
Near Duplicate Detection in an Academic Digital Library

Kyle Williams‡, C. Lee Giles†‡

‡Information Sciences and Technology, †Computer Science and Engineering
Pennsylvania State University, University Park, PA 16802, USA

kwilliams@psu.edu, giles@ist.psu.edu

ABSTRACT
The detection and potential removal of duplicates is desir-
able for a number of reasons, such as to reduce the need for
unnecessary storage and computation, and to provide users
with uncluttered search results. This paper describes an
investigation into the application of scalable simhash and
shingle state of the art duplicate detection algorithms for
detecting near duplicate documents in the CiteSeerχ digi-
tal library. We empirically explored the duplicate detection
methods and evaluated their performance and application to
academic documents and identified good parameters for the
algorithms. We also analyzed the types of near duplicates
identified by each algorithm. The highest F-scores achieved
were 0.91 and 0.99 for the simhash and shingle-based meth-
ods respectively. The shingle-based method also identified
a larger variety of duplicate types than the simhash-based
method.

Categories and Subject Descriptors
I.7.5 [Document and Text Processing]: Document Cap-
ture—Document Analysis

General Terms
Experimentation, Measurement, Performance

Keywords
Near duplicate detection, simhash, shingles

1. INTRODUCTION
Digital documents have literally changed the way in which

documents are discovered, shared and managed through easy
versioning, copying and dissemination. As a result, there has
been an explosion in the amount of digital documents that
are available and digital libraries have arisen as a means of
managing these vast quantities of information. Some dig-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
DocEng’13, September 10–13, 2013, Florence, Italy.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-1789-4/13/09 ...$15.00.
http://dx.doi.org/10.1145/2494266.2494312.

ital libraries, such as the arXiv1, allow for users to sub-
mit academic papers for inclusion, whereas others, such as
CiteSeerχ2, automatically collect papers through focused
crawling. In both cases, it is possible that near duplicate
documents are added to the digital library collections. For
instance, in the case of the arXiv, users might make minor
revisions to a document and submit it as a new document
rather than updating their existing submission. Similarly, in
the case of CiteSeerχ, similar versions of a paper may exist
at multiple locations on the Web and these multiple versions
may be automatically added to the collection as a result of
the automatic crawling and ingesting.

There has been significant research in near duplicates on
the Web; however, there has not been as much research in
detecting near duplicates in digital libraries of academic pa-
pers and whether methods for duplicate detection on the
Web are easily transferable to this domain. Two state of
the art duplicate detection algorithms exist: simhash [2] and
shingle-based methods [1]. In this paper, we investigate the
use of these two algorithms for finding near duplicates in
CiteSeerχ, which is a real-world digital library of academic
papers. We measure the precision and the recall of the two
algorithms under varying conditions, we experiment to find
suitable parameters for the algorithms, and we investigate
the types of duplicates detected by each algorithm.

In presenting these contributions, the rest of this paper
is laid out as follows. Section 2 discusses related work and
Section 3 describes the duplicate detection algorithms used
in this study. Section 4 presents the evaluation and, lastly,
conclusions are presented in Section 5.

2. RELATED WORK
A state of the art method for detecting duplicate Web

pages was proposed by Broder et al. [1]. Broder et al. made
use of shingles for duplicate detection in the AltaVista search
engine and described efficient algorithms for finding near
duplicates in large collections. The simhash algorithm [2]
is another state of the art algorithm for duplicate detection
that maps a high dimensional feature space to a fixed-size
fingerprint [6] and Manku et al. [6] developed an efficient
algorithm for finding duplicate documents in a collection.
A study comparing the shingle and simhash methods on a
dataset containing over 1.6 billion web pages found that both
algorithms worked poorly for detecting duplicate web pages
from the same site, but worked well for detecting duplicate

1http://arxiv.org/
2http://citeseerx.ist.psu.edu/

91

web pages from different sites [4]. Furthermore, it was found
that combining the approaches improved results [4].
A technique for duplicate document detection, known as

I-Match, is based on collection statistics with the idea be-
ing that removing terms that occur very frequently or very
infrequently in a collection is a good basis for identifying du-
plicates by calculating the checksum of the most significant
terms in a document [3]. To detect near duplicate books,
techniques have been developed based on the hashing of the
metadata associated with each book [7] as well as identifying
unique words that appear in books and finding near dupli-
cates by aligning the longest common sequences of words
[8]. Lastly, one of the few studies to focus on academic doc-
uments used concept trees to detect similar documents [5].
As this discussion has shown, there have been several dif-

ferent approaches to duplicate detection, with the simhash
and shingle-based methods being state of the art. In this
study, we test the use of these state of the art methods for
detecting near duplicate academic documents, with a spe-
cific focus on parameters for near duplicate detection and
the type of near duplicates detected by each method.

