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ABSTRACT
Often scientists seek to search for articles on the Web re-
lated to a particular chemical. When a scientist searches
for a chemical formula using a search engine today, she gets
articles where the exact keyword string expressing the chem-
ical formula is found. Searching for the exact occurrence of
keywords during searching results in two problems for this
domain: a) if the author searches for CH4 and the arti-
cle has H4C, the article is not returned, and b) ambiguous
searches like “He” return all documents where Helium is
mentioned as well as documents where the pronoun “he”
occurs. To remedy these deficiencies, we propose a chemical
formula search engine. To build a chemical formula search
engine, we must solve the following problems: 1) extract
chemical formulae from text documents, 2) index chemical
formulae, and 3) design ranking functions for the chemical
formulae. Furthermore, query models are introduced for for-
mula search, and for each a scoring scheme based on features
of partial formulae is proposed to measure the relevance of
chemical formulae and queries. We evaluate algorithms for
identifying chemical formulae in documents using classifi-
cation methods based on Support Vector Machines (SVM),
and a probabilistic model based on conditional random fields
(CRF). Different methods for SVM and CRF to tune the
trade-off between recall and precision for imbalanced data
are proposed to improve the overall performance. A feature
selection method based on frequency and discrimination is
used to remove uninformative and redundant features. Ex-
periments show that our approaches to chemical formula
extraction work well, especially after trade-off tuning. The
results also demonstrate that feature selection can reduce
the index size without changing ranked query results much.
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1. INTRODUCTION
Increasingly, more scientific documents are being pub-

lished on the World-Wide-Web. Scientists, especially chemists,
often want to search for articles related to particular chem-
icals. One obvious method to express such searches is by
using the chemical formulae of the chemical compounds.
Current search engines do not support users searching for
documents using chemical formulae. In this work, we show
how one can construct a chemical formula search engine,
which is one of the E-science application areas [20, 29].

When a scientist searches for a chemical formula using
a search engine today, articles are usually returned where
the exact keyword string expressing the chemical formula
is found. Searching for the exact occurrence of keywords
results in two problems for this domain: a) if the author
searches for CH4 and the article has H4C, the article is not
returned, and b) ambiguous searches like “He” return all
documents where Helium is mentioned as well as documents
where the pronoun “he” occurs. To remedy these deficien-
cies, we propose a chemical formula search engine. To build
such a search engine, we must solve the following problems:
(1) extract chemical formulae from text documents, (2) in-
dex chemical formulae, and (3) design ranking functions for
the chemical formulae.

Extracting chemical formulae from text documents is a
classification problem where the text is classified into two
classes: a) chemical formulae and b) other text. Each chem-
ical formula is then transformed into a canonical form (e.g.
ND4 into 2H4N) and indexed to enable fast searches in re-
sponse to queries posed by end-users. Furthermore, we also
propose and provide the semantics of four types of queries to
allow for fuzzy searches for chemical formulae. We have also
devised a scoring scheme for each of these query types, based
on features of partial formulae, to measure the relevance of
chemical formulae and queries.

A simple rule-based algorithm can be designed to check
if words are composed of the symbols of chemical elements
and numbers. While this rule-based algorithm can give high
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recall identifying all chemical formulae, it results in low pre-
cision because for terms like “He”, “I”, etc., the algorithm
has to decide whether the term is a chemical formula or a
pronoun or other non-formula terms. Because natural lan-
guage understanding is a hard unsolved problem, we employ
a classification algorithm based on the statistics of the con-
text of the occurrence of a term to determine whether it is
a chemical formula or not.

This problem can be addressed in two stages. The first
stage is that of chemical formula extraction. Previous re-
search on detecting names [5], biological entities [17], or
even advertising keywords [28] uses a broad range of tech-
niques from rule-based methods to machine-learning based
ones. Among these approaches, the machine-learning-based
approaches utilizing domain knowledge perform the best be-
cause they can mine implicit rules as well as utilize prior
domain knowledge in statistical models to improve the over-
all performance. In the second stage, the chemical formulae
are indexed and ranked against user queries. For the second
stage of formula search, there are two categories of related
research issues and previous work. One is how to represent
and index patterns (graphs or formulae), including feature
selection of substructures [26]. Indexing graphs or formulae
is important to support various query models especially sim-
ilarity searches, which compare the internal structures. The
second set of issues involve data mining, such as mining fre-
quent substructures [6, 11], and similarity structure search
[25, 7, 19, 27], which use some specific methods to mea-
sure the similarity of two patterns. However, no previous
research has addressed the issue of extracting and searching
for chemical formulae in text documents.

The major contribution of this paper is to show how to
build a chemical formula search engine. We evaluate algo-
rithms for identifying chemical formulae in documents us-
ing classification methods based on SVM, and a probabilis-
tic model based on CRF. Similar to decision threshold ad-
justment in the testing of SVM, a novel method of feature
boosting for different classes is introduced to improve the
performance of CRF, by tuning the trade-off of recall and
precision of the true class for imbalanced data (i.e., where
the number of occurrences of entities belonging to the two
classes are substantially different). We propose a sequential
feature selection algorithm, which first mines frequent sub-
structures, and then selects features from shorter to longer
partial formulae, based on criteria of feature frequency and
discrimination with respect to the current set of selected
features. A partial formula (e.g. COOH ) is defined as a
partial sequence of a formula (e.g. CH3COOH ). We then
propose four basic types of formula search queries: exact
search, frequency search, substructure search, and similar-
ity search. Finally, we describe relevance scoring functions
corresponding to the types of queries. Our formula search
engine is an integral part of ChemXSeer, a digital library
for chemistry and embeds the formula search into document
search by query rewrite and expansion (Figure 1).

