance of the ensemble methods can decrease as the number
of base classifiers grows. This might be because bad base
classifiers can impede the collective decisions of the good
ones. Unlike traditional document classification techniques

where the feature space can grow large as the number of
documents increases (to handle the pattern and lexical
diversity, etc.), all of our proposed methods scale well with
document growth as the feature size is fixed.

4.4.3 Evaluation of AP Detection

Each sentence in the dataset DS2 is labelled whether it is an
AP indication sentence or not. The dataset DS2 contains 86
AP indication sentences and 74,278 non-indication senten-
ces. 10-fold document-wise cross validation is used to eval-
uate our AP detection methods, using standard precision,
recall, and F1 defined in Section 4.4.2 as the evaluation met-
rics. Table 5 lists notable results.

The best performance in terms of F1 is achieved by the
ensemble machine learning based method (AP-ML) with
the probability averaging of NB, LMT, LLR, MLR, and RT
base classifiers, yielding 69.56 percent precision, 49.00 per-
cent recall, and 57.50 percent F1. Fig. 8 compares the per-
formances of the ensemble methods against the best base
classifier (i.e., LMT classifier). The X-axis denotes the first k
base classifiers used in each ensemble method. Similar to
the analysis of the ensemble methods used in the PC detec-
tion, the ensemble of diverse base classifiers from distinct
machine learning families allows individual experts to learn
different aspects of the data, resulting in better collective
decisions. The classification performance increases up until
five base classifiers, then begins to decrease as addition of
bad base classifiers could impede the ensemble decisions.

4.4.4 Evaluation on Algorithm Representation Linking

We evaluate our linking strategy on data set DS2 in terms of
accuracy, defined as:

Accuracy ¼ #AlgorithmRepresentationsCorrectlyGrouped

#AllAlgorithmRepresentations
:

We first identify all the PCs and APs from each document,
then link them into groups of unique algorithms. Our link-
ing algorithm achieves the accuracy of 85.15 percent.

5 ALGORITHM METADATA EXTRACTION

The conventional search engine methodology usually han-
dles textual documents. For an AP, corresponding textual
information could be the AP itself. However, detected PCs

TABLE 5
Precision, Recall, and F1 of the Best Classification Models (in
Terms of F1) Used for the Pseudo-Code (PC) and Algorithmic

Procedure (AP) Methods

Method Model Pr% Re% F1%

PC-BL Baseline 70.46 35.96 47.62
PC-RB RuleBased (Improved Baseline) 87.12 44.57 58.97
PC-ML !LMT-RF-RIPPER-MLR 85.31 57.04 68.37
PC-CB !LMT-RF-RIPPER 87.37 67.17 75.95
AP-RB RuleBased 64.24 28.00 39.00
AP-ML +NB-LMT-LLR-MLR-RT 69.56 49.00 57.50

(‘!’ denotes Majority Voting (VOTE), ‘+’ denotes Probability Averaging
(PAVG)).

Fig. 7. Comparison of the ensemble methods against the best base clas-
sifiers in PC-ML and PC-CB.

Fig. 8. Comparison of the ensemble methods against the best base clas-
sifier in AP-ML.

TUAROB ETAL.: ALGORITHMSEER: A SYSTEM FOR EXTRACTING AND SEARCHING FOR ALGORITHMS IN SCHOLARLY BIG DATA 11



have no or little corresponding text. Furthermore, most PDF-
to-Text tools are not designed for handling mathematical-
like contents such as equations and pseudo-codes, due to
complex compositions of symbols, font styles, and untypical
decorations. This section describes a set of techniques for
generating textualmetadata for PCs.

For algorithms represented by PCs, textual metadata
could include their captions and reference sentences. Fig. 9
illustrates the textual metadata relevant to the given PC that
can be directly extracted, including the PC’s caption text
and its reference sentences.

Adequate and meaningful textual metadata allows effec-
tive retrieval. However, not all PCs have as rich textual

metadata as the example in Fig. 9. From here on, we refer to
the combination of caption text and reference sentences of a
PC as its primary textual metadata. Table 6 breaks down the
statistics of the primary textual metadata of the collection of
6,285 PCs extracted from randomly sampled 20,567 schol-
arly documents (Refer to Section 5.3). This data set is also
used to validate the algorithm metadata extraction method-
ology in this section. Fig. 10 plots the distribution of words
of the primary textual metadata records. From Table 6, the
average number of words in each PC’s primary textual
metadata is only 48. Even worse, according to Fig. 10,
roughly 50 percent of the extracted PCs have only 20 or
fewer words in their primary textual metadata. These algo-
rithms with poor textual metadata would likely be missed
when being searched.

