
BotSeer: An automated information system for analyzing Web robots

Yang Sun, Isaac G. Councill, C. Lee Giles
College of Information Sciences and Technology

The Pennsylvania State University
University Park, PA 16802, USA
{ysun, icouncill, giles}@ist.psu.edu

Abstract

Robots.txt files are vital to the web since they are
supposed to regulate what search engines can and can-
not crawl. We present BotSeer, a Web-based informa-
tion system and search tool that provides resources and
services for researching Web robots and trends in Robot
Exclusion Protocol deployment and adherence. BotSeer
currently indexes and analyzes 2.2 million robots.txt
files obtained from 13.2 million websites, as well as a
large Web server log of real-world robot behavior and
related analyses. BotSeer provides three major services
including robots.txt searching, robot bias analysis, and
robot-generated log analysis. BotSeer serves as a re-
source for studying the regulation and behavior of Web
robots as well as a tool to inform the creation of effec-
tive robots.txt files and crawler implementations.

1 INTRODUCTION

Web search engines, digital libraries, and many
other web applications depend on robots to ac-
quire documents. Web robots, also called “spiders”,
“crawlers”, “bots” or “harvesters”, are self-acting
agents that continuously navigate through the hyper-
links of the Web, harvesting topical resources without
significant human management cost [3, 4, 14].

Web robots are highly automated and seldom reg-
ulated manually. With the increasing importance of
information access on the Web, online marketing, and
social networking, the functions and activities of Web
robots have become extremely diverse. These functions
and activities include not only regular crawls of web
pages for general-purpose indexing, but also different
types of specialized activity such as extraction of email
and personal identity information and service attacks.
Even general-purpose web page crawls can lead to un-
expected results for Web servers. For example, robots

may overload the bandwidth of a small website such
that normal user access is impeded. Robot-generated
visits can also affect log statistics significantly so that
real user traffic is overestimated.

Robot activities can be regulated from the server
side by deploying the Robots Exclusion Protocol in
a file called robots.txt in the root directory of a web
site. The Robots Exclusion Protocol1 is a convention
that allows website administrators to indicate to visit-
ing robots which parts of their site should not be vis-
ited. If there is no robots.txt file on a website, robots
are free to crawl all content. The format of Robots
Exclusion Protocol is described in [11]. A file named
“robots.txt” with internet media type “text/plain” is
placed under the root directory of a Web server. Each
line in the robots.txt file has the format: < field >:<
optionalspace >< value >< optionalspace >. A cor-
rectly formatted robots.txt file typically includes the
“user-agent” field, the “disallow” field and the “allow”
field. An unofficial field Crawl-Delay is also recognized
by many crawlers to limit the frequency of robot visits.

Currently around 30% active websites deploy the
Robots Exclusion Protocol [7, 10, 19]. Although it
is not an enforced standard, ethical robots (including
many commercial bots) will follow the rules specified
in robots.txt. These rules may disallow access to cer-
tain locations within the website, and can be used to
explicitly specify access preferences for specific robots
by name, thereby biasing the availability of a particu-
lar site in favor of or against certain robots[18]. On the
other hand, since a primary resource for webmasters of
Web servers in designing effective robots.txt files is the
Web access log, robots.txt files also reflect at a certain
level the behavior of Web robots. The study of biases
toward each Web robot can benefit the webmasters in
designing an effective regulation policy for their own
websites. Robot administrators can also benefit from

1http://www.robotstxt.org/wc/norobots.html

Eighth International Conference on Web Engineering

978-0-7695-3261-5/08 $25.00 © 2008 IEEE

DOI 10.1109/ICWE.2008.27

108

Authorized licensed use limited to: Penn State University. Downloaded on February 10, 2010 at 12:18 from IEEE Xplore. Restrictions apply.

the bias study of robots in robots.txt files in designing
their own robots in order to avoid potential privacy and
security violations.

