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Abstract

We present an end-to-end, multimodal, fully convolu-

tional network for extracting semantic structures from doc-

ument images. We consider document semantic structure

extraction as a pixel-wise segmentation task, and propose a

unified model that classifies pixels based not only on their

visual appearance, as in the traditional page segmentation

task, but also on the content of underlying text. Moreover,

we propose an efficient synthetic document generation pro-

cess that we use to generate pretraining data for our net-

work. Once the network is trained on a large set of synthetic

documents, we fine-tune the network on unlabeled real doc-

uments using a semi-supervised approach. We systemati-

cally study the optimum network architecture and show that

both our multimodal approach and the synthetic data pre-

training significantly boost the performance.

1. Introduction

Document semantic structure extraction (DSSE) is an

actively-researched area dedicated to understanding images

of documents. The goal is to split a document image into re-

gions of interest and to recognize the role of each region. It

is usually done in two steps: the first step, often referred to

as page segmentation, is appearance-based and attempts to

distinguish text regions from regions like figures, tables and

line segments. The second step, often referred to as logical

structure analysis, is semantics-based and categorizes each

region into semantically-relevant classes like paragraph and

caption.

In this work, we propose a unified multimodal fully con-

volutional network (MFCN) that simultaneously identifies

both appearance-based and semantics-based classes. It is a

generalized page segmentation model that additionally per-

forms fine-grained recognition on text regions: text regions

are assigned specific labels based on their semantic func-

tionality in the document. Our approach simplifies DSSE

and better supports document image understanding.

We consider DSSE as a pixel-wise segmentation prob-

lem: each pixel is labeled as background, figure, table,

Figure 1: (a) Examples that are difficult to identify if only

based on text. The same name can be a title, an author or

a figure caption. (b) Examples that are difficult to identify

if only based on visual appearance. Text in the large font

might be mislabeled as a section heading. Text with dashes

might be mislabeled as a list.

paragraph, section heading, list, caption, etc. We show

that our MFCN model trained in an end-to-end, pixels-to-

pixels manner on document images exceeds the state-of-

the-art significantly. It eliminates the need to design com-

plex heuristic rules and extract hand-crafted features [30,

22, 21, 46, 4].

In many cases, regions like section headings or captions

can be visually identified. In Fig. 1 (a), one can easily rec-

ognize the different roles of the same name. However, a

robust DSSE system needs the semantic information of the

text to disambiguate possible false identifications. For ex-

ample, in Fig. 1 (b), the text in the large font might look like

section heading, but it does not function that way; the lines

beginning with dashes might be mislabeled as a list.

To this end, our multimodal fully convolutional network

is designed to leverage the textual information in the docu-

ment as well. To incorporate textual information in a CNN-

based architecture, we build a text embedding map and feed

it to our MFCN. More specifically, we embed each sentence

and map the embedding to the corresponding pixels where

the sentence is represented in the document. Fig. 2 summa-

rizes the architecture of the proposed MFCN model. Our
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Figure 2: The architecture of the proposed multimodal fully convolutional neural network. It consists of four parts: an

encoder that learns a hierarchy of feature representations, a decoder that outputs segmentation masks, an auxiliary decoder

for unsupervised reconstruction, and a bridge that merges visual representations and textual representations. The auxiliary

decoder only exists during training.

model consists of four parts: an encoder that learns a hier-

archy of feature representations, a decoder that outputs seg-

mentation masks, an auxiliary decoder for reconstruction

during training, and a bridge that merges visual representa-

tions and textual representations. We assume that the docu-

ment text has been pre-extracted. For document images this

can be done with modern OCR engines [47, 1, 2].

One of the bottlenecks in training fully convolutional

networks is the need for pixel-wise ground truth data. Pre-

vious document understanding datasets [31, 44, 50, 6] are

limited by both their small size and the lack of fine-grained

semantic labels such as section headings, lists, or figure and

table captions. To address these issues, we propose an ef-

ficient synthetic document generation process and use it to

generate large-scale pretraining data for our network. Fur-

thermore, we propose two unsupervised tasks for better gen-

eralization to real documents: reconstruction and consis-

tency tasks. The former enables better representation learn-

ing by reconstructing the input image, whereas the latter en-

courages pixels belonging to the same regions have similar

representation.