Recently, Bhatia and Mitra have proposed an algorithm
for generating comprehensive descriptions for document
elements (e.g., tables, figures, algorithms, etc.) [5]. This
comprehensive description is referred to as a synopsis.
These synopses have been shown to be useful for retrieval
of these document elements, as they provide relevant tex-
tual information that can be indexed and searched. For a
given document element, the algorithm operates in a
supervise fashion that includes three main steps: 1) it
retrieves the caption and reference sentences from the doc-
ument, 2) it extracts representative features and trains a
classifier, and 3) it classifies the remaining sentences in the
document whether they are relevant or irrelevant to the
given document element. The relevant sentences are then
put together into a synopsis. Interested readers are sug-
gested to consult [5] for further detail about this synopsis
generation algorithm. In this paper, this synopsis genera-
tion technique is used to generate additional textual infor-
mation for each PC.

However, the main drawback of the synopsis generation
method is that it requires the document element to have a
caption and at least a reference sentence. In our dataset, we
find that 25.8 percent of the extracted PCs do not have
accompanied captions. These PCs would not only suffer
from poor primary textual metadata, but also from not hav-
ing a synopsis as an additional textual information.
Recently, Tuarob et al. proposed a set of methods that auto-
matically annotates or enriches metadata records with poor
textual information [32], [33]. The algorithm works well
when these two criterion are met:

Fig. 9. Sample of primary textual metadata (i.e., caption text and refer-
ence sentences) associated with Algorithm INIT-PDA, represented by a
pseudo-code in [36].

TABLE 6
Statistics about Primary Textual Metadata
of the Extracted 6,285 Pseudo-Codes

Total # of Algorithms 6,285
Total # of Words in Caption Text 96,526
Total # of Words in Reference Sentences 605,606
Total # of Words in Primary Textual Metadata 304,233
Total # of Sentences in Primary Metadata 58,661
Avg # of Words in Caption Text 15.36
Avg # of Words in Reference Sentences 96.36
Avg # of Words in Primary Textual Metadata 48.41
Avg # of Sentences in Primary Metadata 9.33

Fig. 10. Distribution of number of words in primary metadata of the
extracted pseudo-codes.

12 IEEE TRANSACTIONS ON BIG DATA, VOL. 2, NO. 1, JANUARY-MARCH 2016



1) Each metadata record must have a main meaningful
textual content. The main textual component allows
the algorithm to find similar documents in the train-
ing collection to generate annotation.

2) Each metadata record that needs annotated must
have some relationship with the collection of well-
annotated metadata. This will guarantee that the
annotation will be relevant since the it is modeled
from the training data with similar topics.

We examine sample PCs with poor primary textual meta-
data and found that they have associated small piece of text
composed with technical meaningful keywords. For PCs
without captions, this would be the function names and sur-
rounding sentences. This characteristic meets the first crite-
ria above. Furthermore, recent studies show that algorithms
are not normally composed from scratch, but are rather rele-
vant to each other. Some algorithms inherit properties from
existing ones [30]. Likewise, some algorithms are designed
to solve similar sets of problems [29]. This also makes the
algorithm metadata meets the second criteria.

In this section, we explore the possibility of using the syn-
opsis generation [5] and the metadata annotation [33] meth-
ods to generate additional textual metadata for PCs. The
following sections first provide brief introductions to the
synopsis generation and metadata annotation algorithms,
then show how they can be applied to the problem at hand.

