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Abstract—Subgraph search is a useful and challenging query
scenario for graph databases. Given a query graph q, a subgraph
search algorithm returns all database graphs having q as a
subgraph. To efficiently implement a subgraph search, subgraph
features are mined in order to index the graph database. Many
subgraph feature mining approaches have been proposed. They
are all “mine-at-once” algorithms in which the whole feature
set is mined in one run before building a stable graph index.
However, due to the change of environments (such as an update
of the graph database and the increase of available memory), the
index needs to be updated to accommodate such changes. Most
of the “mine-at-once” algorithms involve frequent subgraph or
subtree mining over the whole graph database. Also, constructing
and deploying a new index involves an expensive disk operation
such that it is inefficient to re-mine the features and rebuild the
index from scratch.

We observe that, under most cases, it is sufficient to update
a small part of the graph index. Here we propose an “iterative
subgraph mining” algorithm which iteratively finds one feature
to insert into (or remove from) the index. Since the majority
of indexing features and the index structure are not changed,
the algorithm can be frequently invoked. We define an objective
function that guides the feature mining. Next, we propose a
basic branch and bound algorithm to mine the features. Finally,
we design an advanced search algorithm, which quickly finds a
near-optimum subgraph feature and reduces the search space.
Experiments show that our feature mining algorithm is 5 times
faster than the popular graph indexing algorithm gIndex, and
that features mined by our iterative algorithm have a better
filtering rate for the subgraph search problem.

I. INTRODUCTION

Graph data has grown steadily in various scientific and
commercial areas. Chemical molecules [1], proteins [2] and
three-dimensional mechanical parts [3] are modeled as graphs.
Graphs also have broad applications in such areas as computer
vision and image processing [4].

Subgraph Search is one of the most popular graph retrieval
models. In a graph dataset D, given a query graph q, a
subgraph search algorithm retrieves all graphs in D containing
q as a subgraph. Subgraph query processing is nontrivial
because deciding if one graph is a subgraph of another,
also referred to as the subgraph isomorphism problem, is
shown to be NP-complete [5]. To solve the subgraph search
problem, subgraph (subtree) features are commonly mined
using several methods to build a graph index [6]–[11]. As
shown in Figure 1, in a 8-graph dataset, three subgraph
features are mined to build a graph index. Given a query q

containing features p1 and p3, any supergraph of q should
have both p1 and p3 as subgraphs. Therefore, only graphs

{g1, g2} = {g1, g2, g6, g8} ∩ {g1, g2, g3, g5, g7} are candidate
graphs that need to be evaluated with subgraph isomorphism
tests, and all the other database graphs are directly filtered
out. The query processing time depends upon the number of
subgraph isomorphism tests, which, in turn, depends on the
filtering power of the feature set. As such an important aspect
is a choice of good features. Many features, such as frequent
and discriminative subgraph (subtree) features [6], [9]–[11],
δ−TCFG features [7] and MimR (maximum information and
minimum redundancy) features [8] are mined to build the
graph index and have certain significant filtering capabilities.
However, these algorithms are all mine-at-once algorithms:
they first mine the whole feature set and then use those
features to construct a stable index. For these algorithms
the index structure can only be slightly changed, otherwise
all the features need to be re-mined and the index has to
be reconstructed and deployed. Such changes are necessary
when the underlying database is updated or extra memory
becomes available for the index. In a recent study [12], roughly
4, 000 new structures are added into the SCI Finder database
every day. Running the mine-at-once algorithms frequently to
accommodate those changes is currently quite costly. In order
to address the index updating problem, Zou, et al., propose
a spectral coding method, gCode, to index graph databases
without mining and using subgraph features [12]. However,
Han, et al. using comprehensive comparison experiments show
that gCode’s filtering power is much lower than that of feature-
based subgraph indexes [13].

In this paper, we introduce a light-weight subgraph feature
mining algorithm suitable for mining indexing features for a
dynamically updated graph database. We propose an iterative
method to mine a subgraph feature and insert it into the
index. Since our mining algorithm takes far less time than the
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Fig. 1. Demo of subgraph query processing



existing mine-at-once algorithms, it can be called frequently
to update the graph index accommodating any changes in the
underlying database. Iterative mining of the graph features
for classification and regression has been studied [14]–[17].
However, to the best of our knowledge, we are the first
to propose an incremental, iterative, subgraph-search feature-
mining algorithm.

Given a graph index I with its initial set of indexing features
P0, our mining algorithm searches for a new feature p which
optimizes an objective function. This objective function is
defined as the number of isomorphism tests saved over query
log Q after adding this new feature p. Intuitively, the optimal
feature p should be a frequent subgraph of the query log Q,
infrequent in the graph database and not redundant to features
in P0. Therefore, we enumerate frequent subgraphs from the
query log Q and then evaluate them. The query logs are
seldom used in the previous subgraph search feature selection
algorithms. However, as we show in subsection III-B that
query logs are as important as the underlying graph database.
The isomorphism-test saving (or filtering power) of current
subgraph (tree) features, e.g., δ−TCFG, depends on the query
logs. Although we add training queries to model the objective
function, our algorithm is general enough for any queries. We
also show in subsection III-C that features selected accord-
ing to the objective function are all discriminative features
(irredundant to P0). To alleviate the computation bottleneck
of calculating the objective function, we further propose an
upper bound and lower bound of the objective function in
subsection III-D. Besides finding and inserting new subgraph
features into the graph index, our proposed objective function
can also be used to find and remove useless features from the
index. Due to the lack of space, we do not discuss this in
detail.

In order to quickly find the feature p maximizing the
objective function, we propose two algorithms to prune the
search space in section IV. We first derive an anti-monotone 1

branch upper bound and adopt the branch and bound paradigm
to search for the optimal feature. As the branch upper bound
is not tight (shown in Section IV-A), we propose the second
algorithm, QueryGrouping, to further reduce the search space.
QueryGrouping takes the following two steps: (1) assign the
query logs Q into disjoint groups, such that graphs in each
group share a common subgraph r ∈ P0, (2) enumerate all
frequent subgraphs in each group to search for an optimal
feature. The query group with the longest response time are
mined first. We observe that the optimal value mined from the
first few groups is close to the global optimum; this is because
graphs in each group are similar (sharing common subgraph
r) and the queries with large candidate sets are analyzed
first. Quickly identifying a near-optimal feature can help prune
more branches thus reduce the search space. In addition, since
the number of query graphs in one group is much less than
that in the whole query log, enumerating frequent subgraphs

1A function f is anti-monotone implies x ≤ y if and only if f(x) ≥ f(y).
For the case of graphs, x < y iff x is a subgraph of graph y.

over one small group of query graphs is much faster than
doing it over the entire query log. Finally, features mined
from different groups target at improving the processing of
different queries and have little pair-wise redundancy, they can
be inserted into the index simultaneously. Therefore, we select
the top k features mined in one iteration, which further reduces
the search time.