It is important to note that the Robots Exclusion
Protocol is not an enforcement standard. Although
access policies are explicitly specified in the robots.txt
files, technically, Web robots are still able to access and
download the contents even though they are forbidden
for robots. Robot-generated Web server logs are an
important resource for webmasters in monitoring web
traffic and designing their websites. Since search en-
gines have become an indispensable tool for informa-
tion access, the design of websites must involve con-
sideration of robot behaviors in order to ensure that
websites are well indexed as well as to prevent undesir-
abled visits.

In order to help address the above problems, we pro-
pose BotSeer2 as an informational service for analyzing
Web robot behavior and trends in the Robots Exclu-
sion Protocol deployment. BotSeer provides full-text
search service of robot-related documents, bias analy-
sis from robots.txt files collected from the Web, and
a log analysis service. The prototype of BotSeer con-
tains a full-text index of 2.2 million robots.txt files from
13.2 million websites. Users can employ BotSeer as a
resource for studying the regulation and behavior of
Web robots, a tool to write robots.txt files, and a re-
source for information on the development of crawlers.

The rest of the paper is organized as the following.
Section 2 discusses the use cases and architecture of
BotSeer system. Section 3 describes how the data for
each component is gathered and processed. Section
4 introduces each component of BotSeer with sample
use cases in detail. And finally section 5 concludes the
paper and discusses the future work of the system.

2 BotSeer

BotSeer is designed to provide an efficient tool for
researchers, webmasters and developers to study web
robot related issues and design websites. The purpose
of BotSeer is to build an information system that as-
sists the regulation and development of web robots.
The Robots Exclusion Protocol is a de facto standard
on the Web to regulate the behavior of web robots.
Websites can explicitly specify an access preference for
each robot by name in their robots.txt files. Such bi-
ases data can be a valuable resource to the research
of Web robot regulation and more. For example, a
new type of network can be constructed based on the
similarity of two websites in terms of bias toward web

2Currently, the BotSeer search tool is available in Beta at
http://botseer.ist.psu.edu

robots. Such network may present new perspectives
of the Web graph based on similar privacy concerns
and hidden community of webmasters or web design-
ers. Thus, robots.txt files are an important data source
for BotSeer.

We design three major components in BotSeer to
assist these tasks. We implement the favorability mea-
sure [18] on all the robots.txt files we collected. The
measure for each website and the statistics over all the
websites provide researchers a more efficient tool for
related research. A fielded full-text index of robots.txt
files provides the necessary functionalities for study-
ing the bias over different robots. A large scale log
analysis of web access logs provides a valuable resource
for identifying robots and characterizing them, hence
developing more efficient regulations. The search com-
ponents are based on the open source indexer, Lucene
[6].

Architecture for BotSeer system is illustrated in Fig-
ure 1.

Figure 1. The architecture of BotSeer system.

All the services provided by BotSeer are based on
the data obtained from the Web and Web server access
logs. A Web crawler handles the data acquisition tasks
including getting robots.txt files. The data crawled
from the Web is saved in a local repository for fur-
ther data processing. A data select module handles the
data organization and feed the applications that need
data inputs. The file parser implements the Robots
Exclusion Protocol and parses each rule in robots.txt
files to provide fielded searching and filtering for re-
search. The parsed robots.txt files are then indexed
using Lucene to provide efficient access to the docu-
ments. A fielded index is designed to store the fields
extracted according to the Robots Exclusion Protocol
as well as the bias analysis result for each robots.txt
file. Robot generated Web access logs are analyzed by
the log analysis module and the statistical results are
stored in MySQL database. A Web based user inter-
face provides the access to each services in BotSeer for

109

Authorized licensed use limited to: Penn State University. Downloaded on February 10, 2010 at 12:18 from IEEE Xplore. Restrictions apply.

users. User queries are handled by a query processor
with the support of multiple query modifiers. Three
major services, robots.txt search, bias analysis and log
analysis, delivers the data and analysis to users.