Our main contributions are summarized as follows:

• We propose an end-to-end, unified network to address

document semantic structure extraction. Unlike pre-

vious two-step processes, we simultaneously identify

both appearance-based and semantics-based classes.

• Our network supports both supervised training on im-

age and text of documents, as well as unsupervised

auxiliary training for better representation learning.

• We propose a synthetic data generation process and use

it to synthesize a large-scale dataset for training the

supervised part of our deep MFCN model.

2. Background

Page Segmentation. Most earlier works on page seg-

mentation [30, 22, 21, 46, 4, 45] fall into two cate-

gories: bottom-up and top-down approaches. Bottom-up

approaches [30, 46, 4] first detect words based on local fea-

tures (white/black pixels or connected components), then

sequentially group words into text lines and paragraphs.

However, such approaches suffer from the identification and

grouping of connected components being time-consuming.

Top-down approaches [22, 21] iteratively split a page into

columns, blocks, text lines and words. With both of these

approaches it is difficult to correctly segment documents

with complex layout, for example a document with non-

rectangular figures [38].

With recent advances in deep convolutional neural net-

works, several neural-based models have been proposed.

Chen et al. [12] applied a convolutional auto-encoder to

learn features from cropped document image patches, then

use these features to train a SVM [15] classifier. Vo et

al. [52] proposed using FCN to detect lines in handwritten

document images. However, these methods are strictly re-

stricted to visual cues, and thus are not able to discover the

semantic meaning of the underlying text.

Logical Structure Analysis. Logical structure is de-

fined as a hierarchy of logical components in documents,

such as section headings, paragraphs and lists [38]. Early

work in logical structure discovery [18, 29, 24, 14] focused

on using a set of heuristic rules based on the location, font

and text of each sentence. Shilman et al. [45] modeled doc-

ument layout as a grammar and used machine learning to

minimize the cost of a invalid parsing. Luong et al. [35]

proposed using a conditional random fields model to jointly
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label each sentence based on several hand-crafted features.

However, the performance of these methods is limited by

their reliance on hand-crafted features, which cannot cap-

ture the highly semantic context.

Semantic Segmentation. Large-scale annotations [32]

and the development of deep neural network approaches

such as the fully convolutional network (FCN) [33] have led

to rapid improvement of the accuracy of semantic segmen-

tation [13, 42, 41, 54]. However, the originally proposed

FCN model has several limitations, such as ignoring small

objects and mislabeling large objects due to the fixed recep-

tive field size. To address this issue, Noh et al. [41] pro-

posed using unpooling, a technique that reuses the pooled

“location” at the up-sampling stage. Pinheiro et al. [43]

attempted to use skip connections to refine segmentation

boundaries. Our model addresses this issue by using a di-

lated block, inspired by dilated convolutions [54] and recent

work [49, 23] that groups several layers together . We fur-

ther investigate the effectiveness of different approaches to

optimize our network architecture.

Collecting pixel-wise annotations for thousands or mil-

lions of images requires massive labor and cost. To this end,

several methods [42, 56, 34] have been proposed to harness

weak annotations (bounding-box level or image level anno-

tations) in neural network training. Our consistency loss re-

lies on similar intuition but does not require a “class label”

for each bounding box.

Unsupervised Learning. Several methods have been

proposed to use unsupervised learning to improve super-

vised learning tasks. Mairal et al. [36] proposed a sparse

coding method that learns sparse local features by sparsity-

constrained reconstruction loss functions. Zhao et al. [58]

proposed a Stacked What-Where Auto-Encoder that uses

unpooling during reconstruction. By injecting noise into the

input and the middle features, a denoising auto-encoder [51]

can learn robust filters that recover uncorrupted input. The

main focus in unsupervised learning has been image-level

classification and generative approaches, whereas in this pa-

per we explore the potential of such methods for pixel-wise

semantic segmentation.

Wen et al. [53] recently proposed a center loss that en-

courages data samples with the same label to have a similar

visual representation. Similarly, we introduce an intra-class

consistency constraint. However, the “center” for each class

in their loss is determined by data samples across the whole

dataset, while in our case the “center” is locally determined

by pixels within the same region in each image.

Language and Vision. Several joint learning tasks

such as image captioning [16, 28], visual question answer-

ing [5, 20, 37], and one-shot learning [19, 48, 11] have

demonstrated the significant impact of using textual and

visual representations in a joint framework. Our work is

unique in that we use textual embedding directly for a seg-

mentation task for the first time, and we show that our ap-

proach improves the results of traditional segmentation ap-

proaches that only use visual cues.