We show empirically that subgraph features generated by
our iterative mining algorithm reduce the time taken to process
subgraph search queries more than those mined by existing
methods. Furthermore, our incremental algorithm runs signif-
icantly faster than algorithms that mine index features from
scratch when there are database updates or changes in available
memory.

Additionally, we propose a “mine-at-once + iterative min-
ing” framework that alleviates the low-support frequent-
subgraph-mining bottleneck. Current mine-at-once algorithms
often first obtain all frequent subgraphs and then mine the in-
dexing features out of them. To prevent missing any important
feature, frequent features are mined with a very low minimum
support, e.g., 0.01|D|, although most of the selected features
have much higher support. The time for frequent subgraph
mining dominates the overall mining time. To overcome this
bottleneck of feature mining, we first run the mine-at-once
algorithm with a higher minimum support (0.1|D|), then run
the iterative feature mining algorithm to identify the missing
features that are important.

This paper is organized as follows: we introduce background
and preliminaries in Section II. Then we present the objective
function and prove its correctness in section III. In Section IV,
we first introduce a basic branch and bound algorithm. Then
we propose an advance iterative graph mining framework to
reduce the search space. Results of the empirical study is given
in Section V. A review of related work is given in Section VI.
Finally, we conclude this paper in Section VII.

II. PRELIMINARY

A graph g (V,E, L) is defined on a set of vertices V and a
set of edges E such that E ⊆ V ×V . Each node v, or edge e

is associated with one label l(u) or l(e) ∈ L. A subgraph of
a graph g(V,E,L) is a graph h(V �, E�, L) whose vertex set
V � ⊆ V , and E� ⊆ E. A graph g is a supergraph of h if h is
a subgraph of g. We denote the subgraph relationship between
g and h as g ⊃ h and h ⊂ g.

Two graphs g1 = (V1, E1, L) and g2 = (V2, E2, L) are
isomorphic to each other if there is a bijection between V1

and V2 that preserves labels and connectivity of the two
graphs. This bijection is a mapping such that a pair of adjacent
vertices u1, v1 in g1 is mapped to a pair of adjacent vertices
u2, v2 in g2, where L(u1) = L(u2), L(v1) = L(v2), and
L(E(u1, v1)) = L(E(u2, v2)), and vice-versa. A subgraph

isomorphism between g1 and g2 is an isomorphism between g1

and a subgraph of g2. For clarity, we describe and evaluate our
algorithms on labeled undirected connected graphs. However,
our algorithms can be extended on other kinds of graphs via
simple modifications.



Frequent subgraphs (subtrees) are commonly mined and
used in various graph applications. In a graph database D,
a subgraph sg is a frequent subgraph if and only if its support
is greater than a pre-defined parameter, the minimum support,
σ|D|. The support of a subgraph sg is the number of graphs
g ∈ D containing sg. The graphs containing sg in D comprise
the supporting set of sg, D(sg).

Subgraph-search queries are often processed based on a
filter+verify paradigm. Given a set of graph features P =
{p1, p2, ..., pm}, the database graphs are first vectorized based
on P . Each graph g is represented as an m dimensional vector
Xg = [x1, x2, ..., xm], where xi = 1 if pi ⊂ g and xi = 0
otherwise. An inverted index is then built on all graphs in
D where each dimension in the vector is a key in the index.
Given a query q, if an indexed subgraph feature p = q, p’s
supporting set is returned directly as the answer set. Otherwise,
the candidate set C(q) can be derived as,

C(q) =
n
∩

pi⊂q
D(pi) =

n
∩

pi∈maxSub(q,P )
D(pi) = D(maxSub(q, P )),

(1)

where maxSub(q, P ) is defined as follows:
Definition 1 (Maxsub Features): Given a subgraph feature

set P , the maximal subgraph features of a graph q in P is

maxSub(q,P) ={pi ∈ P |pi ⊂ q, �x ∈ P s.t. pi ⊂ x ⊂ q}.
(2)

After obtaining the candidate set C(q), a step of subgraph
isomorphism test is performed to check whether the query q

is contained in each candidate graph.
The time complexity of processing a query q is:

Tresp(q) = Tfilter(q) + Tverif (C(q)). (3)

Because of the subgraph isomorphism tests (which is NP-
hard), the verification time Tverif (C(q)) dominates the overall
response time. Our experiments over the AIDS dataset con-
taining roughly 40 thousands chemical molecule graphs show
that Tverif/Tresp = 93.2% for gIndex and 95% for FG-Index
(the dataset is introduced in section V). We further make a
reasonable assumption that Tverf is proportional to the number
of candidate graphs obtained after the filtering step,

T
verif

(C(q)) ∝
�

0 q ∈ P

|C(q)| = |D(maxSub(q, P ))| q �∈ P.

(4)

The size of the candidate set depends on the feature set P

used to build the inverted index. Because of the exponential
number of possible subgraphs of all graphs in the database,
not all subgraph features can be added into P . The size
of P is usually confined by the size of available memory.
In FG-Index [7], some features are also stored on disk, but
they are mainly used for direct retrieval of answers when the
query hits one of the on-disk features. The on-disk features
are not used for filtering, because frequent swapping them
in and out of memory involves expensive disk operations,
which greatly increases the cost of index lookups. Therefore,

in the following discussion, the feature set P only represents
the in-memory features that are used for filtering. Again, we
make a simplifying (but reasonable) assumption that the total
memory consumption of the inverted index is proportional to
|P |. In order to improve the efficiency of subgraph search
under memory constraint, it is necessary to select a set of
N graph features minimizing the expectation of the overall
response time for all queries,

P = argmin
|P |=N

�

∀ unique q

Tresp · Pr(q)

≈ argmin
|P |=N

�

∀ unique q

Tverif · Pr(q)

= argmin
|P |=N

�

∀ unique q

|C(q)| · Pr(q) (5)

where Pr(q) is the probability that the query is isomorphic to q

and
�
∀ unique q Pr(q) = 1. Existing mine-at-once methods

take three steps to answer subgraph search queries: (1) mine
subgraph features, (2) construct the index, and (3) process
queries. In our iterative feature mining method, we assume
that we have an initial graph index I with features P0. Due
to database insertion, deletion, or increase of the available
memory, the index and features need to be updated. We run
our iterative mining algorithm to find a small set of features P �

and add them to the graph index I . We also remove features
with limited filtering power from the index.

III. OBJECTIVE FUNCTION OF THE ITERATIVE MINING

In this paper, we model the iterative feature mining as an
optimization problem. We first propose an objective function
capturing the computational cost-saving of the isomorphism
tests after adding a new feature p to the current feature set P0.
The goal of the iterative feature mining is to find a subgraph
feature p maximizing the objective function.