The rest of this paper is organized as follows: Section
2 reviews related works. In Section 3, we present entity-
extraction approaches based on SVM and CRF, improve
these methods based on decision-threshold tuning and fea-
ture boosting, and discuss the feature set used in our re-
search. Section 4 introduces the sequential feature-selection
algorithm for index construction of partial formulae, four
categories of formula query models, and corresponding scor-

Focused Crawler

Converter

Web

Formula Entity Extraction

Document DBFormula Parser & Analyzer

Formula Indexing Document Indexing

Web Server

Document QueryFormula Query

Documents URL

Documents PDF

Documents TXT

Formulae

Feature Selection

Substructures

Web Service

Meta-Data
Formula

Index
Document

Index

Query Filter & Rewrite

Documents

Formula Ranking Document Ranking
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ing functions. In Section 5, experiments about formula ex-
traction, indexing, and search are described, and results are
presented and discussed to show that our methods work well.
Conclusions and some future directions of the research work
are discussed in Section 6.

2. RELATED PREVIOUS WORK
Related work involves two stages: 1) extraction of chemi-

cal structure information, and 2) indexing and search chem-
ical molecules. The problems of mining chemical structural
information from literature [2] include: 1) chemical structure
information can be in text or image formats, and 2) there
are many standards. Some partial solutions exist, especially
for commercial applications [2].

2.1 Entity Extraction
Labelling sequences is a task of assigning labels to se-

quences of observations, e.g. labelling Part of Speech (POS)
tags and entity extraction. Labelling POS tags represents a
sentence with a full tree structure and labels each term with
a POS tag, while shallow parsers [22] are used to extract
entities. Methods used for labelling sequences are differ-
ent from those that are used for traditional classification,
which only considers independent samples. Hidden Markov
Models (HMM ) [8] are one of the common methods used
to label or segment sequences. HMM has strong indepen-
dence assumptions and suffers the label-bias problem [12].
Another category of entity extraction methods is based on
Maximum Entropy (ME) [5], which introduces an exponen-
tial probabilistic model based on binary features extracted
from sequences and estimate parameters using maximum
likelihood. MEMM [14] combines the ideas of HMM and
ME, but also suffers the label-bias problem. Different from
those directed graphic models of HMM and MEMM, CRF
[12] uses the undirected graphic model, which can avoid the
label-bias problem. It follows the maximum entropy princi-
ple [3] as ME and MEMM, using exponential probabilistic
models and relaxing the independence assumption to involve
multiple interaction and long-range dependencies. For la-
belling sequences, models based on linear-chain CRF have
been applied to many applications, such as named-entity
recognition [15], detecting biological entities, like protein
[21] or gene names [17], etc. However, chemical formula
tagging is different from them in the tokenizing process and
the feature set used due to different domain knowledge.
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Entity extraction can also be viewed as a classification
problem where approaches such as SVM [10, 4] are appli-
cable, since information about dependence in the text con-
text of terms can be represented as overlapping features be-
tween adjacent terms. However, usually entity extraction is
an asymmetric binary classification problem on imbalanced
data, where there are many more false samples than true
samples, but precision and recall of the true class is more
important than the overall accuracy. In this case, the deci-
sion boundary may be dominated by false samples. Several
methods such as cost-sensitive classification and decision-
threshold tuning are studied for imbalanced data [23]. We
have observed that CRFs suffer from this problem too, since
in previous work based on CRF [17, 22], usually recall is
lower than precision. To the best of our knowledge, no meth-
ods to tune the trade-off between them exist.

2.2 Graph Similarity Search
In Chemoinformatics and the field of graph databases, to

search for a chemical molecule, the most common and sim-
ple method is the substructure search [25], which retrieves
all molecules with the query substructure(s). However, suf-
ficient knowledge to select substructures to characterize the
desired molecules is required, so the similarity search is
desired to bypass the substructure selection. Generally, a
chemical similarity search is to search molecules with similar
structures as the query molecule. Previous methods fall into
two major categories based on different criteria to measure
similarity. The first one is feature-based approaches using
substructure fragments [25, 27], or paths [24]. The major
challenge for this category is how to select a set of features,
like substructure fragments or paths, to find a trade-off be-
tween efficiency and effectiveness and improve both of them.
Previous work [26] focused on selection of good features for
indexing. They selected frequent and discriminative sub-
structure fragments sequentially. The basic idea is that the
next feature selected from the candidate feature set should
not appear only in a very small portion of data, and should
not be redundant with respect to the current selected fea-
tures. Thus, if a feature is too frequent in the data set,
i.e., with a low entropy value, it is not a good candidate.
However, in practice, no features are too frequent. After
substructure analysis, feature extraction, and mapping to
vector space, distance or kernel functions can be applied to
measure the similarity. The second category of approaches
uses the concept of Maximum Common Subgraph (MCS)
[19] to measure the similarity by finding the size of the MCS
of two graphs. The feature-based approaches are more effi-
cient than the second one, since finding MCS is expensive
and needs to be computed between the query graph and ev-
ery graph in the collection. Thus, feature-based approaches
based on substructure fragments are used to screen candi-
dates before finding MCS [27]. Hierarchical screening filters
are introduced in [19], where at each level, the screening
method is more expensive but more accurate.

3. FORMULA EXTRACTION
A chemical formula like CH4 is a kind of sequential string

representation of a chemical molecule. Different from per-
son names, locations, or biological entities, the number of
chemical formulae is huge, but the string pattern is defined
by some particular rules. A chemical formula can have only
partial information of the corresponding molecule structure,
and a molecule may have different formula representations.

Usually, a rule-based string pattern match approach can
identify most of the chemical formulae, but two types of am-
biguity exist. The first case is that even though the string
pattern matches the formula pattern, and each letter seems
like a chemical element, this chemical molecule may not exist
at all. The matched term may be just an abbreviation, e.g.
NIH. There are too many implicit relations which are infea-
sible for the rule-based approach. The second case is that
even though the matched term is a chemical formula string,
in fact it is an English word, or a person name, or an ab-
breviation in the semantic context. For example, ambiguity
exists for I (Iodine) and I, He(Helium) and He, In(Indium)
and In. Several text fragments are selected to show the two
types of ambiguities.
Non-formula
“... This work was funded under NIH grants ...”
“... YSI 5301, Yellow Springs, OH, USA ...”
“... action and disease. He has published over ...”
Formula
“... such as hydroxyl radical OH, superoxide O2- ...”
“... and the other He emissions scarcely changed ...”

