
Towards Next Generation CiteSeer:
A Flexible Architecture for Digital Library

Deployment

I.G. Councill1, C.L. Giles1

E. Di Iorio2, M. Gori2, M. Maggini2, and A. Pucci2

1 School of Information Sciences and Technology, The Pennsylvania State University,
332 IST Building University Park, PA 16802

{icouncil, giles}@ist.psu.edu
2 Dipartimento di Ingegneria dell’Informazione, University of Siena,

Via Roma, 56. Siena, Italy
{diiorio, marco, maggini, augusto}@dii.unisi.it

Abstract. CiteSeer began as the first search engine for scientific litera-
ture to incorporate Autonomous Citation Indexing, and has since grown
to be a well-used, open archive for computer and information science pub-
lications, currently indexing over 730,000 academic documents. However,
CiteSeer currently faces significant challenges that must be overcome in
order to improve the quality of the service and guarantee that Cite-
Seer will continue to be a valuable, up-to-date resource well into the
foreseeable future. This paper describes a new architectural framework
for CiteSeer system deployment, named CiteSeer Plus. The new frame-
work supports distributed indexing and storage for load balancing and
fault-tolerance as well as modular service deployment to increase system
flexibility and reduce maintenance costs. In order to facilitate novel ap-
proaches to information extraction, a blackboard framework is built into
the architecture.

1 Introduction

The World Wide Web has become a staple resource for locating and publishing
scientific information. Several specialized search engines have been developed
to increase access to scientific literature including publisher portals such as the
ACM Portal1 and IEEE Xplore2 as well as other academic and commercial sites
including the Google Scholar3. A key feature common to advanced scientific
search applications is citation indexing [3]. Many popular commercial search
services rely on manual information extraction in order to build citation indexes;
however, the labor involved is costly. Autonomous citation indexing (ACI) [4]
has emerged as an alternative to manual data extraction and has proven to
1 http://portal.acm.org/portal.cfm
2 http://ieeexplore.ieee.org
3 http://scholar.google.com

J. Gonzalo et al. (Eds.): ECDL 2006, LNCS 4172, pp. 111–122, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

112 I.G. Councill et al.

be successful despite some loss of data accuracy. Additionally, the ACI model
has traditionally been coupled with autonomous or semi-autonomous content
acquisition. In this approach, focused crawlers are developed to harvest the web
for specific types of documents, in this case academic research documents, in
order to organize distributed web content within a single repository. Automatic
content acquisition is particularly useful for organizing literature that would
otherwise be difficult to locate via general search engines [8].

CiteSeer [4] emerged as one of the first focused search engines to freely provide
academic papers, technical reports, and pre-prints, and is also the first example
of a working ACI system. CiteSeer consists of three basic components: a focused
crawler or harvester, the document archive and specialized index, and the query
interface. The focused spider or harvester crawls the web for relevant documents
in PDF and PostScript formats. After filtering crawled documents for academic
documents, these are then indexed using autonomous citation indexing, which
automatically links references in research articles to facilitate navigation and
evaluation. Automatic extraction of the context of citations allows researchers
to determine the contributions of a given research article quickly and easily; and
several advanced methods are employed to locate related research based on cita-
tions, text, and usage information. Additional document metadata is extracted
from each document including titles, author lists, abstracts and reference lists,
as well as the more recent addition of author information such as affiliations and
contact information [6] as well as acknowledgement information [5]. CiteSeer is
a full text search engine with an interface that permits search by document or
by numbers of citations or fielded searching, not currently possible on general-
purpose web search engines.

CiteSeer has proven its usefulness to the computer and information science
communities. The CiteSeer installation at Penn State University4 currently re-
ceives over one million requests and serves over 25 GB of information daily. The
CiteSeer service is currently being made more available to the world community
through the advent of several mirrors. At the time of this writing there are Cite-
Seer mirrors hosted at MIT, Switzerland, Canada, England, Italy, and Singapore
in various stages of completion. However, CiteSeer currently faces significant
challenges of interoperability and scalability that must be overcome in order to
improve the quality of the services provided and to guarantee that CiteSeer will
continue to be a valuable, up-to-date resource well into the foreseeable future.