The objective function depends on the probability distri-
bution of the expected queries. Estimating query distribution
is hard, so we take a practical approach, calculating the
objective function based on a training query log. Query logs
have not been widely used on the subgraph-search feature-
selection problem. Current available indexing features, e.g.,
δ-TCFG (FG-Index) [7] and gIndex features [6], seem to
be independent of the queries. However, as we show in
subsection III-B, the isomorphism-test saving by using FG-
Index and gIndex actually depends on the underlying queries,
which demonstrates the necessity of considering the query
logs. Since it is hard to get a real query work load, we use
randomly generated queries in this paper. Our algorithm can be
used to provide more accurate answers when real query loads
are available. We also show that features selected according
to the gain function are discriminative in subsection III-C.

A. Objective Function of A New Feature

Definition 2 (Iterative Graph Feature Mining): Given a
graph database D and a graph index with a feature set P0 of
size n − 1, find a new graph feature p, p �∈ P0 such that the



expectation of the verification cost Tverif (≈ Tresp), which
is proportional to

�
∀ unique q |C(q)| · Pr(q), is minimized

with the new feature set {p, P0} indexed, where C(q) is the
candidate set of the query q.

To distinguish the candidate set generated by using feature
set P0 from that by {p, P0}, we add a new parameter P in
C(q,P), where P is the graph-feature set that is used to obtain
the candidates C(q).

We propose our objective function as the saving of the
number of isomorphism tests (isomorphism-test saving) after
bringing the new feature p into the feature set P0:

gain(p, P0) =
�

∀ unique q

(|C(q, P0)|− |C(q, {p, P0})|) · Pr(q).

(6)

In order to minimize the expectation of the verification cost
Tverf (≈ response time Tresp), the new feature should be
selected as the one maximizing the isomorphism-test saving,
p = argmax gain(p, P0).

From the frequentist point of view, |C(q, P0)| = |D| ·
PrD(maxSub(q, P0)), where PrD(maxSub(q)) is the prob-
ability of graphs in the dataset D containing all features
in maxSub(q). Notice that Pr(q) is the probability of a
query graph isomorphic to q. And PrD(maxSub(q)) =
Pr(g ∈ D s.t. g ⊃ maxSub(q)). It is hard to esti-
mate the distribution of Pr(q), PrD(maxSub(q, P0)) and
PrD(maxSub(q, {p, P0})). Therefore, we take a practical
approach, calculating the objective function over the graph
database D and a training query log Q:

gain(p, P0) =
1
|Q|

�

q∈Q

[|C(q, P0)|− |C(q, {p, P0})|] (7)

Since the objective function of a feature p only relates to the
query q = p and queries for which p is a maximal subgraph
given that {p, P0} is indexed (indicated in Equation 1), we do
not consider irrelevant queries while calculating the objective
function. We denote queries that have a maximal subgraph p

by the minimal super queries of p.
Definition 3 (MinSup Query): Given a query set Q and a

subgraph feature p ∈ P , a graph q ∈ Q is a minimal super
query of the feature p if and only if the feature p is a maximal
subgraph feature of q.

minSup(p, Q) = {q ∈ Q|p ∈ maxSub(q, P )}. (8)

Therefore,

gain(p, P0) =
1
|Q|

�

q∈minSup(p,Q)

|C(q, P0)− C(q, {p, P0})|

+
1
|Q|

�

q∈Q

I(p = q) |C(q, P0)|, (9)

where I is the indicator function: I(p = q) = 1 iff p is
isomorphic to q.

B. Importance of the query distribution

Our proposed objective function takes training queries Q

into consideration for the purpose of estimating the expectation
of the isomorphism-test saving over all possible queries. Previ-
ous works seem to be independent of the training query set Q

and are generally applied to any possible queries. However, as
we show in this section, FG-Index [7] has implicit assumptions
on the queries. If we change the query distribution, the
isomorphism-test saving of FG-Index will change significantly
(from O(|D|/log|D|) to O(1)). Similar analysis on gIndex and
other algorithms draws the same conclusion (see Appendix B
for details).

Statement 1 (FG-Index’s isomorphism-test saving):

FG-Index optimizes the worst case response time. Its
isomorphism-test saving depends on query graph distribution,
Pr(q).

Proof: FG-Index assumes the difference between C(q)
and D(q) is relatively small compared to D(q). Hence,

E[ T
resp

] ≈ E[ T
verf

] ∝
�

∀ unique q

|C(q)| · Pr(q)

≈
�

∀ unique q

|D(q)| · Pr(q)

=
� |D|

1
w · PrQ(|D(q)| = w)dw, (10)

where PrQ(|D(q)| = w) is the probability that the query q

has support w in the graph database D. Although w is an
discrete value, we approximate the summation by integration
while |D|� 1.

Instead of decreasing the difference between C(q) and
D(q), FG-Index saves computational cost by pre-calculating
and storing the answer for queries with a large answer set
D(q), which are denoted by FG-queries. Assume that the
threshold for FG-queries is set to δ, such that all queries q with
|D(q)| > δ|D| are precomputed and can be answered directly.
Hence, the worst case for the isomorphism tests decreases to
δ|D|. The total isomorphism-test saving of FG-Index is

FGgain =
� |D|

δ|D|
w · PrQ(|D(q)| = w)dw, (11)

which actually depends on the query distribution
PrQ(|D(q)| = w).
We observe in our experiments that there is a power law
relationship between queries and their support: the number of
queries with support w equals to a · w−k where w ∈ [1, |D|]
(see Appendix A for details). Then, the probability follows the
distribution PrQ(|D(q)| = w) = (k−1)w−k

1−|D|−k+1 .

FGgain =
� |D|

δ|D|

(k − 1)w−k

1− |D|−k+1
· wdw =

(k − 1) · |D|(δ2−k − 1)
(k − 2)(|D|k−1 − 1)

< E(w) =
(k − 1)(|D|k − |D|2)
(k − 2)(|D|k − |D|) . (12)

The above isomorphism-test saving depends largely on k.
Assume 1 < k < 2. When k → 1, the cost savings is



limk→+1 FGgain = |D|−δ|D|
log |D| . When k → 2, the cost savings

is limk→2 FGgain = −|D|·log δ
|D|−1 , which is small compared to

limk→+1 FGgain.
Most of the previous indexing algorithms extract testing

queries from the graph database D: they first enumerate all
subgraphs for each database graph g ∈ D, then draw random
samples (following the uniform distribution) to generate the
query set Q. We show in Appendix A that based on our
experiments on chemical molecules, the queries (frequent
subgraphs) and their support follow a power law relationship
with k = 1.26. Hence, following the Equation 12, the cost
saving by FG-Index on chemical molecules is 0.34|D|

D0.26−1 .