Thus, machine learning methods based on SVM and CRF
are proposed for chemical formulae extraction. Advanced
features from the rule-based string pattern match approach
are utilized to improve the overall performance.

3.1 Support Vector Machines
SVM [4] is a binary classification method which finds an

optimal separating hyperplane {x : w·x+b = 0} to maximize
the margin between two classes of training samples, which
is the distance between the plus-plane {x : w · x + b = 1}
and the minus-plane {x : w · x + b = −1}. Thus, for separa-
ble noiseless data, maximizing the margin equals minimizing
the objective function ||w||2 subject to ∀i, w · yi(xi + b) ≥ 1.
In the noiseless case, only the so-called support vectors, vec-
tors closest to the optimal separating hyperplane, are use-
ful to determine the optimal separating hyperplane. Un-
like classification methods where minimizing loss functions
on wrongly classified samples are affected seriously by im-
balanced data, the decision hyperplane in SVM is not af-
fected much. However, for inseparable noisy data, SVM
minimizes the objective function: ||w||2 +C

∑n
i=1 εi subject

to ∀i, w ·yi(xi + b) ≥ 1− εi, and εi ≥ 0, where εi is the slack
variable, which measures the degree of misclassification of a
sample xi. This noisy objective function has included a loss
function that is affected by imbalanced data.

3.2 Conditional Random Fields
Suppose we have a training set S of labelled sequences,

where each sequence is an independently and identically dis-
tributed sample, but each sample has an internal dependent
structure. For example, in a document, adjacent terms have
strong dependence. Could we find a method for each sample
to represent the conditional probability p(y|x,λ), where x
is the sequence of observations, y is the sequence of labels,
and λ is the parameter vector of the model, and consider the
dependent structure in each sample? Maximum Likelihood
can be used to learn the parameter λ and find the best y.

A CRF model can be viewed as an undirected graphical
model G = (V, E). The conditional probability of the ran-
dom vector Y given observation sequences X is estimated
from the data set [12]. Each random variable Yv in the ran-
dom vector Y is represented by a node v ∈ V in G. Each
e ∈ E represents the mutual dependence of a pair of labels
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Yv, Yv′ . A pair of vertices in G are conditionally independent
given all other random variables. Even though the structure
of G may be arbitrary, for sequential data, usually the sim-
plest and most common structure is a first-ordered chain,
where only neighbors in a sequence for Y are dependent.

To model the conditional probability p(y|x,λ), we need
to find a probability model that can consider not only the
probability of each vertex, but also the joint probability of
each pair of vertices. Then if the labels or observations of
a pair of vertices have some changes, the probability of this
model changes too. A probability model for each sequence
based on feature functions is applied in CRF,

p(y|x,λ) =
1

Z(x)
exp(

∑

j

λjFj(y,x)), (1)

where Fj(y,x) is a feature function which extracts a real-
valued feature from the label sequence y and the observation
sequence x, and Z(x) is a normalization factor for each dif-
ferent observation sequence x. For chain-structured CRF
models of sequential inputs, usually only binary functions
with values of {0, 1} are considered, and two types of fea-

ture are used, state feature Fj(y,x) =
∑|y|

i=1 sj(yi,x, i) to
model the probability of a vertex in G and transition feature
Fj(y,x) =

∑|y|
i=1 tj(yi−1, yi,x, i) to consider mutual depen-

dence of the vertex labels for each edge e in G, and each
function has a weight λj . The feature weight λj specifies
whether the corresponding feature is favored or not. The
weight λj for the feature j should be highly positive if this
feature tends to be on for the training data, and highly neg-
ative if it tends to be off.

Once we have p(y|x,λ), the log-likelihood for the whole
train set S is given by

L(λ) =

|S|
∑

k=1

log(p(y(k)|x(k),λ)) (2)

The goal is to maximize this log-likelihood, which has been
proved to be a smooth and concave function, and to estimate
parameters λ. To avoid the over-fitting problem, regulariza-

tion may be used; that is, a penalty (−
∑

j=1

λ2
j

2σ2 ) is added
to the log-likelihood function (3), where σ is a parameter
which determines how much to penalize λ. Differentiating
the log-likelihood function (3) with respect to λj , setting the
derivative to zero and solving for λ does not have a closed
form solution. Numerical optimization algorithms can be
applied to solve this problem [12, 18, 22].

3.3 Trade-off Tuning for Imbalanced Data
As mentioned before, from the results of previous research,

we see that usually for imbalanced data, recall is lower than
precision for the true class. However, usually extraction of
true samples is more important than the overall accuracy,
and sometimes recall is more important than precision, es-
pecially in information retrieval (IR).

Usually some parameter tuning can improve recall with
some loss of precision. Those classification approaches mainly
fall into two categories, a) tuning in the training process and
b) tuning in the testing process. Cross validation is used
to estimate the best parameter [23]. The former approach
oversamples the minority class, or undersamples the major-
ity class, or gives different weights for two classes, or gives
different penalties (costs of risk) to wrong classifications, ev-
ery time during training. For example, if Cost(predicted =
true|real = false) < Cost(predicted = false|real = true)

for each sample, recall is more important than precision.
These asymmetric cost values affect the loss function, and
finally change the decision boundary of the classes. The lat-
ter approach adjusts and finds the best cut-off classification
threshold t instead of the symmetric value for the output,
which actually only translates the decision boundary [23],
but is more efficient because only one training process is re-
quired. For example, to increase the importance of recall in
SVM, a cut-off classification threshold value t < 0 should
be selected. In methods with outputs of class probability
[0, 1], then a threshold value t < 0.5 should be chosen. As
noted before, for noiseless data, SVM is stable, but for noisy
data, SVM is affected much by imbalanced support vectors.
In our work, the latter approach is applied for SVM, i.e.,
when t < 0, recall is to be improved but precision decreases.
When t > 0, a reverse change is expected.

