
Extracting Semantic Relations for Scholarly
Knowledge Base Construction

Rabah A. Al-Zaidy
College of Information Science and Technology

Pennsylvania State University
University Park, Pennsylvania, 16802

Email: alzaidy@psu.edu

C. Lee Giles
College of Information Science and Technology

Pennsylvania State University
University Park, Pennsylvania, 16802

Email: giles@ist.psu.edu

Abstract—The problem of information extraction
from scientific articles, found as PDF documents in
large digital repositories, is gaining more attention as
the amount of research findings continues to grow. We
propose a system to extract semantic relations among
entities in scholarly articles by making use of external
syntactic patterns and an iterative learner. While in-
formation extraction from scholarly documents have
been studied before, it has been focused mainly on the
abstract and keywords. Our method extracts semantic
entities as concepts and instances along with their
attributes from the fully body text of documents. We
extract two types of relationships between concepts in
the text using an iterative learning algorithm. External
data sources from the web such as the Microsoft con-
cept graph, as well as query logs, are utilized to evaluate
the quality of the extracted concepts and relations. The
concepts are used to construct a scientific taxonomy
covering the research content of the documents. To
evaluate the system we apply our approach on a set
of 10k scholarly documents and conduct several evalua-
tions to show the effectiveness of the proposed methods.
We show that our system obtains a 23% improvement
in precision over existing web IE tools when they are
applied to scholarly documents.

I. Introduction
Scientific articles in digital libraries are constantly

increasing in volume, making it more challenging for
researcher to easily access their content by traditional
search methods. This, along with other factors, motivated
many studies that aim at mining scholarly documents
and providing them with semantic structure. To enable
automated understanding of scientific articles, studies
showed that relying solely on the abstract of the articles,
which is typically available as meta data, is not enough
to infer sufficient findings and relevant information to the
article’s content [1]. By including the full text of the article,
information gain increases and higher quality semantics
can be obtained.
One approach for semantically structuring scholarly

documents is to represent them as knowledge graphs [2].
By extracting semantics showing key components of the
studies such as topic, problem or task, approach and
methods, findings, building inferences on this graph allow
for more sophisticated analyses of the content [3]. Academic

search engines, for instance, can directly benefit from this
graph representation by using it to leverage the ranking
algorithm or for query parsing and question answering. By
representing concepts as entities in the graph and their
relationships as edges, graph algorithms used for web search
and text mining can be applicable to research content.
Extracting a knowledge graph or constructing tax-

onomies requires the extraction of entities and their
relations, i.e. a form of triples. Various academic attempts
at constructing knowledge bases from text corpora have
used two basic approaches. Extracting entities and then
inferring the relationships, or inferring related entities.
The former assumes a specific type of entity and typically
applies NER methods to extract them, and follows that
by a relation extractor designed for the specific entities.
The latter is used when the type of entity is difficult to
determine and is common in most Open IE methods. For
open IE extractors that rely on iterative learners, the
learner builds on an initial seed of annotated samples of
several types of relationships. Other approaches rely on
bootstrapping using syntactic patterns for extracting initial
seed samples from the text and use those for the learner.
Knowledge base and taxonomy construction requires

specifying a type of relationship that is extracted from
the data. For openIE methods, the relationship types is
typically not specified by approaches such as [4]. However,
for knowledge base construction the hyponym relation,
that represents a concept and an instance or a concept and
sub concept, is used to build the taxonomy. A variety of
syntactic patterns and dependency path learners extract
specific types of relationships based on the application at
hand.
A main challenge with scholarly documents is the sparsity

of terms in the document. This is a result of the wide
variety in topics where each article focuses on a narrow
topic that in many cases contains newly introduced terms.
Additionally, among different disciplines the same concept
may have different names. Web query logs are considered
as an external source of data that is used for knowledge
base construction from web documents. To our knowledge,
there is not yet a study that makes use of academic
search engine query logs to learn new topics. In this

56

2018 12th IEEE International Conference on Semantic Computing

0-7695-6360-0/18/$31.00 ©2018 IEEE
DOI 10.1109/ICSC.2018.00017

paper we design a system to construct a knowledge base
from scholarly documents. The knowledge base is a set
of concepts found in the documents and the edges define
two types of relationships among the concepts: hyponymy
and attributes. Entities and relations are extracted using
an iterative learner that bootstraps on an automatically
generated set of seeds. We propose the use of external
sources to evaluate our resulting relationships. The sources
are query logs and the MS concept graph. Extracted triples
are used to construct a taxonomy by performing sense
disambiguation for each extracted concept. We apply the
methods to a set of 10k scholarly articles and evaluate our
system against current available baselines. We also evaluate
the newly defined relation types using expert evaluations
of the data. The paper is organized as follows. In the next
section we discuss related work. In section 3 we discuss the
syntactic extractor that is used for the bootstrapping of
the learner. In section 4 we describe the iterative learner
method and the use of multiple external sources. Section
5 contains the algorithms for constructing the taxonomy.
The evaluation and experimentation results are presented
in section 6. In section 7 we conclude and discuss future
directions and applications.

