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Abstract

We introduce dynamic correlated topic models (DCTM)
for analyzing discrete data over time. This model is inspired
by the hierarchical Gaussian process latent variable mod-
els (GP-LVM). DCTM is essentially a non-linear dimen-
sion reduction technique which is capable of (1) detecting
topic evolution within a document corpus, (2) discovering
topic correlations between document corpora, (3) monitor-
ing topic and correlation trends dynamically. Unlike gener-
ative aspect models such like LDA, DCTM demonstrates a
much faster converging rate with better model fitting to the
data. We empirically assess our approach using 268,231
scientific documents, from the year 1988 to 2005. Posterior
inferences suggest that DCTM is useful for capturing topic
and correlation dynamics, as well as predicting their trends.

1 Introduction

Topic models have been powerful tools for statistical
analysis of text document. As an example, the latent Dirich-
let allocation (LDA) model [3] assumes that documents are
mixtures of topics, and topics are probability distribution
of words, where topics are shared by all documents. The
LDA model further assumes the exchangeability of words,
i.e., words from each document are drawn independently
from a mixture of multinomials. The model uses a Dirichlet
prior to draw the topic proportions, so that each document
may exhibit different topic distributions. LDA is capable of
modeling the semantic relations between words and topics,
and using multiple topics to describe document collections.

Since most topic models are generative models, scalabil-
ity is always an issue. With a large number of model param-
eters, the time for the models to converge is prohibitively
long. As one example, we applied LDA to over 700,000
full-text scientific documents. The program took more than

one week to finish for a 200-component model. Addition-
ally, these models inevitably suffer from the problem of
overfitting. As stated in [6], the variational inference for
parameter estimation in LDA is problematic, which failed
to achieve accurate inference for large data sets.

Moreover, since the LDA model treats words exchange-
ably, it is not suitable to capture the evolution of documents
over time. LDA is also unable to model the topic correla-
tions since it assumes topics are drawn from unique priors.
These two issues have been addressed by two extensions of
LDA, the dynamic topic models [1] and the correlated topic
models (CTM) [2], respectively. Nevertheless, neither of
these two models is immune to the aforementioned issues.

In this paper, we present the dynamic correlated topic
models (DCTM) for analyzing document topics over time.
Our model is inspired by the hierarchical Gaussian pro-
cess latent variable model (HGP-LVM) [5] which has been
used for human motion capture. DCTM maps the high-
dimensional observed space (words) into low-dimensional
latent space (topics), which models the dynamic topic evo-
lution within a corpus. A document corpus considered here
is either a conference proceedings or a collection of jour-
nal articles. Furthermore, the topic latent space is mapped
into a lower-dimensional space which captures the corre-
lations between document corpora. The dynamics of the
topics and correlations are captured by a temporal prior,
which constructs a hierarchy over the correlation latent
space. Unlike generative models, DCTM makes no assump-
tion on word exchangebility. All variables (words, topics
and correlations) exhibit dynamics at different time point.
By marginalizing out the parameters rather than the latent
variables, DCTM becomes a non-parametric model with a
much faster model convergency rate than the generative pro-
cesses. The posterior inference of topic and correlation dis-
tributions in DCTM is helpful for discovering the dynamic
changes of topic-specific word probabilities, and predicting
the evolutions of topics and correlations.
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2 Related Work

(Correlated Topic Models) An evident limitation of the
LDA model attributes to the fact that the topics generated
by the multinomial distribution are mutually exclusive. This
assumption can be seriously violated in practice. To address
this issue, Blei proposed a correlated topic model (CTM)
[2], in which the topic proportions are correlated through
logistic normal distribution. Mean-field variational methods
were employed for parameter estimation. The model was
empirically studied by 16,351 Science documents over 10
years. A 100-topic CTM shows superior over the traditional
LDA model in terms of the predictive performance.

(Dynamic Topic Models) For modeling topic trends
over time, Blei developed a time series model, or the dy-
namic topic models [1], to capture the time evolution of
topics in document collections. Rather than using a Dirich-
let prior, the dynamic topic model uses a more reasonable
Gaussian prior for the topic parameters β, which can cap-
ture the evolutions of the topics over the time slices. The
topic proportions are drawn from a logistic normal distri-
bution α whose mean values also follow a Gaussian distri-
bution. Two approximate inference methods are developed,
namely variational Kalman filtering and wavelet regression.
Experiments were performed on a large collection of 30,000
Science documents, ranging from 1881 to 1999.