5.1 Algorithm Textual Metadata Extraction via
Document Element Summarization

Bhatia and Mitra have proposed an algorithm for automatic
retrieval of synopsis for a document element that has a cap-
tion and reference sentences [5]. We explore the possibility of
applying their document summarization technique on the
extracted algorithm metadata in order to provide additional
meaningful textual information for each algorithm. A docu-
ment element is defined as an entity in the document that is
not part of the running text and representing complementary
information to the document. Examples of such document
elements include figures, tables, and algorithms. Since not
being part of the running text, a document element is usually
accompaniedwith a caption so that the content in the running
text can be used to refer to. While some authors compose tai-
lored and detailed captions for document elements, generally,
readers are assumed to have read the entire document in
order to make sense of the document element within. When
the caption is presented out of context as in a document-
element-search-engine result, it may not contain enough
information to help the end-user to understand what the con-
tent of the document element is. Consequently, a short
“synopsis” of this information presented along with the
document-element that helps end-users to examine the docu-
ment element would be useful. Having access to the synopsis
allows the end-user to quickly understand the content of the
document-element without having to download and read the
entire document as examining the synopsis takes a shorter
time than finding information about a document element by
downloading, opening and reading the file. Furthermore, it
may allow the end-user to examine more results than they
would otherwise. Pseudo-codes are another type of algorithm
representation typically used in scholarly documents to con-
dense and express algorithmic instructions. Typically,

pseudo-codes are treated as document elements. Like other
document elements, oftentimes, captions do not provide
much comprehensive information for their accompanied
pseudo-codes. Less textual information could impede effec-
tive retrieval of algorithms. Hence, obtaining more relevant
textual information could promote semantic relatedness
between user queries and the algorithms.

5.2 Automatic Algorithm Metadata Annotation via
Probabilistic Topic Modeling

In this section, we describe the high-level concept of the
topic modeling based metadata algorithm proposed in [33].
Interested readers are encouraged to consult the original
paper for details.

Fig. 11 illustrates a flow of the score propagation algo-
rithm on a simple example. In the example, we have a
document query for which the system will recommend
tags. Three documents in the source are annotated with
tags {water, seagull}, {seagull, soil, bird}, and
{bird, air} respectively. The algorithm proceeds as
follows:

STEP1 The document similarity score is computed between
the document query and each document in the
source.

STEP2 The scores then are propagated to the tags in each
source document.The scores are combined if a tag
receives multiple scores. In the example, tags sea-

gull and bird obtain multiple scores (0.7+0.5) and
(0.5+0.3) respectively.

STEP3 The tags are ranked by the scores. Then the top K

tags are returned as suggested tags.
Here we use the topical similarity to measure the docu-

ment similarity, as suggested by Tuarob et al. [33]. We use
Stanford Topic Modeling Toolbox17 with the collapsed vari-
ational Bayes approximation [2] to identify topics in the
source documents. For each document, we generate uni-
grams, bi-grams, and tri-grams, and combine them to repre-
sent the textual content of the document. The algorithm
takes two input parameters: the number of topics to be

Fig. 11. A high-level illustration of the metadata annotation algorithm pro-
posed by [33].

17. http://nlp.stanford.edu/software/tmt/tmt-0.4/

TUAROB ETAL.: ALGORITHMSEER: A SYSTEM FOR EXTRACTING AND SEARCHING FOR ALGORITHMS IN SCHOLARLY BIG DATA 13



identified and the maximum number of the training itera-
tions. Finally, the inference method proposed by [2] is used
to assign a topic distribution to a given document.

Algorithm 1. A simple algorithm that transforms a col-
lection of documents with auxiliary textual metadata
(D0) into a collection of documents with tag-like meta-
data (D).

Input:D0 ¼ fd01; d02; . . . ; d0Ngwhere d0=hc; ai
Output: D ¼ fd1; d2; . . . ; dNgwhere d=hc; ei, T = Tag Library
1 initialization;
2 T = # ;
3 D = # ;
4 for each d’ 2 D’ do
5 hc; ai = d’;
6 a’ Clean(a);
7 tokens Tokenize(a’);
8 e RemoveDuplicates(tokens);
9 Add e to T;
10 Add hc; ei to D;
11 end
12 return D, T;

The metadata annotation algorithm was originally
designed to recommend tags. In order to allow the algo-
rithm to annotate textual metadata, we could first transform
the textual component into tags. Given a collection of docu-
ments with auxiliary textual metadata D0 ¼ fd01; d02; . . . ; d0Ng
where d0 2 D0 = hc; ai (c is the main textual part of the docu-
ment, and a is the associated auxiliary textual component),
we would like to transform D0 into D ¼ fd1; d2; . . . ; dNg
where d 2 D = hc; ei (c remains the main textual part of the
document, and e is the associated tags). This can be
achieved using Algorithm 1.