3. ALGORITHMS

3.1 Simhash
The simhash algorithm maps a high dimensional feature

space to a fixed-size fingerprint [6]. The process involves cal-
culating a hash that represents each document and then de-
tecting near duplicates by identifying documents that have
similar hashes. The calculation of the hash is not described
here due to space constraints; however, the method is the
same as used by Manku et al. [6] with each document being
represented by a 64-bit hash and with each token in a docu-
ment contributing an equal weight to the final bit-hash. The
distance (and thus similarity) between document bit-hashes
is calculated using the Hamming distance.
To find near duplicates, the method proposed by Manku

et al. [6] is used. In this approach, two documents are con-
sidered as being near duplicates if the Hamming distance
between their two hashes is at most k. For a pre-determined
k, the method partitions each document bit-hash into k+ 1
sub-hashes and stores each sub-hash and the ids of docu-
ments that contain the sub-hash in k+1 tables. For a query
document, the hash of the document is calculated and par-
titioned into k + 1 sub-hashes. Each of the sub-hashes are
looked up in the k + 1 tables and the Hamming distance is
calculated between the full hash of the query document and
the full hash of each document in the tables that shares a
sub-hash with the query document. Using this approach, if
two documents differ by k bits then at least one of the k+1
sub-hashes is guaranteed to match.
To find near duplicates, two passes are made through the

data. In the first pass, hashes are calculated for all docu-
ments and the sub-hashes stored in tables and in the second
pass each hash is used as a query while making sure not to
match a query document with its entry in the hash tables.

3.2 Shingles
Shingles are sequences of tokens of length w that appear

in a document and the similarity of two documents can be
calculated based on the number of shingles that they have in
common [1]. Since it is computationally infeasible to calcu-
late the similarity of the sets of all of the shingles for every

document, a method based on the sketch of a document is
used instead. To calculate the sketch of a document, each
shingle in a document is hashed using h hash functions and
a list is maintained of the minimum hash values found for
each hash function. The sketch of a document is then its set
of h minimum hash values and the similarity of two docu-
ments is estimated based on the overlap of their sketches [4].
In this study, we make use of hash functions in the form of:
h(x) = (Ax+B) mod p, where x is the shingle, p is a large
prime, which we set to 232 − 1, and A and B are random
integers in the range [1, p].

To find near duplicates based on their sketches, each docu-
ment is represented by pairs of the h minimum hash values -
Mh - and the document ID in the form of <Mh, doc id> and
a list of all the pairs for all documents is compiled. This list
is then used to build a second list of documents that have a
Mh in common in the form of <Mh, doc id1, doc id2>. This
second list can then be scanned and the number of Mh that
each pair of documents <doc id1, doc id2> have in common
can be counted and then divided by h to calculate the re-
semblance of the two documents.

4. EVALUATION
To evaluate the algorithms, 100,000 documents were ran-

domly sampled from the CiteSeerχ collection and those that
contained a minimum of 15 tokens (after preprocessing) were
retained, which was 95,558 documents. Each document was
processed using standard information retrieval processing
and the calculation of hashes and the extraction of shingles
was based on the full text of the documents. No clustering
took place when detecting near duplicates, since random
pair sampling was used for evaluating precision and recall
similar to the approach used in other studies [4, 6]. In decid-
ing whether or not a pair of papers are near duplicates, the
following should be true: the papers should have the same
(or very similar) titles and authors; there should be signifi-
cant overlap in the text (maximum of a paragraph different);
and there should be significant overlap in the citations.

To evaluate precision for each treatment, which represents
a variation in the parameters for duplicate detection, n = 20
pairs of documents that were identified as being near dupli-
cates were randomly sampled. The n pairs were then man-
ually checked in order to determine whether or not the doc-
uments were near duplicates and precision was calculated.
Since no gold standard exists, it is impossible to accurately
measure recall. Thus, recall is instead estimated by main-
taining a list of all of the true positives identified during the
precision calculation for each treatment, which we refer to
as the duplicate list. The recall of each treatment is then
estimated by comparing the documents returned by that
treatment to the duplicate list. In total, the true duplicate
list contained 360 unique duplicate pairs.