The current architecture of the CiteSeer application is monolithic, making
system maintenance and extension costly. Internal system components are not
based on any established standards, such that all interoperability features in-
corporated have necessarily been crafted as wrappers to exposed functionality.
The resulting lack of integration reduces the potential of CiteSeer to serve the re-
search community. Additionally, as the CiteSeer collection grows (to over 730,000
documents as of the time of this writing), query latencies are rising and docu-
ment updates are becoming increasingly cumbersome as the system pushes the
boundaries of its current architecture.

4 http://citeseer.ist.psu.edu

Towards Next Generation CiteSeer: A Flexible Architecture 113

Recently, other ACI-enabled search engines for scientific literature have been
developed, including Google Scholar. Although Google Scholar indexes at least
an order of magnitude more documents than CiteSeer, CiteSeer remains com-
petitive as an open archive and offers more features. A separate effort that has
shown much promise is OverCite, a re-implemenation of CiteSeer within a peer-
to-peer architecture based on distributed hash tables [15].

In this paper we present our own re-invention of CiteSeer, currently named
CiteSeer Plus. This work builds on a previous architectural proposal for digi-
tal libraries [13]. CiteSeer Plus is based upon a new architecture designed to
be flexible, modular, and scalable. As CiteSeer is currently operated within an
academic environment with a focus on research as well as production, we have
developed a framework that allows scalable, distributed search and storage while
easing deployment of novel and improved algorithms for information extraction
as well as entirely new service features.

The resulting architecture is oriented toward a collection of deployed services
instead of a traditional web search engine approach. Each service component
can be treated as a stand-alone application or as part of a larger service context.
Users and programs can interact directly with individual services or with the
entire system through web-based service front-ends such as a traditional search
engine interface, consistent with ideas emerging from Web 2.0 [11].

2 Project Goals

Flexibility. CiteSeer’s current monolithic architecture limits the extensibility of
the system. Information extraction routines are difficult to upgrade or change
since they are tightly coupled with other system components. Not only does this
cause maintenance difficulty, but it also limits the potential scope of the CiteSeer
system. Adopting a highly modular service-oriented architecture will make the
system more easily extendable with new services and more adaptable to differ-
ent content domains. This is a core requirement for a next-generation CiteSeer
service. Although an API has been developed for the existing CiteSeer [13], the
API does not expose internal system functionality that is needed for a powerful
extension environment. To alleviate this problem, each service module should
carry its own API. This will allow service extensions to combine components in
a flexible manner without incurring the overhead of refactoring existing code,
and will allow the system to be more easily extensible to novel content domains.

Performance. A next-generation CiteSeer system must show improvements
over the current system in terms of both query processing and update perfor-
mance. Due to the current indexing and database framework, CiteSeer shows
significant performance degradation when handling more than five simultaneous
queries. Traffic spikes often account for more than 30 simultaneous queries and
as many as 130 simultaneous connections have been observed. The resulting per-
formance drop often limits the query response times to well below acceptable
standards, in many cases turning users away outright. The new system should be
able to handle at least 30 simultaneous queries without significant performance
degradation. In addition, CiteSeer currently indexes no more than 3-4 papers per

114 I.G. Councill et al.

minute, resulting in poor speed for acquiring new content. The update processes
are large batch operations that typically take three days for every two weeks
of content acquisition. To improve the freshness of information in the reposi-
tory, it is desirable for a next-generation CiteSeer architecture to handle content
updates quickly in an iterative process, so new content can be made available
immediately after acquisition.

Distributed Operation. Although CiteSeer is currently implemented as a col-
lection of processes that interoperate over network sockets, the architecture does
not currently support redundant service deployment. This situation is mitigated
through the use of Linux Virtual Server for service load balancing and fail-over;
however, this increases maintenance demands and does not support distributed
operation in a WAN environment. There is no support for propagating updates
to mirrors without large file copies containing much redundant information. The
new system should be natively capable of distributed operation with no single
point of failure and should be easily extendable to support incremental updates
over a WAN deployment.

3 System Features and Architecture

This section details the features supported by the CiteSeer Plus framework as
well as its architecture. CiteSeer Plus is designed to be a flexible platform for
digital library development and deployment, supporting standard digital library
features as well as plugins for advanced automation. In keeping with the goals
presented in Section 2, the feature set is expandable based on application or
domain requirements and the user interface to the application is arbitrary, to be
built on top of a rich system API. An experimental prototype of a CiteSeer Plus
deployment is publicly available5.

The CiteSeer Plus system architecture is highly modular. In the following
sections every module is presented and module interactions are discussed. The
system architecture is organized in four logical levels as shown in Figure 1.