3 Gaussian Process Latent Variable Models

For an introduction to Gaussian Processes, interested
readers are suggested to review [7]. In Gaussian process
latent variable models (GP-LVM), given a set of n observa-
tions Y ∈ R

n×d, it seeks a probabilistic approach to non-
linear dimension reduction by introducing the latent vari-
ables X ∈ R

n×q , where q � d, via a parameterized func-
tion

Yij = f(Xi;W) + εi, (1)

where Yij corresponds to the entry from the ith row and jth

column of the matrix Y, Xi is the ith row of X with the
noise εi, and W is the matrix of parameters to be estimated.
Traditional non-linear probabilistic approach seeks to max-
imize the likelihood of the model w.r.t. W by placing prior
distribution p(X) over the latent variables X. Nevertheless,
from the Bayesian perspective of view, the parameters W
are trivial and should be marginalized out. Therefore, in
GP-LVM, a Gaussian prior is placed on the parameters, i.e.,
p(W) =

∏
ij p(wij) =

∏
ij N(wij |0, 1). The marginal

likelihood can then be optimized w.r.t. the latent variables
(f being the latent functions)

p(Y|X) =
∫

p(Y|f)p(f |X)df . (2)

It has been shown [4] that this model leads to principal com-
ponent analysis (PCA) given a linear covariance function,
or a probabilistic non-linear latent variable model given a
non-linear covariance function. Consequently, the opti-
mized latent variables X are capable of reducing the origi-
nal data into a much lower representation.

4 Dynamic Correlated Topic Models

Assume that a set of n document corpora is given, i.e.,
D = {D1, ...Dn}, in which each corpus Di contains docu-
ments divided into several sets by their timestamps, e.g., the
year of publication for scientific documents. We assume
that all corpora in our setting share the same timescale,
denoted as [1, ..., T ], so that each Di = {Di,1, ...Di,T },
where Di,t denotes the set of documents appeared in corpus
Di at time t. We further assume that a controlled vocabu-
lary with size d is shared across all Di over time, so that
each Di,t can be represented into a matrix, Di,t ∈ R

Ni,t×d,
with Ni,t denoting the number of document in Di at time t.
Note that the value of Ni,t may vary for different i and t.

As in most topic models, we also assume that a set of q
underlying latent topics exist for each Di, where the num-
ber of topics remain the same over time. In order to model
the correlations of those topics over time, we need to first
discover the latent topics at time t for each corpus Di, and
specify a proper function for calculating the correlations be-
tween topics and corpora. Furthermore, we wish to capture
the dynamics of the latent spaces. In what follows, we ex-
tend the hierarchical Gaussian process latent variable model
(HGP-LVM) [5] for dynamic topic correlation detection.

We first represent each Di,t into a vector form Yi,t ∈ R
d

by aggregating the corresponding features in all instances

Y k
i,t =

∑Ni,t

j=1 (Dj,k
i,t − D:,k

i,t )

var(D:,k
i,t )

, for k = 1, ..., d, (3)

where Y k
i,t is the summarized value of feature k in Di,t,

Dj,k
i,t is the number of times feature k occurred in the j’s

document of Di,t, D:,k
i,t denotes the mean value of feature

k and the denominator computes the variance of feature k.
In this way we summarize the contributions of individual
documents at a certain time and leave only the relationship
between words and time.

In the context of textual documents, each Yi =
{Yi,1, ...,Yi,T } has the dimensionality of T ×d, with each
Y k

i,t corresponding to the latent position of word k at time
t in Di, i.e., the position that k appears most probably ac-
cording to the maximum likelihood estimation. To find q la-
tent topics given Y = {Y1, ...,Yn}, we define n sets of q-
dimensional latent variables, with Xi = {Xi,1, ...,Xi,T } ∈
R

T×q, i = 1, ..., n. We use GP-LVM to model the relations
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Figure 1. Graphical representation of the DCTM model. Shaded nodes represent observed values.