C. Objective function VS Discriminative ratio

In related works [6]–[9], a feature p, to be brought into the
index, has to be discriminative. In this subsection, we show
that a feature selected according to the proposed objective
function is discriminative, and the discriminative ratio is
modeled more precisely than the previous works.

gIndex [6] defines a feature f to be discriminative w.r.t.
f ’s subgraphs sub(f) = {f �|f � ⊂ f}: a feature f is
discriminative if |D(sub(f))|/|D(f)| > γ. In tree+δ [9], the
discrimination of a subgraph feature f is evaluated w.r.t. both
subtrees contained in f , Tf = {t� is a tree |t� ⊂ f}, and
one subgraph f � ⊂ f : a subgraph feature f is discriminative
if D(Tf )−D(f)

D−D(f) > �0 and D(f)
D(f �) < σ∗. In FG-Index [7], a

discriminative feature f is defined w.r.t. its supergraphs: a
feature f is a δ-TCFG feature if ∀f � ∈ P0 and f � ⊃ f ,
|D(f �)|/|D(f)| < 1 − δ. The above three measurements of
discrimination confine to f ’s supergraph or subgraph(subtree)
only. In this subsection, we propose a general definition of
discrimination w.r.t all features in P0.

We first use an example to show the benefit of defining
the discrimination of a feature f w.r.t to P0. Assume P0

contains 3 features P0 = {p1, p2, p3}, and the supporting
set of each feature is: D(p1) = {g1, g2, g3, g4}, D(p2) =
{g1, g2, g3, g5}, and D(p3) = {g1, g2, g5}. In adition, all the
queries contain those three features. The discrimination of
a new feature p (assume p is the supergraph of both p1,
p2 and D(p) = {g1, g2}) is then evaluated. Assume we set
the discriminative ratio (as in gIndex) to be 4/3, then p is
discriminative because |D(p1)∩D(p2)|/|D(p)| = 3/2 > 4/3.
However, if we consider the discrimination of p w.r.t P0, then
p is not discriminative enough to filter any false graphs. In
other words, although p is not redundant with its subgraphs
p1 and p2, p is redundant with p3, which has no containment
relationship with p.

The conditional probability PrD(p|P0) can not be used to
define the discrimination of a new pattern p w.r.t. feature
set P0. This is because PrD(P0) = 0 when P0 is a set
of heterogeneous subgraph features (there is no database
graph containing all the subgraphs in P0). In order to find a
reasonable definition, we take queries into consideration and
propose the following definition.

Definition 4 (Discrimination): A feature p is discriminative

w.r.t P0 if dis(p, P0) < δ, where

dis(p, P0) =
�

∀ unique q

Pr(q) · dis(p, P0; q), (13)

and dis(p, P0; q) =
�

0 p �⊂ q

PrD(p|maxSub(q, P0)) p ⊂ q.

(14)

Based on the above definition, the discrimination of p is an
expectation of dis(p, P0; q), thus it is independent of any
specific query graph. When p �⊂ q, p does not participant
in filtering for query q, dis(p, P0; q) is zero. When p ⊂ q,
dis(p, P0; q) is the probability of graphs containing p under
the condition that graphs containing maxSub(q, P0). Here,
only maxSub(q, P0), instead of P0 is considered because only
maxSub(q, P0) in the feature set P0 participants in filtering
for query q.

Statement 2 (Coherence): Features maximizing the objec-
tive function are discriminative to current features P0 in the
index.

Proof: We first expand the discrimination of p on q:

dis(p, P0; q) = PrD(p|maxSub(q, P0)) · I(p ⊂ q)

=
PrD(p, maxSub(q, P0))
PrD(maxSub(q, P0))

· I(p ⊂ q)

=
D({p, maxSub(q, P0)})

D(maxSub(q, P0))
· I(p ⊂ q). (15)

Recall that C(q, P0) = D(maxSub(q, P0)), hence,

dis(p, P0; q) =
C(q, {P0, p})

C(q, P0)
· I(p ⊂ q). (16)

Therefore, the first monomials of Equation 9 can be rewritten
as,

�

q∈minSup(p,Q)

C(q, P0) · (1− dis(p;P0, q)), (17)

which is a weighted expectation of dis(p;P0, q). Thus, the
definition of the objective function and the discriminative value
are coherent: the smaller the discriminative value, the larger
the objective function. For an indiscriminative feature with
large dis(p;P0, q), its objective function value is small.

D. Evaluating the objective function

To evaluate the objective function for a new feature p (as
in Equation 9), the algorithm needs to know both C(q, P0)
and C(q, {P0, p}). According to Equation 1, C(q, P0) can
be easily obtained from the intersection of maxSub(q, P0)’s
supporting sets. However, C(q, {P0, p}) = C(q, P0) ∩ D(p)
can only be evaluated after obtaining D(p). Computing D(p)
(by searching the graph index) for each enumerated feature p

is time-consuming because it involves subgraph isomorphism
tests. Therefore, we propose an upper bound and a lower
bound of the objective function gain(p, P0), which help in
pruning the features without calculating D(p). For example,
given a new feature p, if its objective-function’s upper bound is



smaller than the objective value of the current optimal feature
p∗ or the lower bound of p∗, then p can be pruned. Hence
D(p) don’t have to be computed for each subgraph feature p.
The upper bound and lower bound of the objective function
can alleviate the bottleneck of computing D(p), Algorithm 1
describes the iterative graph mining algorithm using the upper
& lower bound of the objective function in detail.

Algorithm 1 Iterative Graph Feature Mining
Input: Current featuresP0, Queries Q
Output: The optimum feature p∗

1: p∗ = null

2: for each feature p in all enumerated subgraphs do
3: if gain(p∗, P0) is not precisely calculated then
4: if Upp(gain(p, P0)) < Low(p∗, P0) then
5: Continue
6: else if Low(gain(p, P0)) < Upp(p∗, P0) then
7: p∗ = p

8: else
9: Calculate gain(p∗, P0)

10: end if
11: end if
12: if gain(p∗, P0) is precisely calculated then
13: if Upp(gain(p, P0)) < gain(p∗, P0) then
14: Continue
15: else if Low(gain(p, P0)) > gain(p∗, P0) then
16: p∗ = p

17: else
18: Calculate gain(p, P0), compare with gain(p∗, P0)
19: end if
20: end if
21: end for

Statement 3 (Upper and Lower bound): The objective
function gain(p, P0), has an easy-to-compute upper bound
Upp(p, P0) and a lower bound Lower(p, P0).

Upp(p, P0) =
1
|Q|

�

q∈minSup(p,Q)

|C(q, P0)−D(q)|

+
1
|Q|

�

q∈Q

I(p = q) |C(q, P0)| (18)

Low(p, P0) =
1
|Q|

�

q∈minSup(p,Q)

|C(q, P0)−
1
γ

D(max(p))|

+
1
|Q|

�

q∈Q

I(p = q) |C(q, P0)|, (19)

where γ is an self defined parameter (γ > 1).
Proof: Upper Bound: The maximum gain of p is to

reduce C(q, P0) to D(q) (reduce the gap to zero). Hence the
upper bound holds. Lower Bound: Since C(q, {p, P0}) =
C(q, P0) ∩D(p), |C(q, {p, P0})| ≤ |D(p)|. Also, in order to
enumerate and select only discriminative features, the feature p

have to satisfy D(maxSub(p))
D(p) ≥ γ [6]. Hence |C(q, {p, P0})| ≤

|D(p)| ≤ D(maxSub(p))
γ . The lower bound holds.