BotSeer system is planned to crawl 80 million top
level domains in the first phase and their subdomains in
the second phase. BotSeer updates the robots.txt files
in a monthly basis to capture the temporal properties.
With the growing size of robots.txt file index, priori-
tized updating policy is to be applied to BotSeer index.
The system is built on many open source development
tools including JDK, Apache Tomcat, MySQL, and
Lucene which allow a highly scalable system. Current
BotSeer system handles complicated search queries and
returns results from 2.2 million documents within 1
second. The system is expected to be able to index
robots.txt files for 200 million websites.

3 DATA

BotSeer provided services are based on robots.txt
files and Web server logs. The acquisition, storage and
access of each data source is discussed below.

3.1 Robots.txt Files

For the use cases discussed previously, robots.txt
files are a primary data source for BotSeer to provide
the services. It has been reported on the Netcraft web
server survey that there are more than 142 million ac-
tive websites in October 2007. The crawler for BotSeer
is required to be able to check a significant portion
of all the active websites and find robots.txt files in
a short period of time in order to provide up-to-date
analyses and information regarding robot regulation.
Traditional Web crawlers rely on parsing Web pages
and following hyperlinks to traverse the Web graph.
This method usually requires a great deal of resources
in order to parse the content of Web pages. This is
inefficient and unnecessary for acquiring and parsing
robots.txt files since valid robots.txt files must always
be placed in a standard location relative to the root
domain of a website. In addition, relying entirely on
links in the Web graph may fail to identify sites that
fall in disconnected components within the web graph.

Instead, we use a java based automated agent to
collect robots.txt files without explicitly traversing the
link structure of the Web. We first collect the active
top level domain names from the .com, .net, .org, and
.biz domains from their respective authoritative root
providers, yielding over 80 million distinct hostnames.
The robots.txt files are checked under the root direc-
tory of these websites and then downloaded directly

from each domain where they exist. Our assumption is
that most websites from the above domains will be ac-
quired via this method; however, our robot will not
locate and index robots.txt files outside of the root
providers. It is an open question whether bots will
ever see these files in any case.

A crucial issue for crawling robots.txt files in this
manner is that the requests are always pointing to
unique domain names. Thus, a single DNS server will
not be able to handle the heavy request load (>100
name resolving requests per second beyond a day). We
tried several DNS servers within the network service
range. All of them stop responding after a few minutes
of heavy requests. A DNS request is a major cost in
the web crawling process. DNS requests are typically
determined by the connection bandwidth between the
client and the server. Although a name resolving re-
quest over a socket connection can be very fast (several
milliseconds), the major cost will be spent in construct-
ing the connection. Multiple DNS servers can be used
to feed multithreaded name resolving requests. But
these DNS servers will quickly stop responding because
of the requirements for crawling speed. Another prob-
lem is that some of the available DNS servers do not
correctly resolve hosts (e.g. pointing to a specific web-
site or localhost). It is therefore necessary to check
the correctness of each DNS server before using it. If
all the checks are implemented together in one crawl-
ing task, the crawling performance can be significantly
slowed. An experiment shows that only 10-20 websites
can be checked in one second for this crawling method
on a 3.0GHz Xeon PC. Since millions of websites need
to be checked, it will take months to check most of the
active websites.

In order to address the issues of mass DNS re-
quests, an asynchronous DNS resolving method is im-
plemented into the BotSeer robot which separates the
DNS server checking, the name resolving and the doc-
ument downloading tasks. A DNS resolving module
tests available DNS servers by triangulating multiple
known resolving results and simultaneously recording
the response time. The correctly available DNS servers
are stored in a pool sorted by the response time. A
name resolving module reads all the domain names that
need to be resolved and sends them to the DNS pool.
The best available DNS server will be used to resolve
a domain name and then be put into a rest pool until
it can be reused. For all the resolved domain names,
the robots.txt files can be checked and downloaded
by constructing IP-based socket connections to the
websites. Such a method provides a lightweight task
for each crawling thread and a fast socket connection
over IP addresses. We successfully obtain a process-

110

Authorized licensed use limited to: Penn State University. Downloaded on February 10, 2010 at 12:18 from IEEE Xplore. Restrictions apply.