between each pair of Yi and Xi,

P (Yi|Xi) =
d∏

j=1

N(Yj
i,:|0,K(i)

x ). (4)

Each Yj
i,: is a size T column vector of Yi, with each el-

ement representing the latent position of word j at differ-
ent time point. K(i)

x is a kernel covariance matrix of size
T × T , where each element is defined by a kernel function,
[K(i)

x ]m,n = kx(Xi,m,Xi,n). In this paper, we use the ra-
dial basis function (RBF) kernel

kx(Xi,m,Xi,n) = φ1 exp
(
−‖Xi,m − Xi,n‖2

2φ2

)
+φ3δmn,

(5)
with Φ = {φ1, φ2, φ3} being the kernel parameters, where
δmn is the delta function that has the value 1 if m = n and
0 otherwise. Our assumption is that given a topic, words
follow a zero-mean Gaussian distribution, where the high-
est probability occurs when a word appears most in a topic.
Note that this zero-mean assumption is valid here since the
mean values of word frequency have been extracted from D
during the initialization in eq.(3). To ensure a well-defined
probability distribution of topics at each t, we seek to trans-
form the original Xi using the multiple logistic function

P (X̃i|Xi) =
exp(Xj

i,:)∑
j′ exp(Xj′

i,:)
, so that

∑
j

P (X̃j
i,t) = 1.

(6)
In this way the relations between Yi and Xi are rewrit-

ten as P (Yi|Xi) = P (Yi|X̃i)P (X̃i|Xi), with P (Yi|X̃i)
computed using eq.(4).

We then construct a hierarchy by placing a latent variable
C over X, which captures the correlation between each pair
of topic sets Xi and Xj . A proper approach is the Gaussian
process where topics that are highly correlated are also close
in geometrical interpretation. One approach used in [5] is

Algorithm 1 Parameter Optimization for DCTM
1: Input: a set of document corpora D = {D1, ..., Dn}, num-

ber of estimated topics q, number of time frames T , the size of
the vocabulary d, initial kernel parameters {Φ, Θ, Ψ}, number
of iterations I .

2: Initialize each Yi ∈ R
T×d for each Di by eq.(3),

3: Initialize each Xi ∈ R
T×q through SVD from each Yi,

4: Initialize each latent correlation variable set C through SVD
for each pair of [Xi Xj ].

5: for i = 1 to I
6: for j = 1 to n
7: optimize each {Xi, Φ, Θ} using gradient method
8: end for
9: for j = 1 to n

10: optimize {C, Ψ} using the optimized X
11: end for
12: end for

to construct the concatenation of latent variables [Xi Xj ]
and find C by principal component analysis (PCA). This
method works well for high-dimensional problems such as
video tracking. An alternative is to use singular value de-
composition (SVD) where features (words) are usually of
equal importance such as in text analysis.

Furthermore, to capture the correlation dynamically, we
place a temporal prior over the element of C,

P (C|t) =
n∏

i=1

N(c:,i|0,Kt), (7)

where Kt is the covariance matrix for t = {1, ..., T}, which
takes the exact form as eq.(5) except for the input of t with
a different parameter set Θ = {θ1, θ2, θ3}. Fig.1 shows the
graphical representation of the general DCTM model.

The temporal prior can be combined with equations to
marginalize out latent variables Y,X and C. The joint

10331033

Authorized licensed use limited to: Penn State University. Downloaded on February 10, 2010 at 12:15 from IEEE Xplore.  Restrictions apply. 



probability distribution of the hierarchy can be written as

P (D1, ...,Dn|t) =
∫

P (D1|Y1)P (Y1|X̃1)P (X̃1|X1) · · ·

×
∫

P (Dn|Yn)P (Yn|X̃n)P (X̃n|Xn) · · ·

×
∫

P (X1, ...,Xn|C)P (C|t)

dCdX1 · · · dXndX̃1 · · · dX̃n.

However, this marginalization is intractable so that we
instead attempt to use a maximum a posterior (MAP) ap-
proach to approximating the integration, i.e., to maximize
the aggregated Gaussian process log likelihoods [5]

L(D)
� log P (D1, ...,Dn|t)

=
n∑

m=1

(log P (Dm|Ym) + log P (Ym|X̃m) +

log P (X̃m|Xm)) + log P (X1, ...,Xn|C) + log P (C|t)
(8)

w.r.t. each Xm and C. The solution of eq.(8) can be easily
found by gradient search methods.