3. Method

Our method does supervised training for pixel-wise seg-

mentation with a specialized multimodal fully convolu-

tional network that uses a text embedding map jointly

with the visual cues. Moreover, our MFCN architecture

also supports two unsupervised learning tasks to improve

the learned document representation: a reconstruction task

based on an auxiliary decoder and a consistency task eval-

uated in the main decoder branch along with the per-pixel

segmentation loss.

3.1. Multimodal Fully Convolutional Network

As shown in Fig. 2, our MFCN model has four parts:

an encoder, two decoders and a bridge. The encoder and

decoder parts roughly follow the architecture guidelines set

forth by Noh et al. [41]. However, several changes have

been made to better address document segmentation.

First, we observe that several semantic-based classes

such as section heading and caption usually occupy rela-

tively small areas. Moreover, correctly identifying certain

regions often relies on small visual cues, like lists being

identified by small bullets or numbers in front of each item.

This suggests that low-level features need to be used. How-

ever, because max-pooling naturally loses information dur-

ing downsampling, FCN often performs poorly for small

objects. Long et al. [33] attempt to avoid this problem us-

ing skip connections. However, simply averaging indepen-

dent predictions based on features at different scales does

not provide a satisfying solution. Low-level representations,

limited by the local receptive field, are not aware of object-

level semantic information; on the other hand, high-level

features are not necessarily aligned consistently with object

boundaries because CNN models are invariant to transla-

tion. We propose an alternative skip connection implemen-

tation, illustrated by the blue arrows in Fig. 2, similar to that

used in the independent work SharpMask [43]. However,

they use bilinear upsampling after skip connection while we

use unpooling to preserve more spatial information.

We also notice that broader context information is

needed to identify certain objects. For an instance, it is

often difficult to tell the difference between a list and sev-

eral paragraphs by only looking at parts of them. In Fig. 3,

to correctly segment the right part of the list, the receptive

fields must be large enough to capture the bullets on the

left. Inspired by the Inception architecture [49] and dilated

convolution [54], we propose a dilated convolution block,

which is illustrated in Fig. 4 (left). Each dilated convolu-

tion block consists of 5 dilated convolutions with a 3 × 3
kernel size and a dilation d = 1, 2, 4, 8, 16.
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Figure 3: A cropped document image and its segmentation

mask generated by our model. Note that the top-right corner

of the list is yellow instead of cyan, indicating that it has

been mislabeled as a paragraph.

3.2. Text Embedding Map

Traditional image semantic segmentation models learn

the semantic meanings of objects from a visual perspective.

Our task, however, also requires understanding the text in

images from a linguistic perspective. Therefore, we build a

text embedding map and feed it to our multimodal model to

make use of both visual and textual representations.

We treat a sentence as the minimum unit that conveys

certain semantic meanings, and represent it using a low-

dimensional vector. Our sentence embedding is built by

averaging embeddings for individual words. This is a sim-

ple yet effective method that has been shown to be useful

in many applications, including sentiment analysis [26] and

text classification [27]. Using such embeddings, we cre-

ate a text embedding map as follows: for each pixel inside

the area of a sentence, we use the corresponding sentence

embedding as the input. Pixels that belong to the same sen-

tence thus share the same embedding. Pixels that do not

belong to any sentences will be filled with zero vectors. For

a document image of size H × W , this process results in

an embedding map of size N ×H ×W if the learned sen-

tence embeddings are N -dimensional vectors. The embed-

ding map is later concatenated with a feature response along

the number-of-channel dimensions (see Fig. 2).

Specifically, our word embedding is learned using the

skip-gram model [39, 40]. Fig. 4 (right) shows the basic

diagram. Let V be the number of words in a vocabulary

and w be a V -dimensional one-hot vector representing a

word. The training objective is to find a N -dimensional

(N ≪ V ) vector representation for each word that is useful

for predicting the neighboring words. More formally, given

a sequence of words [w1, w2, · · · , wT ], we maximize the

average log probability

1

T

T
∑

t=1

∑

−C≤j≤C,j 6=0

logP (wt+j |wt) (1)

where T is the length of the sequence and C is the size of

the context window. The probability of outputting a word

Figure 4: Left: A dilated block that contains 5 dilated

convolutional layers with different dilation d. Batch-

Normalization and non-linearity are not shown for brevity.