II. Related Work
Many information extraction approaches for harvesting

entities and their relationships from textual data exist in
the literature. These methods aim to provide semantic
structure to free text in the web. Several of these resulted
in the commonly known knowledge bases such as Google
Knowledge Graph [5] , NELL [6] , YAGO [7] and DBpe-
dia [8]. These KBs were constructed from large corpora
such as Wikipedia pages or at web-scale. Some approaches
make use of IE techniques, such as the afore mentioned
ones, while others are constructed using manual curation,
such as the Cyc project [9] that has a limited concept
space coverage of only 120,000 concepts. Methods that
build on a curated method, can use collaborative crowd-
sourcing to increase coverage, an example of such a system
is the Freebase KB [10] and Wikidata [11]. These have
increased coverage results however, they do not contain fine-
grained scientific concepts. Automated approaches include
the NELL [6] , KnowItAll [12], ReVerb [13]. They contain
many concepts that may exist in scientific texts but are far
from covering many concepts in research articles. Common-
sense KB approaches aim to find relationships that allow for
common-sense inference over text data. A main approach
for this type is Probase [14]. Probase is constructed from a
corpus of 1.68 billion web pages and harvested over 2.7M
concepts.
A hyponymy relationship between two entities occurs

when one of the entities is an instance of the other, also
referred to as the is-a relationship. The super-concept
is called hypernym whereas the instance, or sub-concept
is called the hyponym. One of the initial works is [15]
that introduced the Hearst patterns used by most other

approaches for bootstrapping. Latent semantic analysis
is used to improve the results obtained by using the
Hearst patterns by using latent semantic indexing for the
hypernym-hyponym terms pair [16]. It then compares the
similarity score between the two to infer if one of the
terms is actually an instance of the other. In [17] they
use a training set of known hypernym-hyponym pairs to
train a model using the dependency path features. The
model then learns new dependency paths and uses them
to extract new is-a relation pairs. Syntactic patterns have
been the basis for several approaches for extracting concept
attributes [18], [19]
Semantic learners based on iterative algorithms such

as TextRunner [20], NELL [6], and Probase [14] use a
bootstrapping approach. The first two iteratively learn
new syntactic patterns to improve the extraction for the
next iterations. Our approach is similar to the one in [14]
in that our iterations learn more entities and relations by
using knowledge extracted from previous iterations.
Approaches for taxonomy construction from knowledge

base data have been proposed in many studies [21]. Some
well known sytsems are YAGO [7] and WikiTaxonomy [22].
Our approach differs from these in that we do not use an
external knowledge base to build our taxonomy, and we
build the taxonomy based on the scholarly articles, rather
than Wikipedia or web pages.

III. System Overview
Our system builds on the approach described in [2]. Our

system is given a set of documents in PDF format, and
generates a knowledge base represented as a graph. The
system is comprised of three main modules: a parser, an
entity-relation extractor, and a taxonomy graph construc-
tor. Below is a description of each module.

A. Parser
The first module in the pipeline is the parser. This is

responsible for two types of parsing. The first is a rendering
parser, which extracts the raw text from the PDF file. For
this task we use the GROBID [23] parser. The second
parser is a syntactic parser that extracts noun phrases.
This module passes a set of parsed and part-of-speech-
tagged sentences to the next phase.