Algorithm 1 takes the collection of documents with auxil-
iary textual components (D0) as input and outputs the corre-
sponding collection of documents with tag-like metadata
(D) along with the tag library (T ). Loosely speaking, the
algorithm first cleans the auxiliary textual component by
removing invalid characters, removing stopwords, and
stemming, then treats each cleaned word as a tag. This
transformation allows us to apply the tag-based document
annotation algorithm on documents with auxiliary textual
components, such as psudo-codes and their primary textual
metadata.

5.3 Experiments on Algorithm Metadata Extraction
The data set used for evaluating and discussing the synop-
sis generation and metadata annotation comprises 6,285
PCs extracted from randomly sampled 20,567 scholarly
documents. The statistics of the dataset is shown in Table 6.

5.3.1 Generating Pseudo-Code Synopses

The synopsis generation technique is applied on the
extracted 6,285 PCs. The average number of words per each
generated synopsis is 190. The average number of words
per each overall textual metadata (synopsis+primary textual
metadata) has become 302, increasing by 170 percent. Fig. 12
plots the distribution of the sizes of combined textual meta-
data (in terms of number of words). The method fails to gen-
erate synopsis for 1,535 (24.42 percent) PCs. As expected,
these are mostly PCs without captions. This proportion also
matches with the proportion of PCs without captions
(25.8 percent) in the dataset DS2 (See Section 4.4.1).

Fig. 13 shows a sample generated synopsis correspond-
ing to Algorithm INIT-PDA in Fig. 9, represented by a PC in
[36]. We can see that this particular synopsis provides rele-
vant information to its corresponding PC that extends the
information provided by the caption and reference senten-
ces. Note that, the evaluation of the quality of synopsis gen-
eration for PCs is omitted since it was already presented in
[5] (on a different PC dataset). This dataset (PCs+synopses)
will be used to evaluate the metadata annotation algorithm
in the next section.

5.3.2 Automatic Algorithm Metadata Annotation

Synopses provide additional meaningful textual informa-
tion to each PC; however, the PCs whose synopses cannot
be generated would remain poorly annotated. Recently,
Tuarob et al. proposed a set of methods for automatic anno-
tation of tag-like metadata via transferring topical knowl-
edge from the well-annotated corpus [32], including Term
Frequency-Inverse Document Frequency (TFIDF) based and
Topic Modeling (TM) based document annotation algo-
rithms, and validated these proposed algorithms against
the baseline Keyphrase Extraction Algorithm (KEA) [25].

2,000 PC metadata records with rich synopses are ran-
domly selected for our experiments using document-wise

Fig. 12. Distribution of number words in primary and synopsis metadata
(combined).

Fig. 13. Sample extracted synopsis corresponding to Algorithm INIT-
PDA in Fig. 9, represented by a pseudo-code in [36].

14 IEEE TRANSACTIONS ON BIG DATA, VOL. 2, NO. 1, JANUARY-MARCH 2016



10 fold cross validation to evaluate the TFIDF, TM, and KEA
metadata annotation methods. The word prediction evalua-
tion protocol is carried out, where synopses are removed
from the test documents, so that a system is evaluated based
on how well it can predict the missing words in the actual
synopses. Standard precision, recall, and F1 are used as
evaluation metrics. The TM algorithm is trained with 300
topics and 3,000 iterations. Fig. 14 plots the precision, recall,
F1, and precision-versus-recall at K (up to 300). From the
results, while it is apparent that the TM algorithm outper-
forms the other two, the performance on the precision are
not significantly different across the three methods. The
KEA algorithm has an increasing recall until aroundK = 30,
where it starts to remain steady, while both the TFIDF and
TM algorithms continue to suggest relevant keywords
(hence their recall rates continue to increase). According to
Fig. 14c, the diminishing returns (i.e., the peaks) in F1 of the
TFIDF, TM, and KEA algorithms start to appear at K = 96,
109, and 26 respectively. This suggests that the TFIDF and
TM algorithms start to be less effective after roughly 100 rec-
ommended terms onwards. The number is relatively
smaller for the KEA algorithm.