The Source Level contains document files and associated data. The Core Level
contains the central part of the system in which document and query processing
occurs. The Interface Level offers interface functions to allow the communication
between the Core Level and services that can be developed using CiteSeer Plus
(in the Service Level). This level is implemented as a collection of Web Services.
Finally, the Service Level contains every service that is running on top of the
CiteSeer Plus system.

Figure 2 maps the levels to the actual system architecture. At the Core Level
are the sets of master and slave indexing nodes. These sets contain redundant
indexing nodes tailored for specific tasks within the CiteSeer Plus system, and
are the fundamental processing nodes. A single node is made of different sub-
components. Figure 3 shows the details of a master indexing node. We can
describe these nodes by following a typical paper lifecycle through an indexing
node.
5 http://p2p.science.unitn.it/cse

Towards Next Generation CiteSeer: A Flexible Architecture 115

Fig. 1. Logical levels

Fig. 2. System architecture overview

The system is agnostic regarding the method of content acquisition. New
content may be harvested by a crawler, received from an external library, or
submitted by users, so long as documents are posted to the system via a sup-
ported acquisition interface. Once a paper has been received it is stored in the
PDF cache to guarantee persistence of a document in the original format, then
submitted to a document processing workflow for integration into the system
data. The paper encounters a PDF parser whose duty is to extract text from
the original file and produce a new XML-based representation. This new doc-
ument contains text and some layout information such as text alignment, size,
style, etc. Next the raw XML file enters the metadata extraction subsystem.
This subsystem is composed of several modules, including a BlackBoard Engine
that is used to run a pool of experts (shown as EXP 1, EXP 2, . . . , EXP N in
Figure 3) that cooperate to extract information from the document. This process
is presented in more detail in Section 5. This process outputs an XML document
that contains all tagged metadata.

Finally the paper is ready to be indexed: the labeled XML is stored in the
XML cache (to make it available for later retrieval) and passed to the indexer.

116 I.G. Councill et al.

Fig. 3. Indexing node detailed structure

At this point the Query Engine will be able to provide responses to user or
system queries involving the indexed document. Metadata elements are stored
in separate index fields, enabling complex queries to be built according to various
document elements. Every indexing node is able to communicate with the other
system components by exposing a set of methods as a web service. The entire
indexing process takes place in on-line mode, such that a paper entering the
system will enter one or more indexing nodes for immediate consumption by the
system.

In addition to normal indexing nodes (called master nodes) there are also slave
nodes. Slave nodes are a lighter version of master nodes; their inner structure
is just the same as seen in Figure 3, with the exception that slave nodes do
not maintain any kind of cache (no PDF cache nor XML cache). Furthermore,
their indexes contain only metadata slices (such as title, author, abstract and
citation slices), but they do not contain generic text slices, which support full-
text queries. Both master and slave nodes can be deployed redundantly for load
balancing. During initial indexing, a paper can be routed to any number of slave
nodes but must be routed to at least one master node, in order to allow the
system to provide full-text indexing and caching. Slave nodes are provided in
order to support frequent operations such as citation browsing, graph building,
and paper header extraction (a header contains just title, author, abstract and
references) since those operations do not require access to a full-text index. In
this way, performance can be improved by adding new slave nodes that do not
incur large additional storage requirements. Slave nodes can also be used to
support system processing for graph analysis and the generation of statistics
without affecting performance for user queries; however, only a single master
node is needed to run a CiteSeer Plus system.

It is also possible to split the indexes among different machines (in this case
the controller will send a query to all of them and then organize the different
responses received). At the same time, indexes can be redundant; that is, the
same indexes can be managed by different mirror nodes running on different
computers in order to improve system performance through load balancing. In
Figure 4 we show a typical system configuration.

In this deployment we have divided the index into two parts (A and B), so
every time a document is accepted by the system, the controller decides which
subindex will receive the document, such that indexes are balanced. Nodes in

Towards Next Generation CiteSeer: A Flexible Architecture 117

Fig. 4. Example of system deployment

the same node set have the same indexes to support index redundancy. In this
example “MN A” (master node set of subindex A) contains three computers
running three separated and identical master node instances, and “SN A” pro-
vides support to “MN A” nodes. In this case “SN A” contains only one slave
node, but, in general, it can be a set of slave nodes. The same configuration is
kept for the “B” (in this case we have “MN B” and “SN B”). In this scenario, if
a user submits a full-text query the controller will route the query to a master
node chosen from the “MN A” set and one from “MN B”, so the system, in this
sample configuration, is able to provide service for up to three concurrent users
just the same as one by sharing the workload among redundant master node
mirrors inside “MN A” and “MN B”. The same situation happens when a query
does not involve a full-text search, but is just referred to metadata indexes. The
only difference in this case is the fact that slave nodes (“SN A” and “SN B”)
will respond to the query instead of master nodes.