Practically, when optimizing the latent variables and pa-
rameters, we seek a fast converging algorithm which also
avoids local minimum. To this point, we initialize each la-
tent variable Xi and C by using SVD as described in Alg.1.
We then minimize L by optimizing each set of latent vari-
ables and their correlations alternatively.

4.1 Smoothing

In eq.(8), L1 corresponds to the estimation of the learned
latent positions, while all terms in L2 sum up to the MAP
estimation of the dynamic correlations. It can be observed
that unsmooth correlations usually result in high values
which are not desirable. However, due to the effect of sum-
mation of L1 which involves a large number of instances,
the value of L2 is usually underestimated in practice.

Therefore, to encourage smoothness of L(D) by penal-
izing the correlations and the positions on the same granu-
larity, we seek to balance the contribution of both terms by
raising the dynamics density function to the ratio of their
dimensions, i.e., π = d/q. Thus the terms corresponding to
the dynamics are rescaled in eq.(8) [8]:

π

(
q

2
log |Kc| + log |Kt| − 1

2

q∑
i=1

XT
:,iKcX:,i − 1

2
CT

:,iKtC:,i

)
,

(9)
which leads to a simple and balanced learning function for
the model. Empirically, this has shown to be effective for
Gaussian process-based 3D people tracking [8].

4.2 Inference and Predictions

(Posterior Inference) Since we made an assumption
on the conditional distribution of P (Yi|Xi) by eq.(4),
the topic-specific word distributions P (Yi|Xi) can not be
straightforwardly inferred from the model. Instead, we can
make inference on the word-specific topic probabilities, to
monitor the change of words over time. First, inference can
be made for P (Xi|Yi) by using the Bayes rule,

P (Xi|Yi) ∝ P (Yi|Xi)P (Xi), (10)

so that we can get the word-specific topic probabilities at a
certain time t, Xi,t, by marginalizing out all latent variables
Xi except for Xi,t (denoted as X−i,t):

P (Xi,t|Yi,t) =
∫

P (Xi|Yi,t)dX−i,t

∝
∫

P (Yi,t|Xi)P (Xi)dX−i,t, (11)

We use importance sampling to estimate the integral.
(Topic & Correlation Predictions) We show the predic-

tive power of DCTM by proposing two prediction methods,
using regression analysis and Gaussian processes.

Besides between-topic correlations, the autocorrelations
(AC) within each topic can also be computed. Specifically,
we can model the autocorrelations of a set of topic distribu-
tions over time Xi = {Xi,1, ...,Xi,T } by

P (AC(l)|Xi) =

∑T−l
j=1 (Xi,j − X̄i) ∗ (Xi,j+l − X̄i)∑T

j=1(Xi,j − X̄i)2
,

for l = 1, ..., T − 1, (12)

where AC(l) corresponds to the lag-l autocorrelation func-
tion and X̄i takes the mean value of Xi. A typical autocor-
relation generally decreases with the increase of lag, indi-
cating that only the first few lags demonstrate significantly
non-zero. The values of the lags are often used to discover
repeating patterns in the data such as the topic distributions
during a certain period of time. Mathematically, the values
can be used as the coefficient for the regression function.

Meanwhile, due to conjugation, the posterior probabili-
ties of topics and correlations are also Gaussian. We thus
propose a simple Gaussian dynamic prediction model [1, 8]
for the next time point t + 1:

Xi,t+1|Xi,t ∼ N(μ(Xi,t), σ2(Xi,t)I), where

μ(Xi,t) = K(Xi,Xi,t)T K−1
X Xi,

σ2(Xi,t) = KX(Xi,Xi) − K(Xi,Xi,t)T

K−1
X K(Xi,Xi,t). (13)

From a standard Gaussian process perspective, making
predictions require averaging all parameter values, with
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Figure 2. Results of log likelihood on the CiteSeer data set.

their associated posterior weights. However, this approach
is computationally demanding which involves expensive
Monte Carlo sampling methods. Thus, what we suggested
here can be considered as a shortcut of achieving roughly
the same predictive power, with less computational cost.