Fig. 15 shows sample annotation of the three algorithms
on the algorithm metadata of “Algorithm 3.44 Fixed-base comb
method for point multiplication” that appears in [13]. The top
left part of the figure shows the actual PC. The top right part
illustrates the partial actual synopsis. The bottom part of the
figure shows the top 30 terms recommended by the three
algorithms which aim to predict the actual synopsis text.
Note that these terms are stemmed as part of the preprocess-
ing. The red bold terms are the correctly predicted ones.

In this particular example, the TM algorithm seems to be
most effective since it can correctly predict 27/30 words. The
KEA algorithm seems to recommend more meaningful
terms; however, most of them are incorrectly predicted.
Note that, since the tag prediction protocol used for the eval-
uation measures how well an annotator guesses the omitted
text, it is not necessary the case that incorrectly predicted

Fig. 14. Precision, Recall, F1, and Precision versus Recall of the TF-IDF,
TM, KEA (baseline) algorithms on the Algorithm textual metadata.

Fig. 15. Sample top 30 suggested words by TFIDF, TM, and KEA (Baseline) algorithms on the metadata record of Algorithm 3.44 mentioned in [13].

Fig. 16. Screenshot showing results for the query “ shortest path” . Along
with search results, associated metadata is also shown to the user.

TUAROB ETAL.: ALGORITHMSEER: A SYSTEM FOR EXTRACTING AND SEARCHING FOR ALGORITHMS IN SCHOLARLY BIG DATA 15



terms are not relevant. They just do not appear in the actual
synopsis. The TFIDF algorithm performs better than the
KEA algorithm, but is not as effective as the TM algorithm.

6 INDEXING AND SEARCHING FOR ALGORITHMS

All the extracted algorithms and their associated textual
metadata are then indexed using SOLR18, which then makes
the algorithms searchable. The proposed system provides a
free text based query interface to the user. The user interface
is implemented using SeerSuite and extends CiteSeerX’s
query interface. The results for a given query are presented
to the user as a ranked list of algorithms along with the asso-
ciated metadata. A TF-IDF based cosine similarity is used to
rank search results.

The algorithms are presented to the user in decreasing
order of their scores. Experiments comparing the perfor-
mance of our proposed system with other state-of-the-art
search engine systems have shown superiority of our
approach in terms of precision and ranking performance.
We selected a set of 20 popular algorithms as test queries
and tested them with our proposed system, Google Scholar
and Google Web Search. A returned result page was consid-
ered as relevant if it contained a valid algorithm/pseudo-
code. The relevance judgments were provided by two
human evaluators not associated with the project. Our pro-
posed system achieves a precision of 81 percent at top 10
ranks as compared to 41 and 44 percent achieved by Google
Web Search and Google Scholar, respectively.

Fig. 16 shows the screenshot of the result page for the query
shortest path. The top 10 algorithms for the query, along with
their associated metadata are presented to the user. Note that
the results returned to the user provide a good coverage of a
variety of shortest path algorithms such as the heuristic algo-
rithm for shortest path, the Berge shortest path algorithm, in
addition to the standard shortest path algorithm. The algo-
rithm caption is presented in bold and clicking on it directly
takes the user to the PDF page of the related document in
which the algorithm is present. This is illustrated in Fig. 17.

Note that, though the indexing and searching methodol-
ogy presented in this section has been successfully employed
on general text-based document retrieval tasks, we are aware
that searching for algorithms can be much more sophisti-
cated, needing specialized searching capability that narrows
down the set of desired algorithms. Hence, themain purpose

of this section is to illustrate an initial prototype search sys-
tem that makes use of the extracted textual metadata of
pseudo-codes. Extracting and utilizing algorithm-specific
metadata will be explored as the futureworks.

7 CONCLUSIONS AND FUTURE WORK

Algorithms play an important part in solving research prob-
lems. Scientific publications host a tremendous amount of
such high-quality algorithms developed by professional
researchers. In digital libraries, being able to extract and cat-
alog these algorithms would introduce a number of exciting
applications including algorithm searching, discovering,
and analyzing. We discussed the prototype of AlgorithmSeer,
a search system for algorithms in large scale scholarly docu-
ments, along with providing an illustration of the actual
demo system. Specifically, we proposed a set of scalable
machine learning based methods to detect algorithms in
scholarly documents, we discussed using the synopsis gen-
eration and document annotation methods to extract textual
metadata for pseudo-codes, and finally we explained how
algorithms are indexed and made searchable. Future work
would be to further explore the semantic analysis of algo-
rithms, their trends, and how algorithms influence each
other over time. Such analyses would give rise to multiple
applications that could improve algorithm search.