At the Interface Level we find the Middleware, which is the active part of the
external SOAP API. This component converts API methods into procedure calls
on the services provided by the components in the Core Level. The Middleware
contains methods to perform user authentication control in order to determine
whether a system user is authorized to perform the requested operations. The
Middleware also manages the controller threads and performs query and paper
routing in order to maintain consistency in the distributed and redundant sets
of Master and Slave Nodes. Every operation regarding resource distribution and
redundancy is performed in this module.

Each system component exposes public methods through the SOAP API,
allowing the development of discrete services using the CiteSeer Plus framework.
The Service Level uses the API to define prescribed usage scenarios for the
system and interfaces for user control. This level contains HTML forms and
representations for user and administrative interaction. Some exemplar services
that have been built include tools to add or remove documents and correct

118 I.G. Councill et al.

document metadata, deployment configuration tools, and search interfaces for
users (a web application) or programs (via SOAP).

4 Citation Graph Management

A document citation graph is a directed graph where the nodes correspond to the
documents and edges correspond to citation relationships among the documents.
A document citation graph is useful for deriving bibliometric analyses such as
computing document authorities and author importance as well as to perform
social network analysis. In order to construct a document citation graph all
citations contained in each document must be identified and parsed, and then
the citations must be matched to corresponding document records. CiteSeer Plus
uses an approach that differs in many ways from the legacy CiteSeer.

CiteSeer’s method could be defined as a ”hard approach”. Each citation is
parsed using heuristics to extract fields such as title, authors, year of publication,
page numbers and the citation identifier (used to mark the citation in the body
text). The fields of each citation are compared with one another based on a
string distance threshold in order to cluster citations into groups representing
a single document. Finally, the metadata from each citation group is compared
to existing document records in order to match the citations to documents.
Citations to a given paper may have widely varying formats; hence, developing
rules for citation field identification can be very time consuming and error prone.
CiteSeer’s approach relies heavily on off-line computations in order to build the
document citation graph. If no document is found to match a citation group, all
citations in the group are unsolved, and cannot be solved until the next graph
update, even if a matching document enters the system beforehand.

The CiteSeer Plus approach could be defined as a soft approach. Our method is
less computationally costly and can be performed online, in an approach similar
to the SFX system [16]. The process of building the citation graph in CiteSeer
Plus is query-based; that is, the citations are solved using queries performed in
the query module. The Indexer allows metadata to be stored in different sub-
indexes (slices) and so a query can be performed on a specific slice of the main
index. Subfields parsed from citations are used to perform complex document
queries on appropriate index slices and the top document is found to match a
citation if it’s similarity to the query surpasses a given threshold. In the other
direction, to find citations matching a new document, CiteSeer Plus makes a
query using all the words of the document title and authors. This query is
performed on the citation slice; thus the query results are all documents that
have a citation containing some words of the query.

Master nodes do not cache the document citation graph since they have to
provide query results that are as fresh as possible. However, slave nodes can
use a query result caching mechanism in order to improve performance at the
cost of reduced information freshness. Repository statistics are built using slave
nodes, but user queries operate on the master node. When a user tries to follow
a citation, this produces a corresponding query on the master node and the user

Towards Next Generation CiteSeer: A Flexible Architecture 119

will obtain one or more documents that are likely to match the citation. This
framework relieves workload on dynamic components that handle user queries
while allowing detailed statistics and graph management activities to be handled
online within separate components.

5 Metadata Extraction System

Metadata extraction is the most difficult task performed by an automated digi-
tal library system for research papers. In the literature, there are two main ap-
proaches to information extraction: knowledge engineering and machine learning.
In the knowledge engineering approach, the extraction rules used by the system
are constructed manually by using knowledge about the application domain.
The skill of the knowledge engineer plays a large role in the level of system per-
formance, but the best performing systems are often handcrafted. However, the
development process can be very laborious and sometimes the required expertise
may not be available. Additionally, handcrafted rules are typically brittle and do
not perform well when faced with variation in the data or new content domains.
CiteSeer uses this approach, employing information about the computer science
document styles (or templates) to extract metadata.