ing speed result (checking and downloading robots.txt
files if available) of 100 websites in one second with
this crawling method. We are able to check 13,257,110
websites and download 2,264,820 within a few days on
a single Intel 2.8GHz Xeon PC with 1GB RAM (disk
access often delays the process in practice). BotSeer
also provides a submission system for users to submit
robots.txt files directly to the system. The user submis-
sion system is integrated with the bias analysis module
so that when a user submits a website, it is indexed
with the bias analysis result is provided. Since each
robots.txt file relates to a unique domain name, the
information regarding each domain (whether the do-
main has a robots.txt file or not) is also an important
resource for the study of robot regulation. The do-
main information is stored in MySQL database tables
for further analysis.

We also propose to provide access to past robots.txt
for longitudinal research. The robots.txt files are
stored based on the date that they were downloaded.
Since robots.txt files tend to be modified for privacy
and security purposes, it is of value to track the changes
in robots.txt files to investigate temporal trends. How-
ever, storing robots.txt files from each crawl will be re-
dundant since a significant percentage of websites will
not show frequent changes in the file. This issue is han-
dled by storing only unique files for each site. A data
selection middleware can select a set of robots.txt files
according to temporal criteria.

3.2 Web Server Logs

Web server access logs are one of the most important
resources used to study Web robot behavior since logs
have all the access and activity information of gener-
ated by robots. A typical Web server access log record
includes the connection IP address, the requested files,
the identity of a robot, and the time of access. Extract-
ing the robot-generated log records from Web server
logs is a non-trivial problem since not all robots identify
themselves as such, instead pretending to be normal
user-driven browsers. Much research has been done in
the area of log mining[1, 5, 12, 16, 17] that mentions
the robot identification in the log data preprocessing
step. Since most of the experiments was conducted be-
fore 2000, the spambot and bot masquerading issues
are not as serious as they are today. None of the work
deals with the robot identification carefully in terms of
accuracy.

In BotSeer we implement a multi-step log filter in
order to identify web robots. The first step checks the
User-Agent string field recorded in the logs. Basically,

we used a robot agent string list3 to identify obvious
robots. The second step involves a sophisticated log
mining method that extracts a set of features to char-
acterize the browsing behavior of an IP address based
on sessions. The sessions are identified by correlating
the request and reference fields with page structures in
CiteSeer.

For the study of robot behavior, the log analysis
service provides statistical data including the total vis-
its, number of requests that disobey robots.txt rules,
unique IP addresses with the same User-Agent name,
total bandwidth used by robots and the overall favor-
ability of a robot.

4 WEB APPLICATION

4.1 Robots.txt File Search

The goal of BotSeer is to provide information to
anyone interested in studying robot behavior and reg-
ulation. The design of the BotSeer web application
considers several possible use cases for these users.
The most anticipated use case is the search for named
robots in robots.txt files, and biases associated with
specific robots. The BotSeer response to the query
“botname:msnbot” is shown in Figure 2. The search re-
sults indicate how sites generally treat specific robots.
Different ranking methods are required for each pur-
pose. For the use case of analyzing the robots.txt files,
users are more interested in the robots.txt files from
well used website. On the other hand, for the use case
of studying how the robot is received, users are more in-
terested in the websites that favor or disfavor the robot.
The PageRank based ranking method ranks the results
by combining the PageRank score [13] of websites and
the tf-idf scores [15] between the query term and the
robots.txt files. The bias based ranking method ranks
the results by the bias of the named robot presented
in robots.txt files. Users are able to switch between
ranking methods when they are searching for the User-
Agent field for different use cases.

For each returned robots.txt file, BotSeer presents
the link to the URL of the robots.txt file, the abstract
and cache of the file, and the link to the bias analysis of
the file. Users may check the cached robots.txt file as
well as link to the original source directly. By clicking
the link to bias analysis, users are able to obtain the
biases presented in the robots.txt file (the bias analysis
is discussed in [18]). The search results give users refer-
ences on how webmasters regulate the crawler msnbot.
The operator of msnbot is also able to see how their
robot is received.