In CRF we use a weight parameter θ to boost features
corresponding to the true class during the testing process.
Similar to the classification threshold t in SVM, θ can tune
the trade-off between recall and precision, and may be able
to improve the overall performance, since the probability
of the true class increases. During the testing process, the
sequence of labels y is determined by maximizing the proba-
bility model p(y|x,λ) = 1

Z(x)exp(
∑

j λjFj(y,x, θy)), where

Fj(y,x, θy) =
∑|x|

i=1 θyisj(yi,x, i) or
∑|x|

i=1 θyi tj(yi−1, yi,x, i),
θy is a vector with θyi = θ when yi = true, or θyi = 1 when
yi = false, and λj are parameters learned while training.

3.4 Feature Set and Induction
Generally, two categories of state features are extracted

from sequences of terms: single-term features from a single
term, and overlapping features from adjacent terms. There
are two types of features: surficial features and advanced
features. Surficial features are those that can be observed
directly from the term, such as word or word prefix and suf-
fix features, orthographic features, or lists of specific terms.
Advanced features are those generated by complex domain
knowledge or other data mining approaches in advance.

Usually for data mining, advanced features are more pow-
erful than surficial features, but more expensive and some-
times infeasible. If an advanced feature has a very high
correlation with the true class label, then a high accuracy
is expected. Advanced features can be inferred using rule-
based approaches or machine-learning approaches.

In our work, a rule-based approach using string pattern
matching is applied to generate a set of features. Since we
do not have a dictionary of all chemical molecules, and the
formula of a molecule may have different string representa-
tions, we consider features of co-occurrence of two chemical
elements in a formula to measure whether a matched string
is a formula. For example, C and O co-occur frequently, but
an element of the noble gases e.g. He and a metal element
e.g. Cu are impossible to appear together in a formula.

As mentioned before, we need to distinguish formula terms
from English words or personal names. Linguistic features
like POS tags are used based on natural language processing
(NLP), such as noun or proper noun. Those features are
useful especially when combined with overlapping features
in the context of a token. All the features that are used
by our algorithms are summarized here. Note that all the
features based on observations are combined with the state
labels of tokens to construct transition features.
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Summary of features
Surficial features: InitialCapital, AllCapitals, OneCapital,
HasDigit, HasDash, HasPunctuation, HasDot, HasBrack-
ets, HasSuperscripts, IsChemicalElementName, IsAmbigu-
ousEnglishWord, IsAmbiguousPersonalName, IsAbbreviation,
character-n-gram features. For features like IsChemicalEle-
mentName and IsAbbreviation, we have lists of names of
chemical elements and common abbreviations, e.g. NIH.
Advance features: IsFormulaPattern, IsFormulaPatternWith-
Cooccurrence, IsLongFormulaPattern, IsFormulaPatternWith-
Superscript, IsFormulaPatternWithLowerCase, IsPOSTagNN,
etc. String pattern matching and domain knowledge are
used for features of formula pattern.
Overlapping features: Overlapping features of adjacent terms
are extracted. We used -1, 0, 1 as the window of features,
so that for each token, all Overlapping features about the
last token and the next token are included in the feature set.
For instance, for He in “... . He is ...”, feature(termn−1 =
“.” ∧ termn = initialCapital)=true, and feature(termn =
initialCapital ∧ termn+1 = isPOSTagV BZ)=true. This
“He” is likely to be an English word instead of Helium.

Finally all features combine with labels. However, there
are too many features and most occur rarely. We apply
an approach to feature induction for CRF proposed in [13]
to score candidate features using their log-likelihood gain:
∆LG(f) = L(S)F∪{f} − L(S)F , where F is the current fea-
ture set, L(S)F is the log-likelihood of the training set using
F , and L(S)F∪{f} is the log-likelihood of the training set
adding feature f . Thus, more useful features are selected.

4. FORMULA INDEXING AND SEARCH
We define chemical formulae formally as follows:
Definition 1. Formula and Partial Formula: Given a

vocabulary of chemical elements, E, a chemical formula f is
a sequence of pairs of a partial formula and the correspond-
ing frequency < si, freqsi >, where each si is a chemical
element e ∈ E or another chemical formula f ′. A partial
formula is viewed as a substructure of f , denoted as s ' f ,
is a subsequence of f , or a subsequence of a partial formula
si in < si, freqsi > of f , or a subsequence of a partial for-
mula s′ of f , so that if s′ ' f ∧ s ' s′, then s ' f . The
length of a formula L(f) or a partial formula L(s) is defined
as the number of pairs in the sequence.

A partial formula is also a formula by definition, but may not
be a meaningful formula. For example, CH3(CH2)2OH is a
chemical formula, and C, CH2, (CH2)2, and CH3(CH2)2OH
all are partial formulae.

We discuss three issues in this section. First, we discuss
how to analyze the structure of a chemical formula and select
features for indexing, which is important for substructure
search and similarity search. Since the full graphic struc-
ture information of a molecule is unavailable, we use par-
tial formulae as substructures for indexing and search. The
same chemical molecule may have different formula strings
mentioned in text, e.g. acetic acid can be CH3COOH or
C2H4O2. The same formula can represent different molecules,
e.g. C2H4O2 can be acetic acid (CH3COOH ) or methyl for-
mate (CH3OCHO). Second, different from keywords search
of documents in IR, to search chemical formulae, we should
consider structures of formulae instead of only frequencies
of chemical elements, because in traditional IR, there are
enough terms to distinguish documents, while in Chemoin-
formatics, using chemical elements and their frequencies is

Input: Candidate Feature Set C with frequency Freqs and
support Ds for each substructure s, minimal threshold value
of frequency Freqmin, minimal discriminative score αmin.
Output: Selected Feature Set F .
1. Initialization: F = {∅}, D∅ = D, length l = 0.
2. while C is not empty, do
3. l = l + 1;
4. for each s ∈ C
5. if Freqs > Freqmin

6. if Ls = l

7. compute αs using Eq (3) (α
(0)
s = |D|

|Ds|
, since

no s satisfies s′ # s ∧ s′ ∈ F )
8. if αs > αmin

9. move s from C to F ;
10. else remove s from C;
11. else remove s from C;
12. return F ;

Figure 2: Algorithm: Sequential Feature Selection

not enough to distinguish chemical formulae. Third, to score
the relevance of the search results to the query formula, each
feature is assigned a weight based on its length, frequency
in formulae, and distribution among formulae.