B. Entity-relation Extractor
The module extracts related entities from a set of parsed

sentences. The entities are nouns and noun phrases and the
type of relationships are (1) the hyponymy relation among
entities, (2) attributes of entities. In this section we discuss
the types of relationships extracted by our framework.
Concept-Instance Relationships A concept-instance,
or hypernym-hyponym, relationship is one where one entity
is an instance of the concept represented by the other entity.
This is also known as the is-a relationship. We define
hyponymy relations to occur between 1) a concept and
sub-concept or 2) between a concept and an instance. We

57

follow the same formal notation used in most hyponymy
extraction studies [16], [14]. For a document set D, we
extract a set of sentences S that contain candidate tuples
(Xi, Yj) such that,

s = {(X, Y1), (X, Y2), ..., (X, Yk)}
where X is a hypernym for candidate hyponyms Yj . Once
the extraction is complete we have a set of extracted pairs,

P = {(X1, Y1), (X2, Y2), ..., (XN , YN)}
Property Relationships The other relationship we
extract is the isPropertyOf relationship. This extracts
attributes of entities of the knowledge base. For example,
in the phrase ”the speedup of the algorithm”, we can infer
that speedup is an attribute of the concept algorithm.
The relation extraction module has two basic com-

ponents. The first is a syntactic based extractor that
takes the set of pre-defined extraction patterns as a basis
for matching. The syntactic-based extractor, generates a
set S of sentences containing candidate is-a triples. The
next component is the iterative semantic learner, which
iteratively learns new triples from the set S and populates
the set of extracted pairs P . This step passes a set of
hypernym-hyponym triples to the taxonomy construction
phase.

C. Taxonomy Graph Constructor
Taxonomy construction is accomplished through three

main graph operations. The set of extracted triples are
initially mapped to local taxonomy graphs. Next, based
on the existence of similarities among nodes of distinct
local taxonomies, we apply modifier, simple, and vertical
node merging operations to generate the final knowledge
graph G. The knowledge base is constructed by building a
taxonomy T by combining the local taxonomies identified
in by the triples in the set P . We define the sets X={x1,
... ,xm} and Y={y1, ... ,yn} , with |X|=m and |Y |=n, to
be the sets of individual words comprising the noun phrase
of a candidate hypernym and hyponym, respectively.

IV. Extraction Approach
In this section we describe the two modules responsible

for generating the knowledge base tuples of entities related
with a hypernym-hyponym relation and the attributes. The
input to this step is a set of PDF documents D and the
output is the set P of pairs (X,Y).

A. Syntactic-based Extraction
Since our approach does not rely on an existing knowl-

edge base, we bootstrap our algorithm by extracting pairs
using a set of hand-crafted patterns. The use of lexico-
syntactic patterns for bootstrapping hyponymy extraction
is a common practice since they have relatively high
precision while compromising recall, which is tolerable for
a bootstrapping step. We use the Hearst patterns from [15]
that define syntactic patterns that are commonly used to

denote a hyponymy relationship. Table I shows the patterns
used in our system. NP stands for Noun Phrase, that are
first identified and then matched against the pattern. The
Stanford lexical parser [24] parses the sentence to extract
noun phrases. These are in turn passed to a lexical tree
matcher that identifies the patterns according to the noun
phrase identified at the highest level in the node. For
instance the sentence by applying pattern 1 in Table I:
NP1 such as NP2 to the following sentence:

”high and low level programming languages such
as Assembly, Java, and C++”

will extract NP1 as the entire phrase of high and low level
programming languages instead of low level programming
languages. The Stanford token matcher [25] is used to
apply the patterns to the tokenized sentence to obtain
this result. The extracted candidate sentences are then
parsed by identifying the sets of X and Y words comprising
each of the hypernym and hyponym phrases, respectively.
Stemming and removing initial stop words that are common
adjectives is performed to cleanse the phrase prior to the
hypernym detection step.

B. Semantic Unit Extraction
The bootstrapping approach relies on syntactic patterns

that exploit part-of-speech tags to identify noun phrases.
However, the resulting phrases can be very noisy if they
contain identifiers and certain types of adjectives. In order
to improve the quality of extracted concept phrases, we use
the notion of semantic units defined as ”the maximal-length
noun phrase representing a single entity uniquely and fully,
regardless of the textual contextâĂİ. We adopt an empirical
approach based on large-scale corpus experimentation to
derive heuristics. We define two sets of rules to help us
linguistically categorize a semantic unit, frontier rules and
parsing rules shown in table II. The frontier rules are used
to strip the front of the phrase by recursively matching
the first token in the phrase against the rule until none of
the rules can be applied. The parsing rules take advantage
of the pos tags to further reduce noun phrases to as basic
a unit as possible.

C. Iterative Semantic Learning
Syntactic extraction generates a set C of candidate pairs

that need to be classified as acceptable pairs or ones that
should be discarded. The iterative learning steps populates
a set P of valid pairs that is initially empty. A first pass
over the sentences will add any pair for which the hypernym
phrase contains only a single word. If the hypernym phrase
contains more than one word, the phrase must be processed
by the hypernym extraction algorithm for phrase-detection.
If a valid hypernym phase is detected we add the triple
to the set P . We note here that since we used a lexical
token matcher, the hyponym phrases required very little
processing for validation. Thus, we simply used stemming
and lemmatization to reduce them to their base form.