4.1 Detecting Duplicates

Simhash.
Experiments were conducted for different Hamming dis-

tance values of k, where k = {0, 1, 2, ..., 10}. Figure 1 (a)
shows the the precision, recall and F-score. As can be seen
from the figure, there is perfect precision when k = 0, which
is to be expected since, in this case, each document has ex-
actly the same hash. Thereafter, the precision decreases as
k increases. When a Hamming distance of 5 is allowed, the

92

Table 1: Cosine similarity for different k

0 1 2 3 4 5 6 7 8 9 10
1 0.97 0.97 0.99 0.89 0.97 0.81 0.75 0.66 0.54 0.49

precision is approximately 0.65; however, precision decreases
significantly beyond this point, ultimately ending up at less
that 0.2 for k > 7. The recall also increases as k increases.
This is to be expected since higher values of k allow for docu-
ments with larger Hamming distances between their hashes
to be considered near duplicates. When k > 3, the recall
exceeds 0.9. The F-score is highest at 0.91 and occurs when
k = 3. At this point, the precision is 0.94 and the recall was
0.88. Interestingly, k = 3 was also the optimal value found
for duplicate Web page detection [6].

Shingles.
The number of hashes that were used to represent a sketch

for a document was set to 84 as this has previously been
used in other studies [1, 4]. Three different shingle sequence
lengths w = {5, 8, 10} were experimented with and the min-
imum required resemblance R for a pair of documents to be
considered duplicates was also varied. Figures 1 (b) and (c)
show the precision and recall. As can be seen from the fig-
ure, the length of the shingles and the minimum resemblance
both have little effect on the precision, with each having a
minimum precision of 0.95. As the resemblance requirement
is relaxed, the recall increases. Furthermore, shorter shin-
gle lengths result in higher recall, which is intuitive since
shorter shingle lengths allow for more differences among the
sequences of tokens that appear in the documents. The high-
est recall of 0.98 occurs when w = 5 and R = 50%. The
maximum F-score of 0.99 occurs when w = 5 and R = 50%.
At this point the precision is 1 and the recall is 0.98.
Thus, this experiment has shown that both algorithms

perform well and, with the right parameters, can successfully
be applied to detecting duplicate academic documents.

4.2 Analysis of Duplicates
We analyzed the cosine similarity between the n = 20

near duplicates pairs that were randomly sampled for each
method and results are shown in Table 1 for different values
of k for the simhash method. As can be seen from the table,
as k increases the cosine similarity decreases. Interestingly,
there is a large difference between the cosine similarity and
precision in Figure 1 (a) for some k. For instance, for k = 6
the average cosine similarity is 0.81, but the precision is only
0.2. Since many of these papers are based on computer sci-
ence, one possible reason for this could be due to significant
overlap in common mathematical notation among papers,
thus leading to similar hashes for different papers. Thus,
the simhash method using single word tokens may not be
appropriate for near duplicate detection for documents that
make use of a large amount of standard notation. For the
shingles method, regardless of the shingle size w or the re-
semblance, the minimum cosine similarity was 0.97 and was
1 in the majority of cases. This corresponds with precision
of almost 1 achieved by the shingles method, regardless of
the shingle length and resemblance.
We also analyzed the types of duplicates returned by each

method for the best performing parameters and labeled each
true positive as being exact, a preprint (missing page num-

(a) Precision, recall and F-score for simhash

(b) Precision for shingles with different lengths

(c) Recall for shingles with different lengths

Figure 1: Performance of algorithms

bers, copyright notice, different formatting, etc), or a differ-
ent version/draft (minor differences in content, dates, and
revision numbers). Table 2 summarizes the results of the
types of near duplicates detected. As can be seen from the
table, most of the duplicates returned by each method are
in fact exact duplicates; however, some of them are also
preprints and different versions/drafts of the same paper.
The shingle-based method appears to return a more even
distribution of different types of near duplicates, thereby
suggesting that it is better than simhash at detecting differ-
ent types of near duplicates.

4.3 Number of Duplicates Returned
Figure 2 (a) shows the number of duplicates returned for

simhash as k increases. When k = 0, 769 pairs of documents
are returned. Thereafter, there is an exponential increase
in the number of documents returned as k increases and it
approaches 120 000 when k = 10. Based on the performance
of the simhash algorithm, it is likely that the majority of
documents returned when k > 5 are false positives.