3http://www.pgts.com.au/pgtsj/pgtsj0208d.html

111

Authorized licensed use limited to: Penn State University. Downloaded on February 10, 2010 at 12:18 from IEEE Xplore. Restrictions apply.

Figure 2. BotSeer robots.txt search compo-
nent response to query “botname:msnbot”.

The fielded index provides a wide range of opportu-
nities for BotSeer use cases. Users may specify which
field of the robots.txt they are searching for by adding
search modifiers including “botname”, “site”, “disal-
low”, “allow”, “favor”, “disfavor”, “nobias” and “de-
lay”. Each modifier refers to a specific field in the
full-text index. “botname” refers to the “User-Agent”
field which identifies the name of a robot. For example
the query “botname:msnbot” searches “msnbot” in the
User-Agent fields of all robots.txt files. “site” refers to
the website names from which the robots.txt files are
collected. “disallow”, “allow” and “delay” refer to the
corresponding directives in robots.txt files. We also
support the modifier “favor”, “disfavor” and “nobias”
to enable the search of favorability (bias) presented by
robots.txt files. With the fielded index, it is possible
to study some of the topics we mentioned in section
2 by using BotSeer. For example, a user can search
for “favor:googlebot site:gov”. BotSeer will return all
the government websites that favor googlebot. For the
second use case in section 2, user can search for “con-
tain:universal site:gov disallow:/” to return all the gov-
ernment websites that have the rule of “Disallow:/” and
“User-Agent:*” and then find the websites needed with
simple further processing. It is also easy to compare the
favorability of two or more robots. User can search for
“favor:googlebot disfavor:msnbot disfavor:slurp” which
refers to the websites that favor “Google” but disfavor
“MSN” and “Yahoo”.

Google.com also indexes robots.txt files. Google
users are able to search in the robots.txt files by is-
suing the query with modifier “inurl:robots.txt file-
type:txt”. Unlike the BotSeer search component which
parses robots.txt files according to the Robots Exclu-
sion Protocol, Google search indexes robots.txt files as
normal plain text files. A comparison of Google search
results for “msnbot” and BotSeer results shows that

BotSeer provides more information on the robots from
a regulation perspective. (On BotSeer homepage, users
can click on the Google button to perform a robots.txt
file search in Google.)

4.2 Crawler Search

The robot behavior search component searches the
bias analysis results and robot generated logs from a
large Web server. The log is generated by 8,932 robots
from 61,204 IP addresses. This component is designed
for users to check the real-world behavior of a named
robot. Users may submit a robot name as the query
to the system. The system matches the query to the
bias analysis records and log records generated by cor-
responding robots and returns statistical data for the
robots.

The result page lists the records in the log with bias
toward a crawler, User-Agent strings contain the name
of the crawler, and the geographical distribution of the
crawler’s IP address (see Figure 3). When users click on
the User-Agent string, BotSeer will present the detailed
information about this User-Agent string including the
type of the crawler, the actual IP of the crawler, and
the registered name of the IP addresses. If the regis-
tered name of IP addresses does not match the name
of the crawler, user will know this is a potential crawler
using fake names.

Since the User-Agent field in the log is specified by
the robots in the HTTP request header, it is possible
for any robot to “pretend” to be and use the name of
another robot. But the IP addresses where the robots
are actually from are harder to spoof. It is necessary
to check the IP addresses as well as the name speci-
fied in the User-Agent string to identify a robot. From
the example shown in Figure 3, part of the log records
are generated by the robots who named themselves
as Googlebot while we believe they are not. Users
can click on the IP addresses listed on the result page
and BotSeer will show users the WHOIS information4

about that IP address. For the example of “Googlebot”
records, the IP addresses that obeyed the Robots Ex-
clusion Protocol in fact those allocated to Google Inc.
We also plot the geographical locations of each visiting
robot. As an example, figure 4 shows the geographical
distribution of robots that visit CiteSeer. Each gray
point represents a unique robot IP address. We use
the blue color to circle out “Googlebots” that obey the
robots.txt of CiteSeer and red color to circle out fake
“Googlebots” that disobey the robots.txt.