58

TABLE I: Lexicosyntatic Patterns

Hearst Hyponymy Patterns

1 NP such as NP (, NP and/or NP)
2 such NP as NP (,NP and/or NP)
3 NP, including NP (,NP and/or NP)
4 NP (, NP) and other NP
5 NP (, NP) or other NP
6 NP, especially | called | named | including NP (, NP and/or NP)

Attribute Patterns

6 the NP of (the | a | an) NP [is]

TABLE II: Semantic Unit Extraction Rules

Frontier Rules Parsing Rules

verb+!noun NP/NN conj. NP/NN
non-attr. adj. NP/NN prep. NP/NN
determiner
special char.
special adj.
numeric

The challenge in extracting a concept and instance in
an is-a pair is the identification of the concept to a precise
level. Instances are typically listed by authors with less
descriptors when they are enumerated in a sentence, thus
the pattern recovers them in a more clean form than the
concept. The concept is usually a noun phrase that can
sometimes be a full sentence and more common than not,
can be reduced to a more basic noun phrase or single noun.
Thus, for our hypernym (concept) extraction algorithm
we apply a modified version of the probabilistic approach
used in [14]. Given a candidate {X,Y} pair, we detect the
values of xi ∈ X for the hypernym phrase. This may be
a single value of x, or a subset, which we use as a sorted
set by computing the n-grams from the set X. For that,
we compute the likelihood ratio between the two words
with highest likelihood of X. For each xi ∈ X and χj ⊂ X,
where χj is a subset of ordered n-gram words from X, we
compute the ratio between the two terms x1 and x2 with
highest posterior p(xi | Y).

V. Scientific Taxonomy Construction
The knowledge base extracted from the previous step

in the set P is a set of N hypernym-hyponym pairs. In
order to construct a taxonomy graph from these pairs we
first represent each pair as a local taxonomy tree rooted
at the hypernym. The hyponym will be a child node. The
construction of the taxonomy is thus reduced to a graph
merging problem where initially we have N local taxonomy
trees. We define three rules used as a basis for the taxonomy
construction.

Axiom 1 (Modifiers). A noun phrase comprised of a
modifier and a noun, is almost always a subconcept of the

Input : Local taxonomy graphs set T
Output :Taxonomy Graph G
G ← ∅ foreach t ∈ T do

if |t| = 2 then
G ← node(t2, t)

end
end
foreach ti, tj ∈ T do

if ti.children ∩ tj .children �= ∅ then
G ← merge(ti.root, tj .root)

end
end
foreach ti ∈ T do

foreach v ∈ ti.children do
foreach tj ∈ T do

if tj .children ∩ ti.children �= ∅ then
G ← merge(v, tj .root)

end
end

end
end
return : G

Algorithm 1: Taxonomy Graph Construction Algorithm

noun. Thus, if (X, Y) ∈ P and X={x1,x2}, then (x2, X) ∈
T .

For example, we can easily infer from the phrase learning
algorithm that it is a subconcept of the more abstract
concept algorithm. This allows to identify the specific type
of algorithm for other instances in other pairs by adding
them under their specific concept, this process is covered
by the other merge operations.
In order to construct the taxonomy from the individual

pairs, pairs containing the same concepts must be merged
into a single node in the graph. Simple surface form
comparing will not do in this case because of possible
polysemous terms and phrases. Thus we derive the following
two propositions to address the case of a single surface
form that has more than one meaning.

Axiom 2 (Horizontal Merging). For two pairs with
same text values for their hypernym noun phrases, the noun

59

(a) Modified noun node insertion

(b) Simple similar root node merge.

(c) Vertical similar node insertion.

Fig. 1: Graph insertions and merges for taxonomy construc-
tion.

phrases have the same meaning if they were extracted from
the same sentence. If they are not in the same sentence,
they have the same meaning if they have similar instances.
For pairs (X1, Y1), (X2, Y2) ∈ P , if X1 ∩ X2 = X1 = X2
and Y1 ∩ Y2 �= ∅, then (X1, Y1 ∪ Y2) ∈ T .

