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Abstract
The growth of Internet commerce has stimulated the use of
collaborative filtering (CF) algorithms as recommender
systems. Such systems leverage knowledge about the
behavior of multiple users to recommend items of interest to
individual users. CF methods have been harnessed to make
recommendations about such items as web pages, movies,
books, and toys. Researchers have proposed several
variations of the technology. We take the perspective of CF
as a methodology for combining preferences. The
preferences predicted for the end user is some function of
all of the known preferences for everyone in a database.
Social Choice theorists, concerned with the properties of
voting methods, have been investigating preference
aggregation for decades. At the heart of this body of work is
Arrow's result demonstrating the impossibility of
combining preferences in a way that satisfies several
desirable and innocuous-looking properties. We show that
researchers working on CF algorithms often make similar
assumptions. We elucidate these assumptions and extend
results from Social Choice theory to CF methods. We show
that only very restrictive CF functions are consistent with
desirable aggregation properties. Finally, we discuss
practical implications of these results.

Introduction

The goal of collaborative filtering (CF) is to predict the
preferences of one user, referred to as the active user,
based on the preferences of a group of users. For example,
given the active user’s ratings for several movies and a
database of other users’ ratings, the system predicts how
the active user would rate unseen movies. The key idea is
that the active user will prefer those items that like-minded
people prefer, or even that dissimilar people don’t prefer.
CF systems have seen growing use in electronic commerce
applications on the World Wide Web.  For example, the
University of Minnesota’s GroupLens and MovieLens1

research projects spawned Net Perceptions,2 a successful
Internet startup offering personalization and
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recommendation services. Alexa3 is a web browser plug-in
that recommends related links based in part on other
people’s web surfing habits. Several CF tools originally
developed at Microsoft Research are now included with
the Commerce Edition of Microsoft’s SiteServer,4 and are
currently in use at multiple sites.

The effectiveness of any CF algorithm is ultimately
predicated on the underlying assumption that human
preferences are correlated—if they were not, then informed
prediction would be impossible. There does not seem to be
a single, obvious way to predict preferences, nor to
evaluate effectiveness, and many different algorithms and
evaluation criteria have been proposed and tested. Most
comparisons to date have been empirical or qualitative in
nature [Billsus and Pazzani, 1998; Breese et al., 1998;
Konstan and Herlocker, 1997; Resnick and Varian, 1997;
Resnick et al., 1994; Shardanand and Maes, 1995], though
some worst-case performance bounds have been derived
[Freund et al., 1998; Nakamura and Abe, 1998; Cohen et
al., 1999] and some general principles have been
advocated [Freund et al., 1998; Cohen et al., 1999]. Initial
methods were statistical, though several researchers have
recently cast CF as a machine learning problem [Billsus
and Pazzani, 1998; Freund et al., 1998; Nakamura and Abe
1998].

We take instead an axiomatic approach, informed by
results from Social Choice theory. First, we identify
several properties that a CF algorithm might ideally posses,
and describe how existing CF implementations obey
subsets of these conditions. We show that, under the full
set of conditions, only one prediction strategy is possible:
The ratings of the active user are derived solely from the
ratings of only one other user. This is called the nearest
neighbor approach [Freund et al., 1998]. The analysis
mirrors Arrow’s celebrated Impossibility Theorem, which
shows that the only voting mechanism that obeys a similar
set of properties is a dictatorship [Arrow, 1963]. Under
slightly weaker demands, we show that the only possible
form for the prediction function is a weighted average of
the users’ ratings. We also provide a second, separate
axiomatization that again admits only the weighted
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average. The weighted average method is used in practice
in many CF applications [Breese et al., 1998; Resnick et
al., 1994; Shardanand and Maes, 1995]. One contribution
of this paper is to provide a formal justification for it.
Stated another way, we identify a set of properties, one of
which must be violated by any non-weighted-average CF
method. On a broader level, this paper proposes a new
connection between theoretical results in Social Choice
theory and in CF, providing a new perspective on the task.
This angle of attack could lead to other fruitful links
between the two areas of study, including a category of CF
algorithms based on voting mechanisms. The next section
covers background on CF and Social Choice theory. The
remaining sections present, in turn, the three
axiomatizations, and discuss the practical implications of
our analysis.