ACKNOWLEDGMENTS

We gratefully acknowledge partial support from the
National Science Foundation. Suppawong Tuarob is the cor-
responding author. This manuscript is an extension of the
authors’ earlier work presented at WWW 2010 [6], SUITE
2011 [7], and ICDAR 2013 [28].

REFERENCES

[1] S. Guha, N. Koudas, “Approximating a data stream for querying
and estimation: Algorithms and performance evaluation,” in Proc.
18th Int. Conf. Data Eng., 2002, pp. 567–576.

[2] A. Asuncion, M. Welling, P. Smyth, and Y. W. Teh, “On smooth-
ing and inference for topic models,” in Proc. 25th Conf. Uncertainty
Artif. Intell., 2009, pp. 27–34.

[3] J. B. Baker, A. P. Sexton, V. Sorge, and M. Suzuki, “Comparing
approaches to mathematical document analysis from PDF,” in
Proc. Int. Conf. Document Anal. Recog., 2011, pp. 463–467.

[4] S. Bhatia and P. Mitra, “Summarizing figures, tables, and algo-
rithms in scientific publications to augment search results,” ACM
Trans. Inf. Syst., vol. 30, no. 1, pp. 3:1–3:24, Mar. 2012.

[5] S. Bhatia and P. Mitra, “Summarizing figures, tables, and algo-
rithms in scientific publications to augment search results,” ACM
Trans. Inf. Syst., vol. 30, no. 1, pp. 3:1–3:24, Mar. 2012.

[6] S. Bhatia, P. Mitra, and C. L. Giles, “Finding algorithms in scientific
articles,” in Proc. 19th Int. Conf. WorldWideWeb, 2010, pp. 1061–1062.

[7] S. Bhatia, S. Tuarob, P. Mitra, and C. L. Giles, “An algorithm
search engine for software developers,” in Proc. 3rd Int. Workshop
Search-Driven Develop. Users, Infrastructure, Tools, Evaluation, 2011,
pp. 13–16.

[8] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent Dirichlet
allocation,” J. Mach. Learn. Res., vol. 3, pp. 993–1022, Mar. 2003.

[9] L. Breiman, “Random forest,”Mach. Learn., vol. 45, no. 1, pp. 5–32,
2001.

[10] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer,
“Smote: Synthetic minority over-sampling technique,” J. Artif. Int.
Res., vol. 6, no. 1, pp. 321–357, 2002.

[11] H.-H. Chen, L. Gou, X. Zhang, and C. L. Giles, “Collabseer: A
search engine for collaboration discovery,” in Proc. 11th Annu. Int.
ACM/IEEE Joint Conf. Digital libraries, 2011, pp. 231–240.

[12] P. Chiu, F. Chen, and L. Denoue, “Picture detection in document
page images,” in Proc. 10th ACM Symp. Document Eng., 2010,
pp. 211–214.

Fig. 17. Screenshots showing algorithm page displayed on clicking the
first result.

18. http://lucene.apache.org/solr/

16 IEEE TRANSACTIONS ON BIG DATA, VOL. 2, NO. 1, JANUARY-MARCH 2016



[13] D. Hankerson, S. Vanstone, and A. J. Menezes, Guide to Elliptic
Curve Cryptography. Berlin, Germany: Springer, 2004.

[14] T. Hassan, “Object-level document analysis of pdf files,” in Proc.
9th ACM Symp. Document Eng., 2009, pp. 47–55.

[15] M. A. Hearst, A. Divoli, H. Guturu, A. Ksikes, P. Nakov,
M. A. Wooldridge, and J. Ye, “BioText search engine: Beyond
abstract search,” Bioinformatics, vol. 23, no. 16, pp. 2196–2197, 2007.

[16] D. S. Hirschberg, “A linear space algorithm for computing maxi-
mal common subsequences,” Commun. ACM, vol. 18, no. 6,
pp. 341–343, 1975.