In the machine learning approach, less human expertise regarding template
styles is required when customizing the system for a new domain. Instead, some-
one with sufficient knowledge of the domain and the task manually labels a set
of training documents and the labeled data is used to train a machine learning
algorithm. This approach is more flexible than the knowledge engineering ap-
proach, but requires that a sufficient volume of training data is available. In the
last decade, many techniques have been developed for metadata extraction from
research papers. There are two major sets of machine learning techniques in the
metadata extraction literature. Generative models such as Hidden Markov Mod-
els (HMM) (e.g. [14], [9]) learn a predictive model over labeled input sequences.
Standard HMM models have difficulty modeling multiple non-independent fea-
tures of the observation sequence, but more recently Conditional Random Fields
(CRF) have been developed to relax independence assumptions [7]. The second
set of techniques is based on discriminative classifiers such as Support Vector Ma-
chines (SVM) (e.g. [6]). SVM classifiers can handle large sets of non-independent
features. For the sequence labeling problem, [6] work in a two stage process: first
classifying each text line independently in order to assign it a label, then adjust-
ing these labels based on an additional classifier that examines larger windows
of labels. The best performance in metadata extraction from research papers
has been reached by McCallum and Peng in [12] using CRFs. The CiteSeer Plus
metadata extraction system has been built to maximize flexibility such that it
is simple to add new extraction rules or extraction models into the document
processing workflow. In our metadata extraction system, different kinds of mod-
els can be used which have been trained for different or the same extraction
tasks using various techniques, including but not limited to HMM, CRF, regular
expression, and SVM classifiers. The CiteSeer Plus metadata extraction system

120 I.G. Councill et al.

is based on a blackboard architecture ([10], [1], [2]) such that extraction mod-
ules can be designed as standalone processes or within groups of modules with
dependencies. A blackboard system consists of three main components:

Knowledge Sources (in our framework these are named Experts): independent
modules that specialize in some part of the problem solving. These experts can
be widely different in their inference techniques and in their knowledge repre-
sentation.

BlackBoard : a global database containing the input data, partial solutions and
many informational items produced by experts to support the problem solving.

Control component : a workflow controller that makes runtime decisions about
the course of problem solving. In our framework, the control component consists
of a set of special experts called scheduling experts that are able to schedule the
knowledge sources registered in the framework. The scheduling expert is cho-
sen by the controller components based on the problem solving strategy that is
employed and the kinds of metadata that the system needs to progress. Using
different scheduling experts, it is possible to change the problem solving strategy
dynamically in order to experiment with various learning strategies.

Although an individual expert can be independent from all the other experts
registered in the framework, each expert can declare its information dependences,
that is, all the information that it needs to work. The control component acti-
vates the expert when all these dependences are satisfied. As such, experts can be
activated when all the information required by the expert has been extracted and
stored on the BlackBoard module. The experts declare their skills (the informa-
tion they can extract) to the Control component, such that during the problem
solving (metadata extraction), at the right moment the control component can
activate the experts, and the controller can reason about which intermediary ex-
perts must be employed in order to reach a later result. The BlackBoard groups
similar information and registers expert accuracies based on the prior expertise6

declared by each expert. In this way, if more than one expert produces the same
(or similar) kinds of information, the accuracy value of that information will be
computed as the joint confidence among the experts.

An example configuration may group experts into three classes or functional
levels, although the framework does not restrict the processing workflow. The
first level is the Entity Recognition level. In this level are all the experts able
to give words a specific semantic augmentation, including part-of-speech tag-
ging and recognition of named entities such as first or last name, city, country,
abbreviation, organization, etc. Experts at this level will be activated first for
processing workflows. The second level is the Row Labeling level. At this level
are all the experts able to classify a paper line with one or more defined labels
such as author, title, affiliation, citation, section title and so on. The experts
at this level classify the paper lines using a document representation supplied
by the Document module, a framework object able to elaborate the document

6 The prior expertise is a measure of expert ability (F score) on a standard dataset.

Towards Next Generation CiteSeer: A Flexible Architecture 121

structure by supplying a representation based on many different features regard-
ing line contents, layout and font styles. Row labeling can be an iterative process,
reclassifying lines based on tagged context in subsequent passes. The last level is
the Metadata Construction level. Using all the extracted information from the
previous levels, the experts at this level can build the final metadata record for
a document.