Background

In this section, we briefly survey previous research in
collaborative filtering, describe our formal CF framework,
and present relevant background material on utility theory
and Social Choice theory.

Collaborative Filtering Approaches
A variety of collaborative filters or recommender systems
have been designed and deployed. The Tapestry system
relied on each user to identify like-minded users manually
[Goldberg et al., 1992]. GroupLens [Resnick et al., 1994]
and Ringo [Shardanand and Maes, 1995], developed
independently, were the first CF algorithms to automate
prediction. Both are examples of a more general class we
call similarity-based approaches. We define this class
loosely as including those methods that first compute a
matrix of pairwise similarity measures between users (or
between titles). A variety of similarity metrics are possible.
Resnick et al. [1994] employ the Pearson correlation
coefficient for this purpose. Shardanand and Maes [1995]
test a few measures, including correlation and mean
squared difference. Breese et al. [1998] propose a metric
called vector similarity, based on the vector cosine
measure. All of the similarity-based algorithms cited
predict the active user’s rating as a weighted sum of the
others users’ ratings, where weights are similarity scores.
Yet there is no a priori reason why the weighted average
should be the aggregation function of choice. Below, we
provide two possible axiomatic justifications.

Breese et al. [1998] identify a second general class of
CF algorithms called model-based algorithms. In this
approach, an underlying model of user preferences (for
example, a Bayesian network model) is first constructed,
from which predictions are inferred.

Formal Description of Task
A CF algorithm recommends items or titles to the active
user based on the ratings of other users. Let n be the
number of users, T the set of all titles, and m=|T| the total

number of titles. Denote the n×m matrix of all users’
ratings for all titles as R. More specifically, the rating of
user i for title j is Rij, where each Rij ∈ ℜ∪{⊥} is either a
real number or ⊥, the symbol for “no rating”. Let ui be an
n-dimensional row vector with a 1 in the ith position and
zeros elsewhere. Thus ui⋅R is the m-dimensional (row)
vector of all of user i’s ratings.1 Similarly, define tj to be an
m-dimensional column vector with a 1 in the jth position
and zeros elsewhere. Then R⋅tj is the n dimensional
(column) vector of all users’ ratings for title j. Note that
ui⋅R⋅tj = Rij. Distinguish one user a ∈ {1, 2, …, n} as the
active user. Define NR ⊂ T to be the subset of titles that the
active user has not rated, and thus for which we would like
to provide predictions. That is, title j is in the set NR if and
only if Raj = ⊥. Then the subset of titles that the active user
has rated is T-NR.

In general terms, a collaborative filter is a function f that
takes as input all ratings for all users, and replaces some or
all of the “no rating” symbols with predicted ratings. Call
this new matrix P.

For the remainder of this paper we drop the subscript on
f for brevity; the dependence on the active user is implicit.

Utility Theory and Social Choice
Theory
Social choice theorists are also interested in aggregation
functions f similar to that in (1), though they are concerned
with combining preferences or utilities rather than ratings.
Preferences refer to ordinal rankings of outcomes. For
example, Alice’s preferences might hold that sunny days
(sd) are better than cloudy days (cd), and cloudy days are
better than rainy days (rd). Utilities, on the other hand, are
numeric expressions. Alice’s utilities v for the outcomes
sd, cd, and rd might be vsd = 10, vcd = 4, and vrd = 2,
respectively. If Alice’s utilities are such that vsd > vcd, then
Alice prefers sd to cd. Axiomatizations by Savage [1954]
and von Neumann and Morgenstern [1953] provide
persuasive postulates which imply the existence of utilities,
and show that maximizing expected utility is the optimal
way to make choices. If two utility functions v and v′ are
positive linear transformations of one another, then they
are considered equivalent, since maximizing expected
utility would lead to the same choice in both cases.