Axiom 3 (Vertical Merging). For two pairs, if the
instance noun phrase of the first pair has the same text
value as that of the concept of the other pair, they have the
same meaning if the instance’s coordinate terms are similar
to the instances of the concept in the other pair. For pairs
(X, Y1), (V, Y2) ∈ P , if Y1 ∩ V = Y1 = V and there exist
other Yi and Yj such that (X1, Yi) ∈ P , (V, Yj) ∈ P and
Yi ∩ Yj �= then (X, V) ∈ T .

Our taxonomy construction algorithm is described in
Algorithm 1. Initially the taxonomy graph is empty. Based

on the our first proposition, the method performs a
ModifierMerge operation. This generates a new local
taxonomy t of a concept-subconcept relationship. This
steps adds these nodes to the set of local taxonomies. This
is illustrated in Figure 1a.
Next, using the second proposition, we perform a

SimpleMerge operation, where nodes whose roots are
similar and belong to the same sentence are horizontally
merged into one parent node with the union of children of
both nodes. In the case where the two nodes did not occur
in the same sentence, the similarity between their children
is used to determine whether to merge them or not. If the
children have some overlap then we consider the nodes as
the same node and merge them into one node. An example
is shown in Figure 1b
The third proposition is used for the VerticalMerge,

shown in Figure 1c, which aims to increase the hierarchy
level in the graph. We apply this merge by observing the
overlap between the each child of a node and the root nodes
of other local taxonomies.

VI. Evaluation

In this chapter we discuss a detailed evaluation on the
knowledge base construction method. We evaluate the
proposed algorithms as well as discuss the properties of
taxonomy that is built using the proposed approach. First
we discuss the details of our data set, and then describe the
experimental setup used to evaluate the knowledge base
construction portion of this thesis.
The first step is to evaluate the quality of the proposed

hyponymy extraction method. The second is to evaluate
the quality of the taxonomy construction method. Since
no ground truth labeled data is available at the time
of the study, we adopt the most common evaluation
measures used in prominent studies of similar problems [14],
[26], [6]. For the hyponymy extraction evaluation we define
two evaluation metrics: correctness using precision and
recall, and relevance using scoring scale well known in the
literature [26]. The taxonomy construction experiments are
designed to capture the quality of the resulting knowledge
base in terms of: quality of entity categories and entity
coverage of the taxonomy.
The hyponymy extraction method was applied to a data

set of 10k research articles from CiteSeerX1 published
between 2004 and 2014 in top 50 computer science confer-
ences. The topics covered include data mining, artificial
intelligence, computer security and most computer science
topics.

A. Hyponymy Extraction
In this section we describe two separate experiments

conducted to evaluate correctness of the extracted triples
and relevance of the triple statement, respectively.

1http://citeseerx.ist.psu.edu

60

TABLE III: Extractions per iteration in Iterative Learning algorithm (ILA) starting with 16,465 candidate sentences&
Taxonomy node counts after each merge operation

ILA iteration # # of triples found #of new triples found

1 15,006 15,006
2 15,064 58
3 15,065 1
4 15,066 1
5 15,066 0

Number of local taxonomies after merging

Triples to Local Tax. 15,066
Simple Node Merge 3,564
Vertical Expansion 1,405

TABLE IV: Taxonomy nodes with most number of children and a subset of instances.

Hypernym #of children Sample categories Sample Instances

application 962 web application, real-world application,
data-driven application

iChat, telnet, online game, internet
telephony, Adobe Acrobat, Gmail, Face-
book, web browser, automated tuturing,
GIMP, Bugzilla, Emule

system 375 operating system, voip system, manip-
ulation system, NLP system, database
system, complex system, storage sys-
tem, content-based system, version con-
trol system, navigation system, legacy
system,

email, YouTube, PEACH, instant mes-
saging IM, content sharing site, voip
system, JNI, SWIG, Poly-glot, ePic,
Snort, KronoBase, XSB, Personal-
RAID, Six Sigma, gesturePen, SRAM
cache, Gnutella, NFS

algorithm 178 mining algorithm, learning algorithm,
hasg-based algorithm, clustering algo-
rithm, parallel algorithm

expectation maximization EM, Sam-
pleRank, SHA-2, mRMR, AdaBoost,
Spherical Deconvolution, SATF, Sup-
port Vector Machine, Schapire

TABLE V: Comparison of taxonomy graph properties.