Right: The skip-gram model for word embeddings.

wo given an input word wi is defined using softmax:

P (wo|wi) =
exp(v

′

wo

⊤
vwi

)
∑V

w=1 exp(v′

w
⊤
vwi

)
(2)

where vw and v
′

w are the “input” and “output” N -

dimensional vector representations of w.

3.3. Unsupervised Tasks

Although our synthetic documents (Sec. 4) provide a

large amount of labeled data for training, they are limited

in the variations of their layouts. To this end, we define two

unsupervised loss functions to make use of real documents

and to encourage better representation learning.

Reconstruction Task. It has been shown that recon-

struction can help learning better representations and there-

fore improves performance for supervised tasks [58, 57].

We thus introduce a second decoder pathway (Fig. 2 - axil-

lary decoder), denoted as Drec, and define a reconstruction

loss at intermediate features. This auxiliary decoder only

exists during the training phase.

Let al, l = 1, 2, · · ·L be the activations of the lth layer of

the encoder, and a0 be the input image. For a feed-forward

convolutional network, al is a feature map of size Cl×Hl×
Wl. Our auxiliary decoder Drec attempts to reconstruct a

hierarchy of feature maps {ãl}. Reconstruction loss L
(l)
rec

for a specific l is therefore defined as

L(l)
rec =

1

ClHlWl

‖al − ãl‖
2
2 , l = 0, 1, 2, · · ·L (3)

Consistency Task. Pixel-wise annotations are labor-

intensive to obtain, however it is relatively easy to get a set

of bounding boxes for detected objects in a document. For

documents in PDF format, one can find bounding boxes by

analyzing the rendering commands in the PDF files (See

our supplementary document for typical examples). Even

if their labels remain unknown, these bounding boxes are

still beneficial: they provide knowledge of which parts of a

document belongs to the same objects and thus should not

be segmented into different fragments.

5318



By building on the intuition that regions belonging to

same objects should have similar feature representations,

we define the consistency task loss Lcons as follows. Let

p(i,j) (i = 1, 2, · · ·H, j = 1, 2, · · ·W ) be activations at lo-

cation (i, j) in a feature map of size C ×H ×W , and b be

the rectangular area in a bounding box. Let each rectangu-

lar area b is of size Hb ×Wb. Then, for each b ∈ B, Lcons

will be given by

Lcons =
1

HbWb

∑

(i,j)∈b

∥

∥

∥
p(i,j) − p(b)

∥

∥

∥

2

2
(4)

p(b) =
1

HbWb

∑

(i,j)∈b

p(i,j) (5)

Minimizing consistency loss Lcons encourages intra-region

consistency.

The consistency loss Lcons is differentiable and can be

optimized using stochastic gradient descent. The gradient

of Lcons with respect to p(i,j) is

∂Lcons

∂p(i,j)
=

2

H2
bW

2
b

(p(i,j) − p(b))(HbWb − 1)+

2

H2
bW

2
b

∑

(u,v)∈b

(u,v) 6=(i,j)

(p(b) − p(u,v)) (6)

since HbWb ≫ 1, for efficiency it can be approximated by:

∂Lcons

∂p(i,j)
≈

2

HbWb

(

p(i,j) − p(b)
)

. (7)

We use the unsupervised consistency loss, Lcons, as a loss

layer, that is evaluated at the main decoder branch (blue

branch in Fig. 2) along with supervised segmentation loss.

4. Synthetic Document Data

Since our MFCN aims to generate a segmentation mask

of the whole document image, pixel-wise annotations are

required for the supervised task. While there are several

publicly available datasets for page segmentation [44, 50,

6], there are only a few hundred to a few thousand pages

in each. Furthermore, the types of labels are limited, for

example to text, figure and table, however our goal is to

perform a much more granular segmentation.

To address these issues, we created a synthetic data en-

gine, capable of generating large-scale, pixel-wise anno-

tated documents.

Our synthetic document engine uses two methods to gen-

erate documents. The first produces completely automated

and random layout of partial data scraped from the web.