IV. PRUNE THE SEARCH SPACE

In this section, we propose algorithms to enumerate sub-
graph features and search for the subgraph optimizing the
objective function. Since the search space is exponential, we
propose two methods, branch & bound and QueryGrouping,
to bound and prune the search space.

A. Branch and Bound

To search for the optimal feature p, we use a brute force
algorithm as the baseline: enumerate all subgraph features with
the DFS code [18] and evaluate their objective function values.
As in Leap Search [15], an iterative frequency-descending
mining method can be applied: it first searches for an optimal
feature p∗σ with the minimum support σ, then searches again
with σ/2; the search continues with a decreasing minimum
support until the optimal objective function value found in
each iteration converges. Pruning only by frequency is not
efficient enough because the number of frequent subgraphs
easily blows up when σ is small. Can we use the objective

function to prune the search space too?

The objective function of p, gain(p, P0), is neither mono-
tonic nor anti-monotonic with respect to feature p. Therefore,
it cannot be used directly for pruning the search space. A
common method to reduce the search space is to derive a
branch upper bound for features that contain p, BUpp(p).
BUpp(p) represents the upper bound of the objective function
for any feature p� ⊇ p, i.e., BUpp(p) ≥ gain(p�), ∀p� ⊃
p [14]–[16]. Note that the branch upper bound is different
from the upper bound of the objective function introduced
in the previous section. The branch of features containing
the feature p can be safely pruned if BUpp(p) is smaller
than the current best gain(p∗). For example, in Figure 2,
candidate features are enumerated with order p1, p2, p4, p5.
If we find that gain(p2) > BUpp(p4), then ∀p� ⊃ p4,
gain(p2) ≥ gain(p�). Hence p5 can be pruned.

p3 

q 

In-index features 

Training queries 

Candidate features 

p1 

p2 p4 

p5 

Fig. 2. One counterexample for the anti-monotonic of minSup(p, Q)

Statement 4 (Branch Upper Bound): For a feature p, a
branch upper bound exists such that ∀p� ⊃ p, gain(p�) ≤
BUpp(p), where

BUpp(p) =
1
|Q| [

�

q⊃p

|C(q, P0)−D(q)| + max
p�⊃p

|C(p�)|
�

q∈Q

I(q = p
�)].

(20)

Proof: For an arbitrary feature p� ⊃ p, we define the
query set Qsuper(p�) = {q ∈ Q|q ⊃ p�} as the super-query

set of p�. It is easy to show that Qsuper(p�) ⊆ Qsuper(p)
and Qsuper(p�) ⊇ minSup(p�, Q). And also, for each query



q ∈ Qsuper(p�), the filtering effectiveness of feature p� is
C(q, P0)−[C(q, P0)∩D(p)] ≤ C(q, P0)−D(q), since D(q) is
the lower bound of any candidate set, e.g., [C(q, P0)∩D(p)].
Therefore,

�

q∈minSup(p�,Q)

|C(q, P0)− C(q, P0) ∩D(p�)|

≤
�

q∈minSup(p�,Q)

|C(q, P0)−D(q)|

≤
�

q∈Qsuper(p�)

|C(q, P0)−D(q)|

≤
�

q∈Qsuper(p)

|C(q, P0)−D(q)|.

Also,
�

q∈Q
I(p� = q)|C(q, P0)| ≤ max

p�⊃p
|C(p�)|

�
q∈Q

I(p� = q).

Therefore, the branch upper bound holds.
Although correct, this branch upper bound is not tight.

One major cause of the loose bound is the change from
minSup(p, Q) in the objective function to Qsuper(p) in the
branch upper bound. The reason that we use Qsupers(p)
instead of minSup(p, Q) is that minSup(p, Q) is not anti-
monotonic, as can be seen in Figure 2. Figure 2 organizes
features in a lattice, in which a direct edge starting from
pi pointing to pj (or qj) exists if and only if pi ⊂ pj (or
qj) and �px ∈ P0, s.t., pi ⊂ px ⊂ pj (or qj). We prove
minSup(p�, Q) �⊂ minSup(p, Q) when p� ⊃ p by giving the
following example: Given two features p1 �∈ P0, p2 �∈ P0

and p1 ⊂ p2, we can see that q ∈ minSup(p2, Q) but
q �∈ minSup(p1, Q) because ∃p3 ∈ P0, s.t., p1 ⊂ p3 ⊂ q.
Therefore, minSup(p2, Q) �⊂ minSup(p1, Q) when p2 ⊃ p1.
Since the branch upper bound is not tight, its effectiveness in
pruning the search space is limited. Therefore, we propose
another search algorithm that can quickly identify a near
optimal feature in the next subsection.

B. Query Grouping

The branch and bound search always starts from the root
of the search tree and searches among frequent features of the
whole query log according to the same search order, hence the
search may be trapped into a local optimum. Besides deriving
a tighter branch bound for the objective function, an alternative
method for reducing the search space is to first quickly find
a near-optimum feature, so that it can be used to prune the
rest of the search tree. However, unlike other data, e.g., item
sets, reordering the search order of frequent subgraphs is hard.
In most “pattern growth” based methods, the search order
is specifically designed to prevent one subgraph from being
enumerated several times [19]. For example, gSpan [18] grows
subgraph features according to a DFS-code tree and expands
the right-most path or vertices on the right-most path, and
Gaston [20] first enumerates all tree features and then grows
them to graph features with loops.

We consider finding a near-optimal feature by confining the
graphs we are mining. We first assign the queries into different
groups, and then enumerate subgraph features over queries

one group after another. Since we order the query groups
according to their cumulative verification costs, we can always
find a near-optimal feature after mining the first few groups.
Although theoretical approximation ratio is hard to derive, the
query grouping algorithm performs well in our empirical study.

1) Starting Point: For the sake of the completeness of
the graph indices, normally the whole set of small subgraph
features are included into the graph index. For example, in
gIndex [6] all subgraph features with less than minL edges
are selected, and in FG-Index [7] all distinct edges are included
into the in-memory index. If we organize all indexing features
into a lattice as in Figure 3 (similar to the lattice in Figure 2),
distinct edges or small features are all on the first level of
the lattice. As a matter of fact, any new incoming subgraph

p1 p2 p3 

Level 0: Dummy Head 

Level 1: Distinct Edges 

q4 

Current features: pi 

Training queries: qi 

q5 q6 q7 q8 q9 

Query: |C(q)-D(q)|: |D(q)| 
q0-2 5      10 
q3: 50      15 
q4: 50      10  
q5: 100      50 
q6: 50      25 
q7: 10      5 
q8-9: 5      5   

p0 

q1 q2 q3 q0 

p4 p5 

Fig. 3. Graph features organized in a lattice

feature p must be a supergraph of a feature in P0. Given the
above observation, we start searching for p from some feature
in P0, say p1, instead of the root. But there are |P0| possible
starting points. Which r ∈ P should we choose such that a

near optimal feature can be quickly identified?