We also design a honeypot, a set of sites where each
site is configured with a distinct regulation specifica-

4Whois information is provided by GeekTool.com.

112

Authorized licensed use limited to: Penn State University. Downloaded on February 10, 2010 at 12:18 from IEEE Xplore. Restrictions apply.

Figure 3. The crawler search result page for
query “googlebot”.

tion using the robots exclusion protocol in order to
capture specific behaviors of web crawlers. A detailed
log analysis on the test websites will reveal how well a
web robot behaves. The analysis of honeypot logs will
provide rules to measure the ethicality of web crawlers.
The analysis of web access logs is a very important
part of BotSeer not only for searching robot behavior
but also for possible new regulation standards. Much
data could be generated by combining the bias anal-
ysis results and the log analysis results to study the
true behavior of web robots. With the log analysis re-
sults, BotSeer can also be used as a reference to iden-
tify poorly behaved robots and robots pretending to
be browsers and other well known robots. Therefore,
BotSeer can be a service to the webmaster community.

4.3 Data Analysis

BotSeer provides two types of statistical data anal-
ysis. The bias analysis module analyzes the bias pre-
sented in the robots.txt files, indicating how specific
robots are regulated on the Web. Bias metrics can also
be used to evaluate the reputation of specific robots.
The robot-generated log analysis provides the statistics
of the robots’ actual behavior on a Web server.

Figure 4. The geographical distribution of
web robots that visit CiteSeer. Gray points
are the location of robots that visit CiteSeer.
The blue and red circles point out the well be-
haved and bad behaved “Googlebot” respec-
tively.

4.3.1 Bias Analysis

Websites can explicitly specify an access preference for
each robot by name. Such biases can be used as a re-
source to study the regulation of Web robots. The bias
analysis module analyzes the biases in robots.txt files
based on the bias measure [18]. A favored robot is de-
fined as a robot allowed to access more directories than
the universal robot according to the robots.txt file in
the website. The universal robot “*” is any robot that
has not matched any of the specific user-agent names in
the robots.txt file. In other words, the universal robot
represents all the robots that do not appear by name in
the robots.txt file. The detailed discussion about the
bias analysis algorithms and results can be found in
[18]. BotSeer implements the bias definition and pro-
vides the bias analysis for each robots.txt files. Users
are able to get the bias analysis result by following the
hyperlink of “Analyze it!” on the search result page of
robots.txt files. The hyperlink will lead users to the
robots.txt analysis result page.

BotSeer system also analyzes the overall bias on a
set of robots.txt files based on the favorability defined
in [18]. An example of a favorability analysis on 1,858
web robots is shown in Figure 5.

Users can click on each column title, and the result
can be ranked by the times the robot’s name appeared,
the times it was favored, times disfavored, and favor-
ability respectively. The hyperlink of the robot name
will direct users to the log search page.

4.3.2 Robot Generated Log Analysis

The robot-generated log analysis component parses the
Web log file from BotSeer and indexes the user-agent

113

Authorized licensed use limited to: Penn State University. Downloaded on February 10, 2010 at 12:18 from IEEE Xplore. Restrictions apply.

Figure 5. Bias analysis result page of 1,858
named robots.

strings and corresponding IP addresses and behaviors.
The visits distribution and geographical distribution of
robot-generated logs can be monitored through the log
analysis system 5.

5 CONCLUSION

We present the design and data analysis process
of the BotSeer system. The Web-based information
system provides resources and services for researching
Web robots and trends in Robot Exclusion Protocol
deployment and adherence. BotSeer currently indexes
and analyzes 2.2 million robots.txt files obtained from
13.5 million websites, as well as a large Web server
log of real-world robot behavior and related analyses.
BotSeer provides robots.txt search, robot bias analy-
sis, and robot-generated log analysis services to aid the
Web robots related studies and developments. With
the large amount of data and fielded index, BotSeer
can be used to search the favorability of web robots,
compare web robots in terms of how well they are re-
ceived, study web robot regulations in a specific group
of websites, study the relationships between the robots
regulation and the market, and find new communities
and networks based on the preferences for certain web
robots. BotSeer serves as a resource for studying the
regulation and behavior of Web robots as well as a tool
to inform the creation of effective robots.txt files and
crawler implementations. Future work will focus on
more advanced data analysis based on BotSeer. Other
Web robot-related applications using BotSeer data will
also be a direction.