Now consider the problem of combining many peoples’
preferences into a single expression of societal preference.
Arrow proved the startling result that this aggregation task
is simply impossible, if the combined preferences are to
satisfy a few compelling and rather innocuous-looking
properties  [Arrow, 1963].2 This influential result forms the
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core of a vast literature in Social Choice theory. Sen
[1986] provides an excellent survey of this body of work.
Researchers have since extended Arrow’s theorem to the
case of combining utilities. In general, economists argue
that the absolute magnitude of utilities are not comparable
between individuals, since (among other reasons) utilities
are invariant under positive affine transformations. In this
context, Arrow’s theorem on preference aggregation
applies to the case of combining utilities as well [Fishburn,
1987; Roberts, 1980; Sen, 1986].

Nearest Neighbor Collaborative
Filtering

We now describe four conditions on a CF function, argue
why they are desirable, and discuss how existing CF
implementations adhere to different subsets of them. We
then show that the only CF function that satisfies all four
properties is the nearest neighbor strategy, in which
recommendations to the active user are simply the
preferred titles of one single other user.

Property 1 (UNIV) Universal domain and minimal
functionality. The function f(R) is defined over all possible
inputs R. Moreover, if Rij ≠ ⊥ for some i, then Paj ≠ ⊥.

UNIV simply states that f always provides some prediction
for rated titles. To our knowledge, all existing CF functions
adhere to this property.

Property 2 (UNAM) Unanimity. For all j,k ∈ NR, if
Rij > Rik for all i ≠ a, then Paj > Pak.

UNAM is often called the weak Pareto property in the
Social Choice and Economics literatures. Under this
condition, if all users rate j strictly higher than k, then we
predict that the active user will prefer j over k.

This property seems natural: If everyone agrees that title
j is better than k, including those most similar to the active
user, then it hard to justify a reversed prediction.
Nevertheless, correlation methods can violate UNAM if,
for example, the active user is negatively correlated with
other users. Other similarity-based techniques that use only
positive weights, including vector similarity and mean
squared difference, do satisfy this property.

Property 3 (IIA) Independence of Irrelevant Alternatives.
Consider two input ratings matrices, R and R′, such that
R⋅tj = R′⋅tj for all j ∈ T-NR. Furthermore, suppose that
R⋅tk = R′⋅tk and R⋅tl = R′⋅tl for some k,l ∈ NR. That is, R and
R′ are identical on all ratings of titles that the active user
has seen, and on two of the titles, k and l, that the active
user has not seen. Then Pak > Pal if and only if P′ak > P′al.

                                                                                
decor/mathhist.htm as one of seven milestones in
mathematical history this century.

The intuition for IIA is as follows. The ratings
{R⋅tj : j ∈ T-NR} for those titles that the active user has
seen tell us how similar the active user is to each of the
other users, and we assume that the ratings {R⋅tj : j ∈ NR}
do not bear upon this similarity measure. This is the
assumption made by most similarity-based CF algorithms.
Once a similarity score is calculated, it makes sense that
the predicted relative ranking between two titles k and l
should only depend on the ratings for k and l. For example,
if the active user has not rated the movie “Waterworld”,
then everyone else’s opinion of it should have no bearing
on whether the active user prefers “Ishtar” to “The
Apartment”, or vice versa.

IIA lends stability to the system. To see this, suppose
that NR = {j, k, l}, and f predicts the active user’s ratings
such that Paj > Pak > Pal, or title j is most recommended.
Now suppose that a new title, m, is added to the database,
and that the active user has not rated it. If IIA holds, then
the relative ordering among j, k, and l will remain
unchanged, and the only task will be to position m
somewhere within that order. If, on the other hand, the
function does not adhere to IIA, then adding m to the
database might upset the previous relative ordering,
causing k, or even l, to become the overall most
recommended title. Such an effect of presumably irrelevant
information seems counterintuitive.