Intuitively, a good starting point r should have the following
properties:

1) A great proportion of the queries are supergraphs of r,
otherwise there will be few queries using p ⊃ r for
filtering

2) The average size of the set of candidates for queries ⊃ r

are large, which means improvement over those queries
is important.

At first glance, we may consider BUpp to be a good starting
point selection function, i.e., a feature pi ∈ P0 is a good
starting root if its branch upper bound is high. However, this
criterion chooses small features as the starting point. As shown
in Figure 3, the feature p0 is a subgraph of all the queries,
and consequently its branch upper bound is the highest. But
actually, it is not involved in the filtering of any query. If we
start enumerating features from p0, we may enumerate many
subgraph features that are not used to answer any query, or
only used for filtering the candidate set for queries q0−2, q8, q9,
which are already well filtered by the current feature set.
Therefore, we consider defining a criterion based on both the
branch upper bound and the objective function. We propose



the following starting-point function:

SPoint(r) =
�

q∈minSup(r,Q)

|C(q, P0)−D(q)|+

maxp�⊃r|C(p�)|
�

q∈minSup(r,Q)

I(q = p
�). (21)

The above starting point function is consistent with the in-
tuition stated above and additionally does not choose small
features. For example, in Figure 3, instead of p0, p1 is chosen
as the first starting point.

2) Subgraph Enumeration: After choosing the root r to
start the search, the branch and bound search actually enumer-
ates frequent subgraphs over queries that are supergraphs of r,
Qsuper(r). But the search may still be trapped into a local op-
timum. For example, if we select the feature p1 in Figure 3 to
start the search, the search may easily enumerate a feature iso-
morphic to p4 and keep on searching that branch. Since queries
q0, q1 and q2 all have very small C(q), the search is trapped in
a local optimum. To prevent this situation, we further reduce
the mining set and enumerate frequent subgraphs only over r’s
minimal supergraph queries, minSup(r, Q). However, since
minSup(r, Q) is not an anti-monotonic function, confining
the mining over minSup(p1, Q) excludes the query q3 in
Figure 3. We argue that even if q3 is not mined directly, a
subgraph feature p� ⊆ q3 can still be enumerated. Since the
query q3 is not well filtered given the feature p5, one subgraph
feature p� that can reduce C(q3) must be either a supergraph
of p5 or a sibling of p5. (Two subgraphs a and b are siblings,
a sib b, if they share a common subgraph and a �⊂ b, b �⊂ a.) If
p� ⊃ p5, p� can be enumerated latter when p5 is chosen as the
starting point. If p� sib p5 and p� is generally effective for many
queries, it is of high probability that p� will be enumerated in
the search starting from p1. When p� is enumerated, we find all
of its minimal super queries (not confined to minSup(p1, Q))
to calculate its objective function following the definition.

In summary, the search strategy we take is to first assign
the training queries to groups, each of which is associated
with an indexing feature pi ∈ P0, and queries in that group
are minSup(pi, Q). We then enumerate all frequent subgraph
features over queries within each group, and search for an op-
timal feature using the branch and bound algorithm proposed
in the last section. Algorithm 2 describes the procedure.

Since query groups are searched according to the decreasing
order of the SPoint(pi) function, a near-optimal feature may
be identified after searching the first few groups. Besides
this benefit, since the minSup(pi, Q) is much smaller than
the overall training query set Q, enumerating the frequent
subgraphs of minSup(pi, Q) is much faster. Furthermore,
we usually set a low minimum support to prevent missing
any interesting features in the mining over the whole training
query log Q. But while searching over minSup(pi, Q), higher
minimum support (e.g., 0.1|minSup(pi, Q)|), can be set.
Otherwise, a feature with frequency 0.01|minSup(pi, Q)| may
cover too few queries. This relatively high minimum support
setting is justified experimentally in section V.

Algorithm 2 Advanced Branch and Bound
Input: Current featuresP0, Queries Q
Output: A new feature p

1: gain(p∗) = 0
2: Sort all P0 according to sPoint(pi) function in decreasing

order
3: for i = 1 to |P | do
4: if branch upper bound of BUpp(ri) < gain(p∗) then
5: break
6: else
7: Find the minimal supergraph queries minSup(r, Q)
8: p∗(r) = Branch & Bound Search(minSup(r, Q), p∗)
9: Find an optimal pattern p∗(r) ⊃ r, gain(p∗(r)) >

gain(p∗), update p∗ = p∗r .
10: end if
11: end for

C. Multiple-feature Selection

Assigning queries to different groups and then mining
each group separately is faster than the baseline branch and
bound algorithm. However, in comparison to the “mine-at-
once” algorithms, the iterative mining algorithm is still slow
in finding N features since only one feature is added into the
index in each iteration. To speed up the iterative mining, we
propose to select the top k features after one iteration of the
feature mining.

Simply choosing the k features with the highest objective
function does not work. Recall that in section 3, the objective
function of each new feature p is measured based on P0.
In each iteration, the top k features {p1, p2, ...pk} are all
evaluated on the index with the feature set P0. The benefit
of adding pj after pi is minor when pi and pj’s supporting
set are similar and they are contained by the same queries,
although both of them have high objective function values
measured based on P0.

To tackle the above difficulty, in each iteration of our
multiple-feature selection algorithm, we collect the optimum
feature p∗i growing from each starting point ri, and then choose
the top k p∗i s on the basis of the objective function to insert
into the index. Besides setting k, we can also set a percentage
threshold r%, such that feature p∗i with objective value at least
r% of the best objective value are chosen. We observe that the
top candidate subgraph features enumerated within the same
group of queries tend to be redundant, but the redundancies
between features enumerated in different groups are generally
small. The reason is that subgraph features enumerated starting
from different roots are structurally different hence they are
used for filtering different sets of queries.

V. EXPERIMENT

In this section, we show the effectiveness and efficiency
of our incremental feature mining algorithm on a chemical
molecule dataset. We compare our iteratively mined features
with three other classic subgraph features: discriminative



and frequent subgraphs (DF) [6], δ-Tolerant Closed Frequent
Subgraphs (δ-TCFG) [7] and MimR features [8], which are
reported to have high filtering rates. We set the parameters
to the default values as suggested in [6]–[8], except where
specified otherwise. For the branch and bound iterative feature
mining algorithm (BB), we adopt a decreasing minimum
support as in Leap Search [15], from 0.1|Q| to 0.01|Q| (|Q|
is the size of the query log). To have comparable results, we
set the minimum support to be 0.1|Qi| for the query grouping
(QG) and the top k (TK) iterative algorithms, where Qi refers
to queries in each group i. For the TK algorithm, we choose
all features with a gain value of least 80% of the gain of the
best feature.