93

Table 2: Types of near duplicates

Method Exact Preprint Content/Version
Simhash 12 3 4
Shingles 9 5 6

(a) simhash with different values for k

(b) shingle method with different values for w

Figure 2: Number of duplicates returned

For shingles (Figure 2 (b)), lower values of w return more
near duplicate pairs. This is in line with intuition, since
lower values of w require that documents have shorter se-
quences of tokens in common and thus are more likely to
match. Furthermore, Figure 2 (b) also shows that the num-
ber of duplicate pairs returned increases linearly as the sim-
ilarity threshold is reduced. On average, reducing the re-
quired resemblance by 10% leads to 157.35 new document
pairs being found. These results reveal something interest-
ing about the shingle-based method, specifically, that near
duplicate papers generally have high shingle similarities and
reducing the similarity threshold does not lead to a large
increase in the number of near duplicates returned. Given
the performance of the shingles algorithm, it is likely that
most of the near duplicates returned are true positives.
The results discussed above show that the two algorithms

perform quite differently when the criteria for detecting du-
plicates are relaxed. For the simhash algorithm, increasing
k leads to an exponential increase in the number of dupli-
cates returned, whereas decreasing the similarity threshold
for the shingle-based method leads to a linear increase in the
number of duplicates returned. Thus, from the perspective
of processing time, tuning these parameters is important so
as to minimize the number of false comparisons made. As is
shown in Figure 1, for the best parameter values we found,
most of the comparisons made were between true positives.

5. CONCLUSIONS
We investigated the application of two state of the art

duplicate detection methods to academic documents and
identified parameters that could successfully be applied to
achieve high precision and recall. We also analyzed the types
of duplicates retrieved and, since the papers in the CiteSeerχ

collection are collected through automatic crawling, this pro-
vides some evidence of the types of freely available academic
documents on the Web. One question that arises is what
should be done with these different versions of documents
once near duplicates have been detected. For instance, they
could be merged into a single record or all except a single
copy could be deleted. In both cases, the question arises
as to which version should be considered authoritative? We
believe automatic document disposition could be used to
address this problem. The goal would be to identify and
rank duplicates based on pre-defined criteria and then take
action in accordance with a policy that dictates how near
duplicates should be treated. We also believe that it would
be useful to investigate the use of different features for the
detection of duplicates, for instance, different weights could
be applied to different parts of a document, such as weight-
ing the authors and titles of papers higher than the main
text.

Acknowledgments
We gratefully acknowledge partial support by the National
Science Foundation under Grant No. 1143921 and useful
suggestions from Madian Khabsa and Sagnik R. Choudhury.

6. REFERENCES
[1] A. Broder, S. Glassman, M. Manasse, and G. Zweig.

Syntactic Clustering of the Web. Computer Networks
and ISDN Systems, 29(8-13):1157–1166, Sept. 1997.

[2] M. Charikar. Similarity Estimation Techniques from
Rounding Algorithms. In Proceedings of the 34th
Annual ACM Symposium on Theory of Computing,
pages 380–388, 2002.

[3] A. Chowdhury, O. Frieder, and D. Grossman.
Collection Statistics for Fast Duplicate Document
Detection. ACM Transactions on Information
Systems, 20(2):171–191, 2002.

[4] M. Henzinger. Finding Near-Duplicate Web Pages. In
Proceedings of the 29th Annual International ACM
SIGIR Conference on Research and Development in
Information Retrieval, pages 284–291, Aug. 2006.

[5] P. Lakkaraju, S. Gauch, and M. Speretta. Document
Similarity Based on Concept Tree Distance.
Proceedings of the 19th ACM Conference on Hypertext
and Hypermedia, pages 127–132, 2008.

[6] G. Manku, A. Jain, and A. D. Sarma. Detecting
Near-Duplicates for Web Crawling. Proceedings of the
16th International Conference on World Wide Web,
pages 141–149, 2007.

[7] L. Padmasree, V. Ambati, J. Chandulal, and M. Rao.
Signature Based Duplication Detection in Digital
Libraries. Signature, 2006.

[8] I. Z. Yalniz, E. F. Can, and R. Manmatha. Partial
Duplicate Detection for Large Book Collections.
Proceedings of the 20th ACM International Conference
on Information and Knowledge Management, pages
469–474, 2011.

94