4.1 Feature Selection for Index Construction
To support similarity search, partial formulae of each for-

mula are useful as possible substructures for indexing. How-
ever, since partial formulae of a partial formula s ' f with
L(s) > 1 are also partial formulae of the formula f , the num-
ber of all partial formulae of the formula set is quite large.
For instance, the candidate features of CH3OH are C, H3,
O, H, CH3, H3O, OH, CH3O, H3OH, and CH3OH. We do
not need to index every one due to redundant information.
For example, two similar partial formulae may appear in the
same set of formulae (e.g. CH3CH2COO and CH3CH2CO),
because they generate from the same super sequence. In this
case, it is enough to index only one of them. Moreover, it
is not important to index infrequent fragments. For exam-
ple, a complex partial formula appearing only once in the
formula set is not necessary for indexing, if its selected frag-
ments are enough to distinguish the formula having it from
others. E.g. when querying formulae having partial formu-
lae of CH3,CH2,CO,OH, and COOH, if only CH3CH2COOH
is returned, then it is not necessary to index CH3CH2COO.
Using a similar idea and notations about feature selection in
[26], given a whole data set D, Ds is the support of substruc-
ture s, the set of all formulae containing s, and |Ds| is the
number of items in Ds. All substructures of a frequent sub-
structure are frequent too. Based on these observations, two
criteria may be used to sequentially select features of sub-
structures into the set of selected features F . The feature
selected should be 1) frequent, and, 2) its support should
not overlap too much with the intersection of supports of its
selected substructures in F .

For Criterion 1, mining frequent substructures is required
in advance. After the algorithm extracts all chemical for-
mulae from documents, it generates the set of all partial
formulae and records their frequencies. Then, for Criterion
2, we define a discriminative score for each feature candidate
with respect to F . Similar to the definitions in [26], a sub-
structure s is redundant with respect to the selected feature
set F , if |Ds| ≈ | ∩s′∈F∧s′'s Ds′ |. A substructure s is dis-
criminative with respect to F , if |Ds| << | ∩s′∈F∧s′'s Df |.
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Thus, the discriminative score for each candidate s with re-
spect to F is defined as:

αs = | ∩s′∈F∧s′'s Ds′ |/|Ds|. (3)

The sequential feature selection algorithm is described in
Figure 2. The algorithm starts with an empty set F of se-
lected features, scanning each substructure from the length
l = 1 to l = L(s)max. At each length of substructure, all
frequent candidates with discriminative scores larger than
the threshold are selected. This scanning sequence ensures
that at each length of substructure, no scanned substruc-
ture is a substructure of another scanned one. Thus, only
selected substructures at previous steps are considered to
compute the discriminative scores. All substructures s with
L(s) > l but Freq(s) <= Freqmin are removed directly
from the candidate set C, because even when L(s) = l after
several scanning cycles to longer substructures, Freqs still
has the same value, and αs will decrease or remain the same.
Consequently, the feature is not selected.

4.2 Query Models
We propose four types of queries for chemical formula

search: exact search, frequency search, substructure search,
and similarity search. Usually only frequency formula search
is supported by current chemistry information systems. As
mentioned before, substructure search and similarity search
are common and important for structure search, but not
for formula search, because formulae do not contain enough
tructural information. Motivated by this, we propose heuris-
tics for fuzzy formula search based on partial formulae.

Definition 2. Formula Query and Frequency Range:
A formula query q is a sequence of pairs of a partial formula
and the corresponding frequency range < si, rangesi >,
where token si is a chemical element e ∈ E or another chem-
ical formula f ′, and rangesi = ∪k[lowk, upperk], upperk ≥
lowk ≥ 0.

Exact search
The answer to an exact search query is formulae having

the same sequence of partial formulae within the frequency
ranges specified in the query. Exact search usually is used to
search exact representation of a chemical molecule. Different
formula representations for the same molecule cannot be
retrieved. For instance, the query C1-2H4-6 matches CH4
and C2H6, but not H4C or H6C2.
Frequency searches

We say that a user runs a frequency search, when he spec-
ifies the elements and their frequencies. All documents with
chemical formulae that have the specified elements within
the specified frequency ranges are returned. As indicated
above, most current chemistry databases support frequency
searches as the only query models for formula search. There
are two types of frequency searches: full frequency searches
and partial frequency search. When a user specifies the query
C2H4-6, the system returns documents with the chemical
formulae with two C and four to six H, and no other atoms
for full frequency search, e.g. C2H4, and returns formulae
with two C, four to six H and any numbers of other atoms
for partial frequency search, e.g. C2H4 and C2H4O.
Substructure search

Substructure searches find formulae that may have a query
substructure defined by users. In substructure searches, the
query q has only one partial formula s1 with ranges1

= [1, 1],

and retrieved formulae f have freqs1
≥ 1. However, since

the same substructure may have different appearances in
formulae, three types of matches are considered with differ-
ent ranking scores (Section 4.3). E.g. for the query COOH,
COOH gets an exact match (high score), HOOC reverse
match (medium score), and CHO2 parsed match (low score).
Similarity search

Similarity searches return documents with chemical for-
mulae with similar structures as the query formula, i.e., a
sequence of partial formulae si with a specific rangesi , e.g.
CH3COOH. However, there are two reasons that traditional
fuzzy search based on edit distance is not used for formula
similarity search: 1) Formulae with more similar structures
or substructures may have larger edit distance. E.g. H2CO3
can also be mentioned as HC(O)OOH, but the edit distance
of them is larger than that of H2CO3 and HNO3 (6¿2). Us-
ing the partial formula based similarity search of H2CO3,
HC(O)OOH has a higher ranking score than HNO3 based
on Equation (6). 2) Compute edit distances of the query for-
mula and all the formulae in the data set is computational
expensive, so a method based on indexed features of partial
formulae is much faster and feasible in practice. Our ap-
proach is feature-based similarity search, since full structure
information is unavailable in formulae. The algorithm uses
selected partial formulae as features. We design and present
a scoring function in Section 4.3 based on all selected partial
formulae that are selected and indexed in advance, so that
the query processing and the ranking score computation is
efficient. Formulae with top ranking scores are retrieved.
Conjunctive search