Since we do not have access to real query logs, we use
simulated training and testing queries that are generated by
first enumerating all subgraphs of a subset of randomly
selected database graphs and then sampling using a uniform
distribution or a normal distribution. The comparative results
for both distributions are similar. Due to space restrictions,
we only report the results on normal distribution. We evaluate
the performance of our algorithms on the AIDS Antiviral
Screen dataset2, which contains 43, 906 graphs and has been
commonly used to measure the effectiveness of subgraph
querying features in previous work [6]–[8]. We also use data
from the eMolecules dataset3, which contains more than 5
million chemical structures.

A. Scenario 1: Updating the Index When Memory Increases

Typically, on average, the size of the memory taken by an
index is proportional to the number of features in the index;
thus we count the number of features as a proxy of the memory
consumption. We first show how hard controlling the memory
consumption is using the mine-at-once algorithms and tuning
parameters. We run experiments on both gIndex and FG-Index
with decreasing minimum support (from 0.1 to 0.01) over the
AIDS dataset. As shown in Table I, each entry denotes the
number of features that are newly discovered after decreasing
the minimum support. For example, the entry .1− .08 counts
features that are mined with minimum support 0.08 but not
discovered with minimum support 0.1. As can be seen, there
is no obvious relationship between the minimum support σ

and the feature count. Therefore, given more memory, it is
hard to tune a proper minimum support for current mine-at-
once algorithms and build an index that utilizes the additional
memory.

TABLE I
FEATURE COUNT WITH DECREASING MIN-SUPPORT σ

σ .1− .08 .08-.06 .06-.04 .04-.02 .02-.01
DF 54 104 247 747 1655

δ−TCFG 347 616 1441 5732 13434

Our incremental iterative mining algorithm can address the
above problem. We first build three indices with the DF

2http://dtp.nci.nih.gov/
3http://www.emolecules.com/

features DF(.1), DF(.05) and DF(.02), where the number in
the parentheses denotes the minimum support used to mine
those features. As we can see in Figure 4(a), DF(.05) includes
more than 300 features than DF(.1), but to achieve the same
verification cost C(q), the iterative algorithm only needs less
than 100 new features. Based on the DF(.05), we mine and
add another 42 features. It performs even better than DF(.02),
which includes more than 1, 100 features than the DF(.05), as
in Figure 4(b). Note: Instead of comparing the real response
time for subgraph search (which varies machine to machine),
we use the candidate set C(q) as the measurement of the
response time (because of Equation 4).

We also observe that the QG algorithm and the TK algo-
rithm sometimes perform better than the ground truth branch
and bound algorithm, BB. This improvement is because BB
algorithm may over-fit the training queries.

The running time for all our three algorithms is shown
in Figure 4(c). TK is slightly faster than QG, and they are
both about three times faster than BB. The fact that TK is
only slightly faster than QG also shows that the high pruning
power of the near-optimal features we obtain. To get the
same verification-cost saving as from DF(.05) to DF(.02),
the running time for QG or TK is significantly faster than
mining DF(.02). Also, as the available memory increases,
our algorithm can be run to select features to incrementally
augment the index. 4
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Fig. 6. Scenario one: Comparison between iterative methods and
FG-Index(TCFG)

Our methods show similar improvements over an index
constructed using the δ−TCFG features. By decreasing the
minimum support from .03 to .025, the number of δ−TCFG
features grows by 2, 000, and the number of frequent features
stored on disk grows by 1, 300. We can achieve the same
improvement by adding 30 features mined with the iterative
mining algorithm, as in Figure 6.

B. Scenario 2: Updating the Index When Database Updates

In the second scenario, we simulate the update of the
database. To accommodate this change, we mine additional
features to insert into current index and remove equal number
of less effective features out of the index. (The effectiveness
of the deleted features is measured with the same objective

4The long running time for all algorithms is because we use a less memory-
intensive mining strategy, in which we store all the supporting set of the
features on disk and load them into memory when needed. But we fairly
adopt this strategy on all examined algorithms.
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Fig. 4. For scenario one: Comparison between iterative methods and gIndex(DF).
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Fig. 5. For scenario two: Comparison between iterative mined features and re-mined features

function. Due to the page limitation, we do not discuss the
feature-removing algorithm in detail.) In this experiment, we
first generate a dataset D1 by randomly choosing 10, 000
graphs from the AIDS dataset. Then we mine DF (.05, D1)
and build a graph index I1 = I(DF (.05, D1), D1). To
simulate the update of the graph database, we generate a new
dataset D2 by swapping 5, 000 graphs in D1 with another
5, 000 graphs randomly chosen from the AIDS dataset (not
in D1). Then, a graph index I2 = I(DF (.05, D1), D2)
is build with the same features as in I1 but on D2. To
evaluate the goodness of an index over a graph dataset, we
use the ratio F = |C(q) − D(q)|/|D(q)|. We observe the
filtering ratio FI1 = 0.605 and FI2 = 0.637, which means
the filtering power degrades while the database is updating.
To accommodate this change, we run the “mine-at-once”
algorithm again to mine DF (.05, D2) and build a new index
I3 = I(DF (.05, D2), D2) and the filtering rate improves to
FI3 = 0.574. The feature mining and index construction take
more than 1, 500 seconds. Using the iterative mining method,
we can improve the filtering rate by adding 30 features (and
removing 30 less effective features) as shown in Figure 5(a).
Figure 7 shows that the TK algorithm takes 300 seconds,
which is 0.2 times of the time taken by the gIndex algorithm
to re-mine and re-construct an index

Interestingly, re-mining and re-constructing the index may
sometimes degrade the performance of the index. In another
experiment (exp2 in Figure 5(a)), we insert 2000 graphs ran-
domly chosen from the eMolecules dataset, which is believed
to have structurally different graphs than those in the AIDS
dataset. As a result, if the DF features are re-mined, the

performance of the new index is worse than the old one. But,
for our iterative mining algorithms, since only features with
positive objective-function values are mined and inserted into
the index (and they all have higher objective function value
than features deleted), it is guaranteed that the performance
is better than the old index. Figure 5(b) and Figure 5(c)
show that our methods have similar improvements over indices
constructed using the δ−TCFG features and MimR features.
The mining and index construction running time is compared
and reported in Figure 7.
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Fig. 7. Comparison of running time between re-mining DF and the
iterative methods. The iterative methods achieve more candidate set
size decrease than re-mining DF.