tuples Avg. # children Avg. depth Max depth

UG-PL 10,589 0.0001 1 3
NG-PL 15,066 0.001 1 3

1) Correctness: To evaluate the quality of our extracted
hypernym-hyponym pairs, we randomly select pairs ex-
tracted from 400 documents. We extract the is-a pairs from
these documents using our approach that incorporates the
ngrams of the hypernym phrase and compare the results
with that of applying the SuperConceptDetection algorithm
described in [14]. We refer to our approach as NG-PL, from
n-gram probabilistic learner and the baseline as UG-PL,
since it considers only unigrams. From the 10k documents
the amount of harvested pairs is 17k, from which we select
1, 000 by each method. The triples were annotated by three
computer science graduate students. The annotators were
presented with the triple and the text containing from
which it was extracted and is asked to assign a score to each
extracted triple. The scoring system uses a scale ranging
0-4, similar to the one in [26], defined as follows:
0: The extracted relation is nonsense.
1: The extracted relation is not nonsense but unhelp-

ful. This covers the case where the relationship
is too abstract to be useful or the phrase is not

descriptive enough to express a clear relationship.
2: Opinion/I don’t know. An example of this case

the pair may contain a very specific concept that
cannot be known without knowing the context of
the paper it was extracted from.

3: The extracted relation is somewhat true. This is
used when the pair is generally correct but requires
only small modification to become fully true.

4: The extracted relation is correct as is.

Table VII shows the scores given by the annotators.

2) Relevance: To evaluate the relevance of the extracted
triples we ask the annotators to evaluate the extracted
triples based on whether they are concrete or abstract. A
concrete relationships is where the hypernym is considered
to be one of the closest terms or categories the hyponym
can be described with. If the hypernym is a general concept
and not considered descriptive enough of the hyponym, it is
considered to be abstract. Table VI shows the percentages
of both as labeled by the annotators. The last row is a
measure of whether the extracted phrase is a complete
phrase in itself. This evaluates the semantic unit detection,
if the phrase can hold it’s meaning and carry the same
meaning even when taken out of the context it is mentioned
in, it is considered a well-phrased semantic unit.

61

TABLE VI: Relevance of Extracted Hyponymy Relation-
ships

Measure % of Triples

Concrete 82.8
Abstract 17.2
Phraseness 93.39

Fig. 2: Semantic Unit Extraction Steps.

B. Taxonomy Evaluation
In this section we report on the evaluation of the

constructed taxonomy graph and the resulting knowledge
base as a source for scientific knowledge.

1) Correctness: To evaluate the accuracy of the cate-
gories assigned to concepts extracted in our knowledge base,
we conduct two evaluations. The first is similar to the one
in the previous section where we ask users to annotate the
categories of a subset of 1, 000 entities. For this task we
ask 6 computer science graduate and senior undergraduate
students to score the extractions on the same scale of 0-4.
The results are shown in Table VII.

The second evaluation of the terms is conducted by a
comparison with an existing knowledge base. We compare
the assigned hypernym for each entity to those extracted
by the Microsoft Concept knowledge base2. This is built
using the methods proposed in [14] and provides an API
to look up entities and retrieve their hypernyms, which is
referred to as ”class” in the API. By applying our taxonomy
construction system to the 17k candidate sentences, we
harvest over 15k entities and their hypernym. For each
entity if the MS concept graphs returns a hypernym for
that entity that matches the one extracted by our system
we consider it a match. Out of 15, 066 entities, 9, 160 were
found in MS concept graph, and 9, 026 of those entities’
hypernyms were found in the classes returned by the API.

2) Coverage: In order to evaluate the coverage of the
We compare the properties of the constructed knowledge
graph using our hypernym detection algorithm for ngrams
against the same method used only for unigrams, as in [14].

2https://concept.research.microsoft.com/

TABLE VII: Annotator scores for triple extraction on 1000
triples

Score %Entity-Concept pairs

4 61.27%
3 04.27%
2 11.77%
1 06.77%
0 15.93%

Table V shows the values for the knowledge base size for
each method.
To evaluate the quality of the knowledge base we asses

the coverage of the entities. To do this we perform a concept-
space evaluation similar to that used in [14] to evaluate the
coverage of the knowledge base. This measures whether
the concepts extracted are ones that are frequently queried,
the assumption is if a query term is found in our knowledge
base, then it has good coverage. To do this, we compile a
set of 3 million query logs submitted to the scholarly search
engine CiteSeerX during the years 2015 and 2016. After
removing stop-words are from the terms in the queries,
we rank the top unique query terms in the entire set of
just over 500,000 unique terms. We found that 3504 of the
10k were found in the knowledge base. For the 50k most
frequent query terms, 5810 of them were found in the KB
of 8k entities.