All of the similarity-based CF functions identified
here—GroupLens, Ringo, and vector similarity—obey IIA.

Property 4 (SI) Scale Invariance. Consider two input
ratings matrices, R and R′, such that, for all users i,
ui⋅R′ = αi (ui⋅R) + βi for any positive constants αi and any
constants βi. Then Paj > Pak if and only if P′aj > P′ak, for all
titles j,k ∈ NR.

This property is motivated by the belief, widely accepted
by economists [Arrow, 1963; Sen, 1986], that one user’s
internal scale is not comparable to another user’s scale.
Suppose that the database contains ratings from 1 to 10.
One user might tend to use ratings in the high end of the
scale, while another tends to use the low end. Or, the data
might even have been gathered from different sources,
each of which elicited ratings on a different scale. For
example, in the movie domain, one may want to include
data from media critics; however, Mr. Showbiz1 uses a
scale from 0 to 100, TV Guide gives up to five stars, USA
Today gives up to four stars, and Roger Ebert reports only
thumbs up or down. How should their ratings be
compared? We would ideally like to obtain the same
results, regardless of how each user reports his or her
ratings, as long as his or her mapping from internal utilities
to ratings is a positive linear transformation; that is, as long
as his or her reported ratings are themselves expressions of
utility.
                                                
1 http://www.mrshowbiz.com



One way to impose SI is to normalize all of the users’
ratings to a common scale before applying f. One natural
normalization is:

This transforms all ratings to the [0,1] range, filtering out
any dependence on multiplicative (αi) or additive (βi) scale
factors.1

Another way to ensure SI is to constrain f to depend
only on the relative rank among titles (the ordinal
preferences of users), and not on the magnitude of ratings.
Freund et al. [1998] strongly advocate this approach.

One important property of [the collaborative
filtering] problem is that the most relevant
information to be combined represents relative
preferences rather than absolute ratings. In other
words, even if the ranking of [titles] is expressed by
assigning each [title] a numeric score, we would like
to ignore the absolute values of these scores and
concentrate only on their relative order.

By ignoring all but relative rank, Freund et al.’s algorithm
satisfies SI. On the other hand, the similarity-based
methods violate it.

Cohen et al. [1999] develop another algorithm for
combining ordinal preferences from multiple experts to
form a composite ranking of items, applicable for
collaborative filtering. Their algorithm proceeds in two
stages. The first stage actually satisfies all four properties
defined in this section: UNIV, UNAM, SI and IIA. As a
result, the first-stage preference relation may contain
cycles (e.g., title j is preferred to title k,  k is preferred to l,
and l is preferred to j). The second stage of their algorithm
attempts to find the acyclic preference function that most
closely approximates the stage one preference relation. The
complete two-stage algorithm retains invariance to scale
(satisfies SI), but may depend on irrelevant alternatives
(violates IIA).

Different researchers favor one or the other of these four
properties; the following proposition shows that only one
very restrictive CF function obeys them all.

Proposition 1 (Nearest neighbor). Assuming that
|NR| > 2, then the only function f of the form (1) that
satisfies UNIV, UNAM, IIA, and SI is such that:

Rij > Rik     ⇒      Paj > Pak  ,

for all titles j,k ∈ NR, and for one distinguished user i. The
choice of user i can depend on the ratings
{R⋅tj : j ∈ T-NR}, as long as this dependence is invariant to
scale, but once the “best” i is determined, his or her ratings
                                                
1 If max(ui⋅R) = min(ui⋅R), then set ui⋅R′ = 0.

for the titles in NR must be fully adopted as the active
user’s predicted ratings.