[17] S. Kataria, W. Browuer, P. Mitra, and C. L. Giles, “Automatic
extraction of data points and text blocks from two-dimensional
plots in digital documents,” in Proc. 23rd Nat. Conf. Artif. Intell. -
Volume 2, 2008, pp. 1169–1174.

[18] M. Khabsa, P. Treeratpituk, and C. L. Giles, “Ackseer: A reposi-
tory and search engine for automatically extracted acknowledg-
ments from digital libraries,” in Proc. 12th ACM/IEEE-CS Joint
Conf. Digital Libraries, 2012, pp. 185–194.

[19] J. Kittler, M. Hatef, R. P. W. Duin, and J. Matas, “On combining
classifiers,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 20, no. 3,
pp. 226–239, Mar. 1998.

[20] G. W. Klau, I. Ljubi!c, P. Mutzel, U. Pferschy, and R. Weiskircher,
The Fractional Prize-Collecting Steiner Tree Problem on Trees. Berlin,
Germany: Springer, 2003.

[21] J. M. Kleinberg and E. Tardos, Algorithm Design, volume 30, Read-
ing, MA, USA: Addison Wesley, 2005.

[22] H. Li, I. Councill, W.-C. Lee, and C. L. Giles, “Citeseerx: An archi-
tecture and web service design for an academic document search
engine,” in Proc. 15th Int. Conf. World Wide Web, 2006, pp. 883–884.

[23] Y. Liu, K. Bai, P. Mitra, and C. L. Giles, “Tableseer: Automatic
table metadata extraction and searching in digital libraries,” in
Proc. 7th ACM/IEEE-CS Joint Conf. Digital Libraries, 2007, pp. 91–
100.

[24] S. Mandal, S. P. Chowdhury, A. K. Das, and B. Chanda,
“Automated detection and segmentation of table of contents page
from document images,” in Proc. 12th Int. Conf. Image Anal. Pro-
cess., 2003, pp. 213–218.

[25] O. Medelyan and I. H. Witten, “Thesaurus based automatic key-
phrase indexing,” in Proc. 6th ACM/IEEE-CS Joint Conf. Digital
Libraries, 2006, pp. 296–297.

[26] P. Sojka and M. L!ı"ska, “The art of mathematics retrieval,” in Proc.
ACM Symp. Document Eng., 2011, pp. 57–60.

[27] J. G. Stewart and J. Callan, “Genre oriented summarization,” PhD
thesis, Carnegie Mellon Univ., Pittsburgh, PA, 2009.

[28] S. Tuarob, S. Bhatia, P. Mitra, and C. L. Giles, “Automatic detec-
tion of pseudocodes in scholarly documents using machine
learning,” in Proc. 12th Int. Conf. Document Anal. Recog., 2013,
pp. 738–742.

[29] S. Tuarob, P. Mitra, and C. L. Giles, “Improving algorithm search
using the algorithm co-citation network,” in Proc. 12th ACM/IEEE-
CS Joint Conf. Digital Libraries, 2012, pp. 277–280.

[30] S. Tuarob, P. Mitra, and C. L. Giles, “A classification scheme for
algorithm citation function in scholarly works,” in Proc. 13th
ACM/IEEE-CS Joint Conf. Digital Libraries, 2013, pp. 367–368.

[31] S. Tuarob, P. Mitra, and C. L. Giles, “A hybrid approach to dis-
cover semantic hierarchical sections in scholarly documents,” in
Proc. 13th Int. Conf. Document Anal. Recog. 2015, pp. 1081–1085.

[32] S. Tuarob, L. Pouchard, P. Mitra, and C. Giles, “A generalized
topic modeling approach for automatic document annotation,”
Int. J. Digital Libraries, vol. 16, no. 2, pp. 1–18, 2015.

[33] S. Tuarob, L. C. Pouchard, and C. L. Giles, “Automatic tag recom-
mendation for metadata annotation using probabilistic topic mod-
eling,” in Proc. 13th ACM/IEEE-CS Joint Conf. Digital Libraries,
2013, pp. 239–248.