Conjunctive search of the four basic formula searches is
supported for filtering search results, so that users can define
various constraints to search desired formulae. For example,
a user can search formulae that have two to four C, four
to ten H, and may have a substructure of CH2, using a
conjunctive search of a full frequency search C2-4H4-10 and
a substructure search of CH2.
Query rewriting

Since the ultimate goal of users is to search relevant doc-
uments, the users can search using formulae as well as other
keywords. The search is performed in two stages. First, a
query string is analyzed. All the embedded formula searches
are taken out, and all possible desired formulae are retrieved.
Then, after relevant formulae are returned, the original query
string is rewritten by embedding those formulae into the
corresponding positions of the original query string as sub-
groups with OR operators. To involve the relevance score for
each retrieved formula, boosting factors with the values of
relevance scores are added to each retrieved formula with a
goal to rank corresponding documents. Second, the rewrit-
ten query is used to search relevant documents. For exam-
ple, if a user searches documents with the term oxygen and
the formula CH4, the formula search CH4 is processed first
and matches CH4 and H4C with corresponding scores of 1
and 0.5. Then the query is written as “oxygen (CH4ˆ1 OR
H4Cˆ0.5)”, where 1 and 0.5 are the corresponding boosting
factors. Then documents with CH4 get higher scores.

4.3 Relevance Scoring
A scoring scheme based on the Vector Space Model in IR

and features of partial formulae is used to rank retrieved
formulae. We adapt the concepts of the term frequency tf
and the inverse document frequency idf to formula search.
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Definition 3. SF.IFF and Atom Frequency: Given
the collection of formulae C, a query q and a formula f ∈ C,
SF (s, f) is the substructure frequency for each substructure
s ' f , which is the total number of occurrences of s in
f , IFF (s) is the inverse formula frequency of s in C, and
defined as

SF (s, f) =
freq(s, f)

|f |
, IFF (s) = log

|C|
|{f |s ' f |}|

,

where freq(s, f) is frequency of s in f , |f | =
∑

k freq(sk, f)
is the total frequency of all selected substructures in f , |C|
refers to the total number of formulae in C, and |{f |s ' f |}
is the number of formulae that have substructure s. Since a
chemical atom e is also a substructure of a formula f or a
partial formula s, atom frequency refers to the substructure
frequency of e in f or s.

Frequency searches
For a query formula q and a formula f ∈ C, the scoring

function of frequency searches is given as

score(q, f) =

∑

e'q W (e)SF (e, f)IFF (e)2

√

|f |×
√

∑

e'q (W (e)IFF (e))2
, (4)

where |f | =
∑

k freq(ek, f) is the total atom frequency

of chemical elements in f , 1/
√

|f | is a normalizing fac-
tor to give a higher score to formulae with fewer atoms,

1/
√

∑

e'q (W (e)IFF (e))2 is a factor that makes scores com-

parable between different queries. It does not affect the rank
of retrieved formulae for a specific formula query, but affects
the rank of retrieved documents, if there are more than two
formula searches embedded in the document search. With-
out this factor, documents containing the longer query for-
mula get higher scores. Equation (4) considers f as a bag
of atoms, where e ' f is a chemical element. W (e) is the
weight of e that represents how much it contributes to the
score. It can adjust the weight of each e together with
IFF (e). Without domain knowledge W (e) = 1.
Substructure search

The scoring function of substructure search is given as
score(q, f) = Wmat(q,f)SF (q, f)IFF (q)/

√

|f |, (5)

where Wmat(q,f) is the weight for different matching types,
exact match (high weight, e.g. 1), reverse match (medium
weight, e.g. 0.8), and parsed match (low weight, e.g. 0.25),
which are defined by experiences.
Similarity search

A scoring function like a sequence kernel [9] is designed to
measure similarity between formulae for similarity search. It
maps a query formula implicitly into a vector space where
each dimension is a selected partial formula using the se-
quential feature selection algorithm. For instance, the query
CH3OH is mapped into dimensions of C, H3, O, H, CH3,
and OH, if only these six partial formulae are selected. Then
formulae with those substructures (including reverse or parsed
matched substructures) are retrieved, and scores are com-
puted cumulatively. Larger substructures are given more
weight for scoring, and scores of long formulae are normal-
ized by their total frequency of substructures. The scoring
function of similarity search is given as

score(q, f) =

∑

s'q Wmat(s,f)W (s)SF (s, q)SF (s, f)IFF (s)
√

|f |
,

(6)
where W (s) is the weight of the substructure s, which is
defined as the total atom frequency of s.

Table 1: Average accuracy of formula extraction
Method Recall Precision F-measure
String Pattern Match 98.38% 41.70% 58.57%
CRF,θ = 1.0 86.05% 96.02% 90.76%
CRF,θ = 1.5 90.92% 93.79% 92.33%
SVM linear,t = 0.0 86.95% 95.59% 91.06%
SVM linear,t = −.2 88.25% 94.23% 91.14%
SVM poly,t = 0.0 87.69% 96.32% 91.80%
SVM poly,t = −.4 90.36% 94.64% 92.45%
LASVM linear,t = 0.0 83.94% 90.65% 87.17%
LASVM linear,t = −.2 85.42% 89.55% 87.44%
LASVM poly,t = 0.0 75.87% 93.08% 83.60%
LASVM poly,t = −.4 83.86% 88.51% 86.12%

Table 2: P-values of 1-sided T-test on F-measure
Pairs of methods F-measure
CRF,θ = 1.0;CRF,θ = 1.5 0.130
CRF,θ = 1.5;SVM,linear,t = −.2 0.156
CRF,θ = 1.5;SVM,poly,t = −.4 0.396
CRF,θ = 1.5;LASVM,linear,t = −.2 0.002
CRF,θ = 1.5;LASVM,poly,t = −.4 0.000
SVM,linear,t = 0.0;SVM,linear,t = −.2 0.472
SVM,poly,t = 0.0;SVM,poly,t = −.4 0.231
SVM,linear,t = −.2;SVM,poly,t = −.4 0.072
SVM,linear,t = −.2;LASVM,linear,t = −.2 0.009
SVM,poly,t = −.4;LASVM,poly,t = −.4 0.000

5. EXPERIMENTS
In this section, our proposed methods of formula extrac-

tion, feature selection, and formula search are tested.