More specifically, we generate LaTeX source files in which

paragraphs, figures, tables, captions, section headings and

lists are randomly arranged to make up single, double, or

triple-column PDFs. Candidate figures include academic-

style figures and graphic drawings downloaded using web

image search, and natural images from MS COCO [32],

which associates each image with several captions. Candi-

date tables are downloaded using web image search. Var-

ious queries are used to increase the diversity of down-

loaded tables. Since our MFCN model relies on the seman-

tic meaning of text to make prediction, the content of text

regions (paragraph, section heading, list, caption) must be

carefully selected:

• For paragraphs, we randomly sample sentences from a

2016 English Wikipedia dump [3].

• For section headings, we only sample sentences and

phrases that are section or subsection headings in the

“Contents” block in a Wikipedia page.

• For lists, we ensure that all items in a list come from

the same Wikipedia page.

• For captions, we either use the associated caption (for

images from MS COCO) or the title of the image in

web image search, which can be found in the span with

class name “irc pt”.

To further increase the complexity of the generated docu-

ment layouts, we collected and labeled 271 documents with

varied, complicated layouts. We then randomly replaced

each element with a standalone paragraph, figure, table,

caption, section heading or list generated as stated above.

In total, our synthetic dataset contains 135,000 document

images. Examples of our synthetic documents are shown

in Fig. 5. Please refer to our supplementary document for

more examples of synthetic documents and individual ele-

ments used in the generation process.

5. Implementation Details

Fig. 2 summarizes the architecture of our model. The

auxiliary decoder only exists in the training phase. All con-

volutional layers have a 3 × 3 kernel size and a stride of

1. The pooling (in the encoders) and unpooling (in the de-

coders) have a kernel size of 2× 2. We adopt batch normal-

ization [25] immediately after each convolution and before

all non-linear functions.

We perform per-channel mean subtraction and resize

each input image so that its longer side is less than 384

pixels. No other pre-processing is applied. We use

Adadelta [55] with a mini-batch size of 2. During semi-

supervised training, mini-batches of synthetic and real

documents are used alternatively. For synthetic docu-

ments, both per-pixel classification loss and the unsuper-

vised losses are active at back-propagation, while for real

documents, only the unsupervised losses are active. Since

the labels are unbalanced (e.g. the area of paragraphs is
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Figure 5: Example synthetic documents, raw segmentations and results after optional post-processing (Sec. 5). Segmentation

label colors are: figure , table , section heading , caption , list and paragraph .

much larger than that of caption), class weights for the per-

pixel classification loss are set differently according to the

total number of pixels in each class in the training set.

For text embedding, we represent each word as a 128-

dimensional vector and train a skip-gram model on the

2016 English Wikipedia dump [3]. Embeddings for out-

of-dictionary words are obtained following Bojanowski et

al. [9]. We use Tesseract [47] as our OCR engine.

Post-processing. We apply an optional post-processing

step as a cleanup strategy for segment masks. For docu-

ments in PDF format, we obtain a set of candidate bounding

boxes by analyzing the PDF format to find element boxes.

We then refine the segmentation masks by first calculat-

ing the average class probability for pixels belonging to the

same box, followed by assigning the most likely label to

these pixels.

6. Experiments

We used three datasets for evaluations: ICDAR2015 [6],

SectLabel [35] and our new dataset named DSSE-200.

ICDAR2015 [6] is a dataset used in the biennial IC-

DAR page segmentation competitions [7] focusing more

on appearance-based regions. The evaluation set of IC-

DAR2015 consists of 70 sampled pages from contemporary

magazines and technical articles. SectLabel [35] consists

of 40 academic papers with 347 pages in the field of com-

puter science. Each text line in these papers is manually

assigned a semantics-based label such as text, section head-

ing or list item. In addition to these two datasets, we in-

troduce DSSE-2001, which provides both appearance-based

and semantics-based labels. DSSE-200 contains 200 pages

from magazines and academic papers. Regions in a page are

assigned labels from the following dictionary: figure, table,

section, caption, list and paragraph. Note that DSSE-200

has a more granular segmentation than previously released

benchmark datasets.

The performance is measured in terms of pixel-wise

1http://personal.psu.edu/xuy111/projects/

cvpr2017_doc.html.

intersection-over-union (IoU), which is standard in seman-

tic segmentation tasks. We optimize the architecture of

our MFCN model based on the DSSE-200 dataset since

it contains both appearance-based and semantics-based la-

bels. Sec. 6.4 compares our results to state-of-the-art meth-

ods on the ICDAR2015 and SectLabel datasets.