[34] S. Tuarob and C. S. Tucker, “Fad or here to stay: Predicting prod-
uct market adoption and longevity using large scale, social media
data,” in Proc. ASME Int. Des. Eng. Technical Conf. Comput. Inform.
Eng. Conf., 2013, Available: http://proceedings.asmedigitalcollec-
tion.asme.org/proceeding.aspx?articleid=1830257

[35] S. Tuarob and C. S. Tucker, “Quantifying product favorability and
extracting notable product features using large scale social media
data,” J. Comput. Inform. Sci. Eng., vol. 15, no. 3, 2015, Available:
http://computingengineering.asmedigitalcollection.asme.org/
article.aspx?articleid=2090327

[36] S. Vutukury and J. J. Garcia-Luna-Aceves, “A simple approxima-
tion to minimum-delay routing,” SIGCOMM Comput. Commun.
Rev., vol. 29, no. 4, pp. 227–238, Aug. 1999.

[37] J. Wang, “Mean-variance analysis: A new document ranking the-
ory in information retrieval,” in Proc. 31th Eur. Conf. IR Res. Adv.
Inform. Retrieval, 2009, pp. 4–16.

[38] Z. Wu, S. Das, Z. Li, P. Mitra, and C. L. Giles, “Searching online
book documents and analyzing book citations,” in Proc. ACM
Symp. Document Eng., 2013, pp. 81–90.

[39] R. Zanibbi and D. Blostein, “Recognition and retrieval of mathe-
matical expressions,” Int. J. Document Anal. Recog., vol. 15, no. 4,
pp. 1–27, 2012.

Suppawong Tuarob received the BSE and MSE
degrees in computer science and engineering
from the University of Michigan-Ann Arbor, the
MS degree in industrial engineering from the
Pennsylvania State University, and the PhD
degree in computer science and engineering
from the Penn State University. He is currently a
faculty member at the Faculty of Information and
Communication Technology, Mahidol University,
Thailand. His research interests include data min-
ing in large scale scholarly, social media, and

healthcare domains, by applying multiple cutting-edge techniques such
as machine learning, topic modeling, sentiment analysis, etc. He is a
member of the IEEE.

Sumit Bhatia is a research scientist in the Wat-
son group, IBM Almaden Research Centre where
he is leading the development of cognitive ana-
lytic algorithms build on top of Watson’s Knowl-
edge Graph. Previously, he was a postdoctoral
researcher at Xerox PARC and as a part of
CiteSeerX project at Penn State, he developed a
search engine that searches for algorithms and
pseudo-codes in academic documents. His pri-
mary research interests include the fields of infor-
mation retrieval and text analytics and he has

published more than 25 papers in top journals and conferences. He was
the organizing chair of the Social Multimedia Data Mining Workshop, col-
located with ICDM 2014. He has served as a reviewer for multiple con-
ferences and journals including WWW, CIKM, TKDE, TOIS, WebDB,
JASIST, IJCAI, and AAAI.

Prasenjit Mitra received the PhD degree from
the Stanford University, Stanford, CA, in electrical
engineering in 2004. He is currently a principal
scientist at the Qatar Computing Research Insti-
tute, Doha, Qatar, and a professor in the College
of Information Sciences and Technology,
Pennsylvania State University, University Park.
He also serves on the graduate faculty of the
Department of Computer Sciences and
Engineering and is an affiliate faculty member of
the Department of Industrial and Manufacturing

Engineering there. His research interests include text mining, applied
machine learning, digital libraries, artificial intelligence, information
retrieval, database systems, social computing, visual analytics, and
health informatics. He has also worked as a Senior Member of the Tech-
nical Staff at Oracle Corporation and at DBWizards and Narus, Inc. He
is the author more than 100 articles in leading journals and peer-
reviewed conference proceedings. He is also a member of the ACM and
AAAI. He is a senior member of the IEEE.

C. Lee Giles is the David Reese professor at the
College of Information Sciences and Technology,
Pennsylvania State University. He is also profes-
sor of computer science and engineering, profes-
sor of supply chain and information systems, and
director of the Intelligent Systems Research Lab-
oratory. He directs the CiteSeerX project and
codirects the ChemXSeer project at Penn State.
He is a fellow of the IEEE.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

TUAROB ETAL.: ALGORITHMSEER: A SYSTEM FOR EXTRACTING AND SEARCHING FOR ALGORITHMS IN SCHOLARLY BIG DATA 17