References

[1] B. Berendt and M. Spiliopoulou. Analysis of naviga-
tion behaviour in web sites integrating multiple infor-

5http://botseer.ist.psu.edu/stats/logmonitor.jsp

mation systems. The VLDB Journal, 9(1):56–75, 2000.
[2] M. L. Boonk, D. R. A. d. Groot, F. M. T. Brazier, and

A. Oskamp. Agent exclusion on websites. In Proc. of
The 4th Workshop on the Law and Electronic Agents,
2005.

[3] S. Chakrabarti, M. Van den Berg, , and B. Dom. Fo-
cused crawling: A new approach to topic-specific web
resource discovery. In Proc. of the 8th WWW Confer-
ence, pages 545–562, 1999.

[4] J. Cho, H. Garcia-Molina, and L. Page. Efficient crawl-
ing through url ordering. In Proceedings of the 7th
International World Wide Web Conference, 1998.

[5] R. Cooley, B. Mobasher, and J. Srivastava. Data
preparation for mining world wide web browsing pat-
terns. Knowledge and Information Systems, 1(1):5–32,
1999.

[6] D. Cutting. The lucene search engine.
http://lucene.apache.org/.

[7] M. Drott. Indexing aids at corporate websites: The use
of robots.txt and meta tags. Information Processing
and Management, 38(2):209–219, 2002.

[8] D. Eichmann. Ethical web agents. Computer Networks
and ISDN Systems, 28(1-2):127–136, 1995.

[9] C. L. Giles, K. Bollacker, and S. Lawrence. CiteSeer:
An automatic citation indexing system. In I. Witten,
R. Akscyn, and F. M. Shipman III, editors, The Third
ACM Conference on Digital Libraries, pages 89–98,
Pittsburgh, PA, 1998. ACM Press.

[10] B. Kelly and I. Peacock. Webwatching uk web commu-
nities: Final report for the webwatch project. British
Library Research and Innovation Report, 1999.

[11] M. Koster. A method for web robots control. In the
Internet Draft, The Internet Engineering Task Force
(IETF), 1996.

[12] B. Mobasher, R. Cooley, and J. Srivastava. Automatic
personalization based on web usage mining. Commun.
ACM, 43(8):142–151, 2000.

[13] L. Page and S. Brin. The pagerank citation ranking:
bring-ing order to the web. In Tech. report SIDL-WP-
1999-0120, Stanford University, 1999.

[14] G. Pant, P. Srinivasan, and F. Menczer. Crawling the
Web, chapter Web Dynamics. Springer-Verlag, 2004.

[15] G. Salton, A. Wong, and C. S. Yang. A vector
space model for automatic indexing. Commun. ACM,
18(11):613–620, 1975.

[16] M. Spiliopoulou. Web usage mining for web site eval-
uation. Commun. ACM, 43(8):127–134, 2000.

[17] J. Srivastava, R. Cooley, M. Deshpande, and P.-N.
Tan. Web usage mining: discovery and applications
of usage patterns from web data. SIGKDD Explor.
Newsl., 1(2):12–23, 2000.

[18] Y. Sun, Z. Zhuang, I. G. Councill, and C. L. Giles.
Determining bias to search engines from robots.txt.
In Proceedings of the 2007 IEEE/WIC International
Conference on Web Intelligence, San Jose, CA, USA,
2007. IEEE Computer Society.

[19] Y. Sun, Z. Zhuang, and C. L. Giles. A large-scale
study of robots.txt. In Proc. of the 16th international
conference on World Wide Web, 2007.

114

Authorized licensed use limited to: Penn State University. Downloaded on February 10, 2010 at 12:18 from IEEE Xplore. Restrictions apply.