5.1 Formula Extraction
The first data set we used for testing is randomly selected

from chemistry publications crawled from the web-site of the
Royal Society of Chemistry1. First, 200 documents are se-
lected randomly from the publication set, and a random part
of each document is chosen. Each token is labelled manu-
ally with a tag of formula or non-formula after tokenizing.
This data set is very imbalanced, with only 1.59% true sam-
ples (5203 formulae vs. 321514 non-formula tokens). We use
10-fold cross-validation to evaluate the results of formula ex-
traction. Thus, each time, we used a training set of samples
obtained from 180 files and a testing set of samples obtained
from the other 20 files. Several methods are evaluated for
formula extraction, including String Pattern Match, SVM
with the linear (SVM linear) and polynomial kernel (SVM
poly), SVM active learning with the linear (LASVM linear)
and polynomial kernel (LASVM poly), and CRF. SVM light
[10] for batch learning and LASVM [4] for active learning
are used. MALLET [16] is used for CRF. The same feature
set is utilized for all the machine learning methods, and dif-
ferent feature subsets are tested for the CRF to evaluate
the contribution of the subsets. We tested complex kernels
of RBF and Gaussian, which are not shown here due to
the worse performances and more expensive computational
costs than the linear and polynomial kernel. For CRF, to
avoid the overfitting problem, regularization is used, with
σ2 = 5.0.

To measure the overall performance, we use F-measure
[17], F = 2PR/(P +R), where P is precision and R is recall,
instead of using error rate, since it is always very small for
imbalanced data. Results of average recall, precision, and

1http://www.rsc.org/
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Figure 3: CRF with different values of feature boosting parameter θ
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Figure 4: SVM and LASVM with different values of threshold t

F-measure are presented in Table 1, and Figures 3 and 4.
P-values of T-test of significance are shown in Table 2. Note
precision-recall curves here are different from the normal
shape of precision-recall curves in IR. The shape in Figures
3(a) and 4(a) can generate a F-measure curve with a peak,
so that we can optimize it by parameter tuning. Moreover,
if a precision-recall curve is situated towards the upper-right
corner, then a better F-measure is expected.

For CRF, we test different feature sets. Features are cate-
gorized into three sets: surficial features, advanced features
using rule-based string pattern match (RULE), and part-
of-speech tags based on natural language processing (POS).
Four combinations are tested: (1) all features, (2) no POS,
(3) no RULE, and (4) no POS or RULE. We also test differ-
ent values {0.5, 0.75, 1.0, 1.5, 2.0, 2.5, 3.0} for the feature-
boosting parameter θ for the formula class. Note that when
θ = 1.0, it is the normal CRF, while when θ < 1.0, the
non-formula class gets more preference.

From Figure 3, we can see that the contribution of RULE
features is much higher than that of POS features, since
the difference between curves with or without POS features
is quite smaller than that between curves with or without
RULE features. Usually, the performance with more fea-
tures is better than that with fewer features. We can ob-
serve that F-measure curves with fewer features are more
peaky and sensitive to θ, because both recall and precision
change faster. From the experiment results, we can see that
when θ = 1.5 using all features, we have the best overall
performance based on F-measure, and for this case, recall
and precision are much more balanced.

Based on experimental experiences of SVM, C = 1/δ2,
where δ = 1/n

∑n
i=1

√

ker(xi,xi) − 2 · ker(xi,0) + ker(0,0)
for SVM light, C = 100 for LASVM, and polynomial kernel
(x · x′ + 1)3 are applied in experiments. We test different
decision threshold values {-0.4, -0.2, 0.0, 0.2, 0.4, 0.6, 0.8}.
From Figure 4(a), we can see that CRF and SVM poly both

have a better performance curve than does SVM linear, but
the difference is not statistically significant at the level of
0.05 (Table 2). All of them are much better than LASVM,
which is statistically significant. Moreover, we can see that
CRF gives recall more preference instead of precision than
does SVM poly. When recall ≥ precision, CRF can reach
a better F-measure. This is important for imbalanced data.

We show the results for all approaches using all features
in Table 1 and compare them with the String Pattern Match
approach, which has very high recall but quite low precision.
Its error of recall is caused mainly by wrong characters rec-
ognized from image PDF files using optical character recog-
nition. The only previous work we can find is the GATE
Chemistry Tagger [1]. Since it cannot handle superscripts
and can recognize names of chemical elements, e.g. oxygen,
the GATE Chemistry Tagger is not fully comparable with
our approach. Without counting these two cases, its recall
is around 63.4%, precision 45.2%, and F-measure 52.8%.

We also evaluate the time taken by these methods to run
both for the training and testing process. Note that feature
extraction and CRF are implemented in Java, while SVM
and LASVM in C. Running time includes time of feature
extraction and training (or testing) time, since in practice
feature extraction must be counted. In Figure 5(a), we can
see that CRF has a computational cost between SVM poly
and other methods. We also observe that LASVM is much
faster than SVM, especially for complex kernels.