Proof (sketch): Let j be a title in NR. Rewrite f in equation
(1) in the following, equivalent, form:

    Paj  =   f({R⋅tj : j ∈ T-NR}, { R⋅tj : j ∈ NR})
=  g({R⋅tj : j ∈ NR})  ,

where the choice of function g is itself allowed to depend
on {R⋅tj : j ∈ T-NR}. With the exception of the “no rating”
value ⊥, the problem has been cast into the same terms as
in the Social Choice literature. Doyle and Wellman [1991]
point out that Arrow’s original proof does not require that
all users’ preference orderings be complete, and the proof
insists that the aggregate ordering is complete only for
items that some user has expressed a preference over. With
the additional assumption of minimal functionality (part of
the definition of UNIV), similar to Doyle and Wellman’s
“conflict resolution” condition, standard social choice
proofs become applicable. It follows, from Sen’s [1986] or
Robert’s [1980] extension of Arrow’s theorem [1963], that
g, and therefore f, must be of the nearest neighbor form
specified.  •

If the dictatorial user i does not express a rating for some
titles, then there exists a secondary dictator h whose
preferences are fully adopted among those titles unrated by
i and rated by h. This “cascade of dictators” continues until
the minimal functionality clause of UNIV is satisfied, as
shown in Doyle and Wellman’s [1991] axiomatic treatment
of default logic.

Weighted Average Collaborative
Filtering

We now examine a slight weakening of the set of
properties leading to Proposition 1. Under these new
conditions, we find that the only possible CF function is a
weighted sum: The active user’s predicted rating for each
title is a weighted average of the other users’ ratings for the
same title. Our argument is again based on results from
Social Choice theory; we largely follow Fishburn’s [1987]
explication of work originally due to Roberts [1980].

We replace the SI property with a weaker one:

Property 4∗ (TI) Translation Invariance. Consider two
input ratings matrices, R and R′, such that, for all users i,
ui⋅R′ = α (ui⋅R) + βi for any positive constant α, and any
constants βi. Then Paj > Pak if and only if P′aj > P′ak, for all
titles j,k ∈ NR.

This condition requires that recommendations remain
unchanged when all ratings are multiplied by the same
constant, and/or when any of the individual ratings are
shifted by additive constants. The TI property, like SI, still
honors the belief that the absolute rating of one title by one
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user is not comparable to the absolute rating of another
user. Unlike SI, it assumes that the magnitude of ratings
differences, (Rij - Rik) and (Rhj - Rhk), are comparable
between users i and h.

Though they violate SI, the similarity-based methods of
GroupLens, Ringo, and vector similarity obey TI.

Proposition 2 (Weighted average). Assuming that
|NR| > 2, then the only function f of the form (1) that
satisfies UNIV, UNAM, IIA, and TI is such that:

w⋅R⋅tj  > w⋅R⋅tk     ⇒     Paj > Pak

for all titles j,k ∈ NR, where w = <w1, w2, …, wn> is a row
vector of n nonnegative weights, at least one of which is
positive. The specific weights can depend on the ratings
{R⋅tj : j ∈ T-NR}.

Proof:  Follows from Roberts [1980].  •

Proposition 2 does not rule out the nearest neighbor policy,
as all but one of the wi could be zero.

Weighted Average Collaborative
Filtering, … Again

Next, we derive the same conclusion as Proposition 2
working from a different axiomatization. This result is
adapted from Harsanyi [1955].

The derivation requires two assumptions.

Property 5 (RRU) Ratings are utilities. Each user’s rating
ui⋅R are a positive linear transformation from his or her
utilities. That is, the ratings themselves are expressions of
utility.

We also assume that users obey the rationality postulates
of expected utility theory [Savage, 1954; von Neumann
and Morgenstern, 1953]. For example, if user i’s ratings
for three titles are such that Rij > Rik > Ril, then there is
some probability p for which the user would be indifferent
between the following two situations: (1) getting title j
with probability p or title l with probability 1 - p, and (2)
getting title k for sure.