C. Comparisons with Open Information Extractors
In this section we conduct an experiment to compare

the effectiveness of our approach as whole in terms of:
the choice of extracting only hyponymy relationships and
the quality of the results per the metrics in the previous
sections.
Open information extraction (OpenIE) tools such as

Reverb [4], [13] and StanfordOpenIE [27] are designed to
extract triples from unstructured text. OpenIE approaches
do not assume a predefined schema for the triples extracted,
thus the predicate, which is the relationship, can be of any
type. In order to evaluate the effectiveness of our approach
we compare the results obtained from our system with
those obtained by the Reverb and Stanford OpenIE tools.
We run both openIE tools on a set of 100 candidate

sentences extracted from over 150 research articles. Both
the StanfordOpenIe tool, denoted S.OpenIE, and the
Reverb tool extract all relationship types possible, whereas
our approach, denoted NG-PL, extracts only hyponymy
relationships. Table VIII shows the resulting evaluation
of the triples extracted by each tool. The first row shows
that the StanfordOpenIe tool, denoted S.OpenIE, has the
highest recall as it harvests 396 triples from only 100
sentences.The phraseness column reports the amount of
triples of which the subject and object were well-formed
English phrases. The correctness column measures the
triples that scored a 3 or 4 based on our correctness
scale described in the previous section. For those correct

62

TABLE VIII: Hyponymy Extraction using NG-PL vs.
OpenIE Systems on 100 Sentences

System #Triples is-A Hyponymy Phraseness

S.OpenIE 396 28 1 17
ReVerb 88 8 1 0
NG-PL 23 23 13 16

triples, the quality of the information carried in the triple
is measured by whether the fact is concrete or abstract. As
noted from the table, our system outperforms openIE tools
in quality of phrase extraction, second best is Stanford
OpenIE, which is expected since it relies on a dependency
parse similar to our approach. Although, the lowest in the
amount of extracted triples, our method has the highest
ration in quality of triples, i.e. concrete facts.
Table VIII shows the amount of triples that are extracted

as is-a relationships. Since both openIE tools extract all
types of relationships, the table illustrates the importance
of proposing our method for hyponymy extractions as the
values show that none of these tools have high precision
or recall when it comes to hyponymy relations Extraction.
The column displaying the is-a values, shows the amount
of triples that have the is-a as a relationship. However,
since ”is-a” can be used in English for purposes other than
expressing hyponymy, we report the number of these triples
that actually are instances of hyponymy use of the is-a
predicate. The table shows that our method significantly
outperforms both methods in extracting triples if we focus
on hyponymy relations, which is the goal of building a
knowledge base.

References

[1] A. Elkiss, S. Shen, A. Fader, G. Erkan, D. States, and D. Radev,
“Blind men and elephants: What do citation summaries tell
us about a research article?” Journal of the Association for
Information Science and Technology, vol. 59, no. 1, pp. 51–62,
2008.

[2] R. A. Al-Zaidy and C. L. Giles, “Automatic knowledge base
construction from scholarly documents,” in Proceedings of the
2017 ACM Symposium on Document Engineering. ACM, 2017,
pp. 149–152.

[3] I. Augenstein, M. Das, S. Riedel, L. Vikraman, and A. McCal-
lum, “Semeval 2017 task 10: Scienceie-extracting keyphrases
and relations from scientific publications,” arXiv preprint
arXiv:1704.02853, 2017.

[4] O. Etzioni, A. Fader, J. Christensen, S. Soderland et al., “Open
information extraction: The second generation,” in Twenty-
Second International Joint Conference on Artificial Intelligence,
2011.

[5] A. Singhal, “Introducing the knowledge graph: things, not
strings,” https://googleblog.blogspot.com/2012/05/introducing-
knowledge-graph-things-not.html, 2012.

[6] A. Carlson, J. Betteridge, B. Kisiel, B. Settles, E. R. Hruschka Jr,
and T. M. Mitchell, “Toward an architecture for never-ending
language learning.” in AAAI, vol. 5, 2010, p. 3.

[7] F. M. Suchanek, G. Kasneci, and G. Weikum, “Yago: a core of
semantic knowledge,” in Proceedings of the 16th international
conference on World Wide Web. ACM, 2007, pp. 697–706.

[8] S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, R. Cyganiak, and
Z. Ives, “Dbpedia: A nucleus for a web of open data,” The
semantic web, pp. 722–735, 2007.

[9] D. B. Lenat and R. V. Guha, Building large knowledge-based sys-
tems; representation and inference in the Cyc project. Addison-
Wesley Longman Publishing Co., Inc., 1989.