Based on these observations from our experiment results,
we can conclude that the boosting parameter for CRF and
the threshold value for SVM can tune the relation of preci-
sion and recall to find a desired trade-off and are able to im-
prove the overall F-measure, especially when recall is much
lower than precision for imbalanced data. CRF is more de-
sired than SVM for our work, since it not only has a high
overall F-measure, but also a more balanced performance
between recall and precision. Moreover, CRF has a reason-

WWW 2007 / Track: E*-Applications Session: E-Commerce and E-Content

258



0 0.5 1 1.5 2 2.5 3

x 105

0

500

1000

1500

2000

2500

3000

3500

Sample Size

Tr
ai

ni
ng

 ti
m

e(
se

co
nd

)
CRF
SVM Linear
SVM Poly
LASVM Linear
LASVM Poly
Feature extraction

(a) Training time

0 0.5 1 1.5 2 2.5 3

x 105

0

200

400

600

800

1000

1200

Sample Size

Te
st

in
g 

tim
e(

se
co

nd
)

CRF
SVM Linear
SVM Poly
LASVM Linear
LASVM Poly
Feature extraction

(b) Testing time

Figure 5: Running time of formula extraction includ-
ing feature extraction
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Figure 6: Features and index size ratio after feature
selection
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Figure 7: Correlation of similarity search results after feature selection
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Figure 8: Running time
of feature selection

able running time, lower than that of SVM with complex
kernels. In addition, during the testing process, the test-
ing cost of CRF is trivial compared with the cost of feature
extraction.

5.2 Formula Indexing and Search
For formula indexing and search, we test the sequential

feature selection algorithm for index construction and eval-
uate retrieved results. We select a set of 5036 documents
and extract 15853 formulae with a total of 27978 partial
formulae before feature selection. Different values for the
frequency threshold Freqmin = {1, 2, 3, 4, 5} and the dis-
crimination threshold αmin = {0.9, 1.0, 1.2} are tested, and
results are shown in Figures 6-9.

Note that when αmin = 0.9, all frequent partial formulae
are selected without considering the discriminative score α.
When αmin = 1.0, each partial formula whose support can
be represented by the intersection of its selected substruc-
tures’ supports is removed. We do not lose information in
this case because all the information of a removed frequent
structure has been represented by its selected partial formu-
lae. When αmin > 1.0, feature selection is lossy since some
information is lost. After feature selection and index con-
struction, we generate a list of 100 query formulae that are
selected randomly from the set of extracted formulae and
from a chemistry textbook and web pages. These formulae
are used to perform similarity searches.

The experiment results (Figure 6) show that depending
on different threshold values, most of the features are re-
moved after feature selection, so that the index size de-
creases correspondingly. Even for the case of Freqmin = 1
and αmin = 0.9, 75% of the features are removed, since they
appear only once. We can also observe that from αmin = 0.9
to αmin = 1.0, many features are also removed, since those
features have selected partial formulae with the same sup-

port D. When αmin ≥ 1.0, the selective ratio change a
little. We also evaluated the runtime of the feature selection
algorithm, illustrated in Figure 8. We can see that a larger
Freqmin can filter infrequent features directly without com-
puting discriminative scores, which speeds up the algorithm,
while the value of αmin affect the runtime little.

The most important result from our experiments is that
for the same similarity search query, the search results with
feature selection are similar to those without feature selec-
tion when the threshold values are reasonable. To compare
the correlation between them, we use the average of the per-
centage of overlapping results for the top n ∈ [1, 30] retrieved
formulae, which is defined as Corrn = |Rn ∩ R′

n|/n, n =
1, 2, 3, ..., where Rn and R′

n are the search results of applying
feature selection or not, correspondingly. Results are pre-
sented in Figure 7. As expected, when the threshold values
of Freqmin and αmin increases, the correlation curves de-
crease. In addition, the correlation ratio increases for more
retrieved results (n increases). From the retrieved results,
we also find that if there is an extract matched formula,
usually it is returned as the first result. This is why the cor-
relation ratio of the top retrieved formula is not much lower
than that of the top two retrieved formulae. We also can see
from those curves that a low threshold value of Freqmin can
keep the curve flat and have a high correlation for smaller
n, while a low threshold value of αmin can improve the cor-
relation for the whole curve. For the case of Freqmin = 1
and αmin = 0.9, more than 80% of the retrieved results are
the same for all cases, and 75% of the features are removed,
which is both efficient and effective enough.

For exact search and frequency search, the quality of re-
trieved results depends on formula extraction. For similarity
search and substructure search, to evaluate the search re-
sults ranked by the scoring function, enough domain knowl-
edge is required. Thus, we only show an example with top
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Figure 9: Similarity search results of ChemXSeer

retrieved results for the feature selection case of Freqmin =
1 and αmin = 0.9 in Figure 9, a snapshot of ChemXSeer.

6. CONCLUSIONS AND FUTURE WORK
We evaluated several methods for chemical formula ex-

traction based on SVM and CRF. We also proposed dif-
ferent methods for them to tune the trade-off between re-
call and precision for imbalanced data. Experiments illus-
trated that CRF is the best regarding effectiveness and ef-
ficiency, and SVM linear also has a good performance. Our
trade-off tuning methods can improve the overall F-measure
scores and increase recall of formulae as expected. Study-
ing different subsets of features shows that combining prior
knowledge as advanced features is important to improve the
accuracy. A sequential feature selection algorithm is de-
signed to select frequent and discriminative substructures.
Results show that it can reduce the feature set and the in-
dex size tremendously. Retrieved results of similarity search
with and without feature selection are highly correlated.
We also introduced several query models for chemical for-
mula search, which are different from keywords searches in
IR. Corresponding scoring schemes are designed, which ex-
tended the idea of tf-idf, and considered sequential infor-
mation in formulae. Experiment results show that the new
scoring schemes work well.

Several future directions are discussed here. First, user
study is required to evaluate precision and recall of addi-
tional search results. Second, the scoring schemes can be
optimized by global knowledge learned from users’ click-
through information. We can expect non-formula strings
among extracted formulae can get a lower rank and can be
identified easily. Third, when we analyze the structures of
chemical formulae, which occurrence of a string pattern is a
meaningful substructure? This is a challenging issue since
formulae may not have enough information and how to de-
fine a substructure is a problem. Furthermore, which sub-
structures are useful to measure the similarity? Finally, the
identity ambiguity exists for formulae, since even though we
have a unique id for each object in a database, id matching
of each appearance is a challenging issue.
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