Property 2* (UnamE) Unanimity of Equality. For all
j,k ∈ NR, if Rij = Rik for all i ≠ a, then Paj = Pak.

Proposition 3 (Weighted average, … again). The only
function f of the form (1) that satisfies both RRU and
UnamE is such that:

Paj  = w⋅R⋅tj  ,

for all titles j ∈ NR, where w is an n-dimensional row
vector of real number weights.

Proof:  Follows from Harsanyi [1955].  •

Note that this proposition, unlike the previous, admits
negative weights.

Implications of the Analysis

What are the implications of the theoretical limitations
highlighted in Propositions 1–3? First, we believe that
identifying the connection between CF and Social Choice
theory allows CF researchers to leverage a great deal of
previous work on preference and utility aggregation. A
Social Choice perspective on combining default reasoning
rules has yielded valuable insights for that task [Doyle and
Wellman, 1991], and similar benefits may accrue for CF.

The connection between collaborative filtering and
voting has been recognized informally by many authors;
indeed, several use the term “vote” to describe users’
ratings. Cohen et al. [1999] make the connection more
explicit, pointing out the relationship between their rank-
merging algorithm and voting methods formulated as early
as 1876. In fact, weighted versions of any of the many
proposed voting schemes [Fishburn, 1973] are immediate
candidates for new CF algorithms. One of the goals of this
paper is to extend the analogy beyond terminological and
algorithmic similarity to include axiomatic foundations.

Understanding what is theoretically impossible is an
important first step in algorithm design. We believe that
the results in this paper can help guide CF development in
the future. Though our derivations constrain the type of CF
function, they do not contain a recommendation as to how
exactly to choose the best neighbor, or how to choose the
optimal set of weights. Nonetheless, identifying the
functional forms themselves can be of value, by
constraining the search among algorithms to one of finding
the best instantiation of a particular form.

With regards to real-world applications, CF designers
for Internet commerce applications might typically be
interested more in the predictive performance of a CF
algorithm, rather than in the properties of preference
coalescence that it does or does not obey. Yet there is no
consensus on how best to measure effectiveness, as
evidenced by the proliferation of many proposed
evaluation scores. As a result, comparisons among the
various algorithms are blurred. Even if a standard,
accepted evaluation measure is somehow settled upon,
empirical performance can be measured only for a limited
number of special cases, whereas the theoretical results
apply in all circumstances.

Conclusion

We have illustrated a correspondence between
collaborative filtering (CF) and Social Choice theory. Both
frameworks center on the goal of combining the
preferences (expressed as ratings and utilities, respectively)
of a group into a single preference relation. Some of the



properties that Social Choice theorists have found to be
compelling are also arguably desirable in the context of
CF. In particular, universal domain (UNIV) is universally
accepted. Unanimity (UNAM) is compelling and common.
Most of the other properties have been advocated (at least
implicitly) elsewhere in the literature. Similarity-based
methods with only positive reinforcement obey UNAM,
including vector similarity and mean squared difference.
Most similarity-based techniques obey independence of
irrelevant alternatives (IIA) and translation invariance (TI).
Freund et al. [1998] and Cohen et al. [1999] make the case
for scale invariance (SI).

We have identified constraints that a CF designer must
live with, if their algorithms are to satisfy sets of these
conditions. Along with UNIV and UNAM, IIA and SI
imply the nearest neighbor method, while IIA and TI imply
the weighted average. A second derivation shows that, if
all users’ ratings are utilities, and if unanimity of equality
holds, then, once again, only the weighted average is
available.

Finally, we discussed implications of this analysis,
highlighting the fundamental limitations of CF, and
identifying a bridge from results and discussion in Social
Choice theory to work in CF. This avenue of opportunity
includes the implementation of weighted versions of
voting mechanisms as potential new CF algorithms.
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