[10] K. Bollacker, C. Evans, P. Paritosh, T. Sturge, and J. Taylor,
“Freebase: a collaboratively created graph database for structuring
human knowledge,” in Proceedings of the 2008 ACM SIGMOD
international conference on Management of data. AcM, 2008,
pp. 1247–1250.

[11] D. Vrandečić and M. Krötzsch, “Wikidata: a free collaborative
knowledgebase,” Communications of the ACM, vol. 57, no. 10,
pp. 78–85, 2014.

[12] O. Etzioni, M. Cafarella, D. Downey, S. Kok, A.-M. Popescu,
T. Shaked, S. Soderland, D. S. Weld, and A. Yates, “Web-scale
information extraction in knowitall:(preliminary results),” in
Proceedings of the 13th international conference on World Wide
Web. ACM, 2004, pp. 100–110.

[13] A. Fader, S. Soderland, and O. Etzioni, “Identifying relations for
open information extraction,” in Proceedings of the Conference on
Empirical Methods in Natural Language Processing. Association
for Computational Linguistics, 2011, pp. 1535–1545.

[14] W. Wu, H. Li, H. Wang, and K. Q. Zhu, “Probase: A probabilistic
taxonomy for text understanding,” in Proceedings of the 2012
ACM SIGMOD International Conference on Management of
Data. ACM, 2012, pp. 481–492.

[15] M. A. Hearst, “Automatic acquisition of hyponyms from large
text corpora,” in Proceedings of the 14th conference on Compu-
tational linguistics-Volume 2. Association for Computational
Linguistics, 1992, pp. 539–545.

[16] S. Cederberg and D. Widdows, “Using lsa and noun coordination
information to improve the precision and recall of automatic
hyponymy extraction,” in Proceedings of the seventh conference
on Natural language learning at HLT-NAACL 2003-Volume 4.
Association for Computational Linguistics, 2003, pp. 111–118.

[17] R. Snow, D. Jurafsky, A. Y. Ng et al., “Learning syntactic
patterns for automatic hypernym discovery.” in NIPS, vol. 17,
2004, pp. 1297–1304.

[18] M. Pasca and B. Van Durme, “What you seek is what you get:
Extraction of class attributes from query logs.” in IJCAI, vol. 7,
2007, pp. 2832–2837.

[19] T. Lee, Z. Wang, H. Wang, and S.-w. Hwang, “Attribute
extraction and scoring: A probabilistic approach,” in Data
Engineering (ICDE), 2013 IEEE 29th International Conference
on. IEEE, 2013, pp. 194–205.

[20] A. Yates, M. Cafarella, M. Banko, O. Etzioni, M. Broadhead,
and S. Soderland, “Textrunner: open information extraction
on the web,” in Proceedings of Human Language Technologies:
The Annual Conference of the North American Chapter of
the Association for Computational Linguistics: Demonstrations.
Association for Computational Linguistics, 2007, pp. 25–26.

[21] T. Swoboda, M. Hemmje, M. Dascalu, and S. Trausan-Matu,
“Combining taxonomies using word2vec,” in Proceedings of the
2016 ACM DocEng Symposium on Document Engineering.
ACM, 2016, pp. 131–134.

[22] S. P. Ponzetto and M. Strube, “Deriving a large scale taxonomy
from wikipedia,” in AAAI, vol. 7, 2007, pp. 1440–1445.

[23] P. Lopez, “Grobid,” https://github.com/kermitt2/grobid, 2008-
2016.

[24] C. D. Manning, M. Surdeanu, J. Bauer, J. R. Finkel, S. Bethard,
and D. McClosky, “The stanford corenlp natural language
processing toolkit.” in ACL (System Demonstrations), 2014, pp.
55–60.

[25] A. X. Chang and C. D. Manning, “Tokensregex: Defining
cascaded regular expressions over tokens,” Tech. Rep. CSTR
2014-02, 2014.

[26] X. Li, A. Taheri, L. Tu, and K. Gimpel, “Commonsense knowl-
edge base completion,” in Proceedings of the 54th Annual Meeting
of the Association for Computational Linguistics (ACL), Berlin,
Germany, August. Association for Computational Linguistics,
2016.

[27] G. Angeli, M. J. Premkumar, and C. D. Manning, “Leveraging
linguistic structure for open domain information extraction,” in
Proceedings of the 53rd Annual Meeting of the Association for
Computational Linguistics (ACL 2015), 2015.

63