5 Experiments

We analyzed a subset of 268,231 scientific documents
(from the year 1988 to 2005) from the CiteSeer1 digital li-
brary. We applied information gain to reduce the dimen-
sionality and resulted in top 24,351 words. We ran a series
of experiments on different numbers of topics from 10 to
200. Due to space consideration, we only show the result
with 25 topics. To investigate the change of the log like-
lihood in eq.(8), we split the data into 90% for modeling
(training), and use the rest 10% for testing the model with
optimized parameters. Figure 2 (b) demonstrates the log
likelihood of these two data sets. It is clearly that DCTM
shows better fit than LDA for documents across all years.
Meanwhile, the smoothing method we used for DCTM (S-
DCTM) does show a positive effect on refining the model,
by showing higher likelihood than DCTM. It can also be ob-
served that with the increased number of documents by year
(Figure 2 (a)), LDA generally shows worse performance
with lower likelihood. However, this has minor effect on
our models, which supports our argument that DCTM does
not suffer from overfitting of large data sets. It can also
been seen from Figure 2 (c) that the convergency of DCTM
is fast. The log likelihood converges after merely 10 itera-
tions.

Figure 3 presents some results for the SIGMOD corpus.
The top figure shows the top 6 venues which have the high-
est correlations with SIGMOD for each year. It can be ob-
served from the list that most top-ranked venues from the
posterior inference are database-related venues. The re-

1http://citeseer.ist.psu.edu

search trends of SIGMOD can also be observed. While
maintaining a steady and strong correlations with traditional
database-related venues like ICDE, PODS and VLDB, the
correlations of SIGMOD with application-oriented venues
are decreasing gradually, e.g., DEXA. Instead, SIGMOD
correlates more with data-mining and information-retrieval
venues like WWW, AAAI and ICDM (cf middle figure).

The bottom figure depicts two highly-correlated topics in
SIGMOD at three different years. The words are sampled
from the distribution with probabilities directly computed
from the prior. Based on our knowledge, the first topic fo-
cuses on algebra and association rules, with mining gradu-
ally gets more attention. The second topic addresses users
and programming, which later shifted to web applications.

5.1 Prediction Performance

We assessed the predictive powerful of our model. The
objective is to predict the correlations between SIGMOD
and 5 other venues. We trained our model using data con-
taining the first 16 years (1988–2003), and tested on the
year of 2004 and 2005. Both autocorrelation regression
(ACR) and mean prediction (MP) are tested. Least square
error is applied to measure the performance of the predic-
tion. We also made a simple comparison to the dynamic
LDA models [1] by using the variational wavelet regression
(VWR). Table 1 lists the results. Both of our methods out-
perform VWR on all venues.

5.2 Discussion

The comparison of DCTM and LDA did not go through
perplexity as well as other metrics. This is because these
two models differ from each other fundamentally. As ex-
plained, our model is able to make inferences on corpus-
level correlations, which is a clear advantage over LDA.

The inferences of our model and LDA are also quite dif-
ferent. In LDA, top-ranked words for each topic can be
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Figure 3. Results of SIGMOD.

Table 1. Correlation results of SIGMOD.
Venue Name ACR MP VWR

AAAI 13.203 10.557 15.625
ICML 45.209 45.317 47.194
KDD 33.004 27.508 34.175
PODS 27.854 24.692 34.215
VLDB 37.225 36.901 45.229
mean 27.203 24.572 31.254

discovered by the posterior inference of topic-specific word
probabilities. This is usually used for naming topics. How-
ever, this approach is very subjective and often requires a
good domain knowledge for judgment. Comparatively, our
model monitors topic probabilities given a specific word,
by marginalizing out the topics at the same time, we can di-
rectly observe the popularity of that word at a certain time.

The most controversial part of our model is the initial-
ization step. To minimize the computational cost, we ini-
tialized our model by SVD, which is a linear dimension-
ality reduction method. This method is known to have is-
sues when applied to LSA, though it seems to work well
for Gaussian-based models when applied to human motion
caption [5]. Besides, due to the restriction of matrix decom-
position in SVD, monitoring a large number of topics in a
fixed timescale becomes unachievable. The model needs to

be re-trained once we change the number of topics.
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