6.1. Ablation Experiment on Model Architecture

We first systematically evaluate the effectiveness of dif-

ferent network architectures. Results are shown in Table 1.

Note that these results do not incorporate textual informa-

tion or unsupervised learning tasks. The purpose of this

experiment is to find the best “base” architecture to be used

in the following experiments. All models are trained from

scratch and evaluated on the DSSE-200 dataset.

As a simple baseline (Table 1 Model1), we train a plain

encoder-decoder style model for document segmentation.

It consists of a feed-forward convolutional network as an

encoder, and a decoder implemented by a fully convolu-

tional network. Upsampling is done by bilinear interpola-

tion. This model achieves a mean IoU of 61.4%.

Next, we add skip connections to the model, resulting in

Model2. Note that this model is similar to the SharpMask

model. We observe a mean IoU of 65.4%, 4% better than

the base model. The improvements are even more signifi-

cant for small objects like captions.

We further evaluate the effectiveness of replacing bilin-

ear upsampling with unpooling, giving Model3. All up-

sampling layers in Model2 are replaced by unpooling while

other parts are kept unchanged. Doing so results in a signif-

icant improvement for mean IoU (65.4% vs. 71.2%). This

suggests that the pooled index should not be discarded dur-

ing decoding. These indexes are helpful to disambiguate

the location information when constructing the segmenta-

tion mask in the decoder.

Finally, we investigate the use of dilated convolutions.

Model3 is equivalent to using dilated convolution when

d = 1. Model4 sets d = 8 while Model5 uses the di-

lated block illustrated in Fig. 4 (left). The number of output

channels are adjusted such that the total number of parame-
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Figure 6: Example real documents and their corresponding segmentation. Top: DSSE-200. Middle: ICDAR2015. Bottom:

SectLabel. Since these documents are not in PDF format, the simple post-processing in Sec. 5 can not be applied. One may

consider exploiting a CRF [13] to refine the segmentation, but that is beyond the main focus of this paper. Segmentation label

colors are: figure , table , section heading , caption , list and paragraph .

Model# dilation upsampling skip bkg figure table section caption list paragraph mean

1 1 bilinear no 80.3 75.4 62.7 50.0 33.8 57.3 70.4 61.4

2 1 bilinear yes 82.1 76.7 74.4 51.8 42.4 58.7 74.4 65.4

3 1 unpooling yes 84.1 81.2 77.6 54.6 60.3 65.9 74.8 71.2

4 8 unpooling yes 83.9 74.9 69.7 57.2 60.2 64.6 76.1 69.5

5 block unpooling yes 84.6 83.3 79.4 58.3 61.0 66.7 77.1 73.0

Table 1: Ablation experiments on DSSE-200 dataset. The architecture of each model is characterized by the dilation in

convolution layers, the way of upsampling and the use of skip connection. IoU scores (%) are reported.

ters are similar. Comparing the results for these three mod-

els, we can see that the IoU of Model4 for each class is on

par with or worse than Model3, while Model5 is better than

both Model3 and Model4 for all classes.

6.2. Adding Textual Information

We now investigate the importance of textual informa-

tion in our multimodal model. We take the best architec-

ture, Model5, as our vision-only model, and incorporate a

text embedding map via a bridge module depicted in Fig. 2.

This combined model is fine-tuned on our synthetic docu-

ments. As shown in Table 2, using text as well improves

the performance for textual classes. The accuracy for sec-

tion heading, caption, list and paragraph is boosted by 1.1%,

0.1%, 1.7% and 2.2%, respectively.

We rely on existing OCR engines [47] to extract text, but

they are not always reliable for scanned documents of low

quality. To quantitatively analyze the effects of using ex-

tracted text, we compare the performance of using extracted

text versus real text. The comparison is conducted on a sub-

set of our synthetic dataset (200 images), since ground-truth

text is naturally available. As shown in Table 2, using real

text leads to a remarkable improvement (6.4%) for mean

IoU, suggesting the effectiveness of incorporating textual

information. Using OCR extracted text is not as effective,

but still results in 2.6% improvement. It is better than the

0.3% improvement on DSSE-200 dataset; we attribute this

to our synthetic data not being as complicated as DSSE-200,

so extracting text becomes easier.
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base dataset text bkg figure table section caption list para. mean