C. Scalability

Since evaluating the objective function of each feature
involves finding the supporting set of that feature in the graph
database, the running time of the iterative mining is linear in
the size of the graph database. We also observe from Figure 8
that the BB algorithm is linear to the size of the training



queries, and the TK algorithm is sub linear, which further
shows the merit of the TK algorithm on a large training set
of queries when available. Also, we observe that enlarging the
training query log does not improve the quality of the feature
mining significantly. This shows that our algorithm can be
trained using reasonably sized query logs.
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Fig. 8. Running time over varied training queries

VI. RELATED WORK

The development of frequent subgraph feature mining al-
gorithms such as AGM [21], FSG [22], gSpan [18] and
Gaston [20] has created several feature-based graph index-
ing methods [6]–[11], [23]. gIndex [6] selects frequent and
discriminative subgraphs; FG-Index [7] indexes all frequent
subgraphs, which are partially stored on disk and partially in
memory. Sun, Mitra, and Giles [8] have proposed an approach
for mining informative and irredundant subgraphs; these sub-
graphs are selected to maximize the cumulative information
gain and minimize pairwise redundancies, defined specific to a
subgraph search problem. Also, to reduce the time required to
mine the index features, other subtree-based approaches have
been proposed [9]–[11].

All the above algorithms are “mine-at-once” algorithms that
do not support incremental updating of the indexed feature set
in response to database updates. The tree+δ algorithm tries to
mine small non-tree graph features (δ) through mining each
query q. But it is different from our algorithm, since (1) it
only mines small non-tree graph features, (2) a graph feature is
selected based on only one query, not the entire query log, and
(3) it cannot accommodate any change to the graph structure
or database.

The other category of the graph indexing methods is non-
feature-based. In CTree [24], graphs in a database and their
subgraphs or closure graphs are organized into an index tree.
The answer set is retrieved by traversing this index tree, which
is computationally costly because it involves expensive exact
or inexact subgraph isomorphism tests. Williams, Huang, and
Wang have proposed a Graph Decomposition Index (GDI) [25]
which contains all graph decompositions of graphs in the
database. Because of its large memory requirements, it is
only effective for small databases of small and sparse graphs.
GCode [12] encodes database graphs into spectrum codes
and uses the interlacing theorem to prune the false candidate
graphs. In iGraph [13], it is reported that GCode’s filtering
power is generally lower than that of others after comprehen-

sive comparison experiments. GString [26] primarily targets
at two-dimensional chemical structure graphs.

Besides mining subgraph features for indexing, graph fea-
tures are also mined for classification and regression. Helma
et al. use all frequent subgraph features for classification [27].
Other algorithms mining graph features with problem-specific
objective functions are also proposed. Graph Boosting [14]
proposes a branch and bound approach searching for graph
features for classification based on the boosting algorithm.
Saigo, Kramer, and Tsuda propose a similar algorithm solving
the partial least squares regression [16]. Fan et al. propose a
model-based search tree approach to find a small set of highly
discriminative features for classification [17]. GraphSig [28]
mines significant subgraphs in large graph databases by first
converting graphs into feature vectors and then mining the
vectors to obtain significant closed sub-feature vectors. Finally,
graph features can be recovered from the closed sub-feature
vectors. Yan et al. propose Leap Search [15] as a general
framework for graph mining with specific objective functions.
Besides finding an upper bound for the objective function and
adopting the branch and bound paradigm, leap search also
prunes a feature horizontally if its structure and frequency
are similar to its siblings. However, this approach cannot be
applied directly to our problem, because in our model, besides
considering its variable structure and frequency, a new feature
has to be irredundant to current in-index features.

VII. CONCLUSION

We investigated the iterative mining of graph features for the
subgraph search problem. Compared with the existing mine-
at-once algorithms, our iterative mining is effective in updating
indices that accommodate changes, such as the update of the
graph database or structure, a query change caused by users’
interest shift, or extra memory becomes available for use.
We observe that the top k feature selection process works
best in terms of the feature quality and the mining time. For
future work, one can consider the development of algorithms
that estimate the objective function instead of calculating it
precisely, which can further enhance the speed of an iterative
mining algorithm.
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APPENDIX

A. Distribution of Frequent Subgraphs in Database

In this section, we look at the distribution of subgraphs
in the graph database because query independent approaches
prefer to set this distribution as the probability distribution
of the queries. We randomly choose 131, 072 (217) graphs
from the eMolecules dataset that contains 5 millions chemical
molecules graphs 5, and mine frequent subgraphs with the
minimum support 0.01|D|, where D is the dataset. We observe
that there is a power law relationship between the number of
subgraphs sg and its support, as shown in figure 9,

Count(D(sg) = w) = a× w
(−k)

, (22)

where Count(D(sg) = w) denotes the total number of sub-
graph sg (include duplications) with support w. One subgraph
sg will be enumerated n times (sg will have n duplications
in the query set) if its support is n. And from our empirical
study, k = 1.26.

5http://www.emolecules.com/
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Fig. 9. The count of enumerated subgraphs VS. their support

B. gIndex’s computation cost saving

Statement 5 (gIndex Cost Model): gIndex’s isomorphism-
test-cost depends on the query distribution PrQ(q).

Proof: Assume we have the complete set of frequent sub-
graph features F , and its power set is S(F). The isomorphism-
test-cost of gIndex given feature set F is

T
verf

=
�

∀ unique q �∈F

PrQ(q)|C(q)|

=
�

∀ unique q

PrQ(q)|C(q)|−
�

q∈F
PrQ(q)|C(q)|. (23)

Since gIndex uses subgraph features F = sub(q,F) = {f ⊂
q|f ∈ F} for filtering query q, C(q) = ∩f∈sub(q,F)D(f) =
D(sub(q,F)). Hence,

�

∀ unique q

PrQ(q)|C(q)| =
�

∀ unique q

PrQ(q)|D(sub(q,F))|

=
�

∀F∈S(F)

PrQ(F ) · |D(F )|, (24)

where PrQ(F ) denotes the probability that a query graph q

uses features F for filtering.
Since the complete set of frequent subgraph features F is

too big to fit into the memory, gIndex only uses discrim-
inative and frequent features Fd for indexing. Correspond-
ingly, we use Fd to denote {f ∈ F |f ∈ Fd}. Inevitably,
the isomorphism-test-cost goes up because the candidate set
generated by Fd is not as tight as F . gIndex tries to minimize
the inflation of isomorphism-test-cost, O(Fd), while reducing
F to Fd,

O(Fd) =
�

∀F∈S(F)

PrQ(F )× |D(F )|( |D(Fd)|
|D(F )| − 1)

=
�

∀ unique q

PrQ(q)× |D(sub(q,F))|( |D(sub(q,Fd))|
|D(sub(q,F))| − 1)

gIndex removes feature f from F if |∩Df �⊂f (f �)|/|D(f)| >

γ, which is a heuristic to confine |D(sub(q,Fd))|
|D(sub(q,F))| < γn when

|sub(q,F)| − |sub(q,Fd)| = n. Both the isomorphism-test-
cost inflation and its upper bound depends on the underlying
query distribution.