6 Summary

This paper has presented a new version of the CiteSeer system, showing sig-
nificant design improvements over its predecessor. The new system reproduces
every core feature of the previous version within a modular architecture that
is easily expandable, configurable, and extensible to new content domains. In-
creased flexibility is obtained through a design based on customizable plug-in
components (for the metadata extraction phase) and the extensive use of web
service technology to provide an interface into every system component. CiteSeer
Plus can also be a useful tool for researchers or other developers interested in
information retrieval and information extraction, as CiteSeer Plus can be used
as a powerful yet easy to use framework to test new ideas and technologies by
developing third party applications that bind with specific components of the
CiteSeer Plus framework.

Acknowledgments

We thank Nicola Baldini and Michele Bini (FocuSeek.com) for fruitful discus-
sions, suggestions and support during the system design and development pro-
cess. We also thank Fausto Giunchiglia and Maurizio Marchese (University of
Trento, Italy) for fruitful discussions that have aided the evolution of the system.

References

1. B. L. Buteau. A generic framework for distributed, cooperating blackboard sys-
tems. Proceedings of the 1990 ACM annual conference on Cooperation, p.358-365,
February 20-22, 1990.

2. H. Chen , V. Dhar. A knowledge-based approach to the design of document-based
retrieval systems. ACM SIGOIS Bulletin, v.11 n.2-3, p.281-290, Apr. 1990.

3. E. Garfield. Science Citation Index - A new dimension in indexing. Science, 144,
pp. 649-654, 1964.

4. C.L. Giles, K. Bollacker and S. Lawrence. CiteSeer: An Automatic Citation In-
dexing System, Digital Libraries 98: Third ACM Conf. on Digital Libraries, ACM
Press. New York, 1998, pp. 89-98.

5. C.L. Giles and I.G. Councill. Who gets acknowledged: measuring scientific con-
tributions through automatic acknowledgement indexing. PNAS, 101, Number 51,
pp. 17599-17604, 2004.

122 I.G. Councill et al.

6. H. Han, C. Lee Giles, E. Manavoglu, H. Zha, Z. Zhang, E. A. Fox. Automatic
Document Metadata Extraction using Support Vector Machines. Proceedings of
the 2003 Joint Conference on Digital Libraries (JCDL03), 2003.

7. J. Lafferty, A. McCallum, and F. Pereira. Conditional Random Fields: Probabilistic
models for segmenting and labeling sequence data. In International Conference on
Machine Learning, 2001.

8. S. Lawrence, C. Lee Giles. Searching the World Wide Web. Science, 280, Number
5360, pp. 98-100, 1998.

9. T. R. Leek. Information extraction using hidden Markov models. Masters thesis,
UC San Diego, 1997.

10. H. Penny Nii. Blackboard systems: The blackboard model of problem solving and
the evolution of blackboard architectures. The AI Magazine, VII(2):38–53, Summer
1986.

11. T. O’Reilly. What Is Web 2.0 Design Patterns and Business Models for the Next
Generation of Software. http://www.oreillynet.com/pub/a/oreilly/tim/news
/2005/09/30/what-is-web-20.html

12. F. Peng and A. McCallum. Accurate information extraction from research pa-
pers using conditional random fields. Proceedings of Human Language Technology
Conference and North American Chapter of the Association for Computational
Linguistics(HLT-NAACL), pages 329336 (2004).

13. Y. Petinot, C. Lee Giles, V. Bhatnagar, P. B. Teregowda, H. Han, I. Councill.
A Service-Oriented Architecture for Digital Libraries. ICSOC04, November 15-19,
2004.

14. K. Seymore, A. McCallum and R. Rosenfeld. Learning hidden Markov model struc-
ture for information extraction. In Papers from the AAAI-99 Workshop on Machine
Learning for Information Extration, pages 3742, July 1999.

15. J. Stribling, I.G. Councill, M.F. Kaashoek, R. Morris, and S. Shenker. Overcite: A
cooperative digital research library. In Proceedings of The International Workshop
on Peer-To-Peer Systems (IPTPS 05), Ithaca, NY, 2005 .

16. H. Van de Sompel, P. Hochstenbach. Reference linking in a hybrid library environ-
ment. Part 1: Frameworks for linking. D-Lib Magazine, v.5 n.4, 1999.

	Introduction
	Project Goals
	System Features and Architecture
	Citation Graph Management
	Metadata Extraction System
	Summary

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