Model5 D none 84.6 83.3 79.4 58.3 61.0 66.7 77.1 73.0

Model5 D extract 83.9 83.7 79.7 59.4 61.1 68.4 79.3 73.3

Model5 S none 87.7 83.1 84.3 70.8 70.9 82.3 83.1 79.6

Model5 S extract 88.8 85.4 86.6 73.1 71.2 83.6 87.2 82.2

Model5 S real 91.2 90.3 89.0 78.4 75.3 87.5 89.6 86.0

Table 2: IoU scores (%) on the DSSE-200 (D) and synthetic dataset (S) using text embedding map. On synthetic dataset, we

further investigate the effects of using extracted text versus real text when building the text embedding map.

Lcls Lrec Lcons Lrec+con

mean 73.3 73.9 75.4 75.9

Table 3: IoU scores (%) when using different training ob-

jectives on DSSE-200 dataset. cls: pixel-wise classification

task, rec: reconstruction task and cons: consistency task.

Methods non-text text

Leptonica [8] 84.7 86.8

Bukhari et al. [10] 90.6 90.3

Ours (binary) 94.5 91.0

Methods figure text

Fernandez et al. [17] 70.1 85.8

Ours (binary) 77.1 91.0

Table 4: IoU scores (%) for page segmentation on the

ICDAR2015 dataset. For comparison purpose, only IoU

scores for non-text, text and figure are shown. However our

model can make fine-grained predictions as well.

Methods section caption list para.

Luong et al. [35] 0.916 0.781 0.712 0.969

Ours 0.919 0.893 0.793 0.969

Table 5: F1 scores on the SectLabel dataset. Note that our

model can also identify non-text classes such as figures and

tables.

6.3. Unsupervised Learning Tasks

Here, we examine how the proposed two unsupervised

learning tasks — reconstruction and consistency tasks —

can complement the pixel-wise classification during train-

ing. We take the best model in Sec. 6.2, and only change the

training objectives. Our model is then fine-tuned in a semi-

supervised manner as described in Sec. 5. The results are

shown in Table 3. Adding the reconstruction task slightly

improves the mean IoU by 0.6%, while adding the consis-

tency task leads to a boost of 1.9%. These results justify our

hypothesis that harnessing region information is beneficial.

Combining both tasks results in a mean IoU of 75.9%.

6.4. Comparisons with Prior Art

Table 4 and 5 present comparisons with several meth-

ods that have previously reported performance on the IC-

DAR2015 and SectLabel datasets. It is worth emphasiz-

ing that our MFCN model simultaneously predicts both

appearance-based and semantics-based classes while other

methods can not.

Comparisons on ICDAR2015 dataset (Table 4). Pre-

vious pixel-wise page segmentation models usually solve a

binary segmentation problem and do not make predictions

for fine-grained classes. For fair comparison, we change

the number of output channels of the last layer to 3 (back-

ground, figure and text) and fine-tune this last layer. Our bi-

nary MFCN model achieves 94.5%, 91.0% and 77.1% IoU

scores for non-text (background and figure), text and figure

regions, outperforming other models.

Comparisons on SectLabel dataset (Table 5). Luong et

at. [35] first use Omnipage [2] to localize and recognize text

lines, then predict the semantics-based label for each line.

The F1 score for each class was reported. For fair compar-

ison, we use the same set of text line bounding boxes, and

use the averaged pixel-wise prediction as the label for each

text line. Our model achieves better F1 scores for section

heading (0.919 VS 0.916), caption (0.893 VS 0.781) and

list (0.793 VS 0.712), while being capable of identifying

figures and tables.

7. Conclusion

We proposed a multimodal fully convolutional network

(MFCN) for document semantic structure extraction. The

proposed model uses both visual and textual information.

Moreover, we propose an efficient synthetic data generation

method that yields per-pixel ground-truth. Our unsuper-

vised auxiliary tasks help boost performance tapping into

unlabeled real documents, facilitating better representation

learning. We showed that both the multimodal approach

and unsupervised tasks can help improve performance. Our

results indicate that we have improved the state of the art

on previously established benchmarks. In addition, we

are publicly providing the large synthetic dataset (135,000

pages) as well as a new benchmark dataset: DSSE-200.
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