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ABSTRACT 
There are various source code archives on the World Wide Web. 
These archives are usually organized by application categories 
and programming languages. However, manually organizing 
source code repositories is not a trivial task since they grow 
rapidly and are very large (on the order of  terabytes). We 
demonstrate machine learning methods for automatic 
classification of archived source code into eleven application 
topics and ten programming languages. For topical classification, 
we concentrate on C and C++ programs from the Ibiblio and the 
Sourceforge archives. Support vector machine (SVM) classifiers 
are trained on examples of a given programming language or 
programs in a specified category. We show that source code can 
be accurately and automatically classified into topical categories 
and can be identified to be in a specific programming language 
class. 

1. INTRODUCTION 
Software reuse is the process of  creating software systems from 
existing software rather than building software systems from 
scratch. Software reuse is an old idea but for various reasons has 
not become a standard practice in software engineering [14] even 
though software reuse should increase a programmer's 
productivity by reducing the time spent on developing similar 
codes. Seemingly, programmers benefit from a repository where 
pre-written code is archived since such archives reportedly have 
over 100,000 users. However, software reuse does not only mean 
use of existing code [5]; it also involves organization and use of 
conceptual information. Thus, there should be methods so that 
programmers locate useful existing code quickly and easily. 
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There are various source code archives and open source sites on 
the World Wide Web. If  the programs in such sites are correctly 
classified and topically components are useful classifications, 
software reuse would be greatly facilitated. But how are the 
software programs categorized? In most archives programs are 
classified according to programming language and application 
topic. A programmer attempting to organize a collection of  
programs would most likely categorize resources based on the 
source code itself, some design specifications and the 
documentation provided with the program. But to understand 
which application category the code belongs to, it is very likely 
the programmer would try to gather natural language resources 
such as comments and README flies rather than the explicit 
representation of the algorithm itself. Information in natural 
language can be extracted from either external documentation 
such as manuals and specifications or from internal 
documentation such as comments, function names and variable 
names. This seems reasonable since algorithms do not clearly 
reflect human concepts but eomrnents and identifiers do [8]. But 
to identify the programming language, the programmer or 
administrator will look at the code itself and distinguish some of 
the keywords without trying to understand the algorithm. This 
should be straightforward since almost every language has its own 
reserved keywords and syntax. However, archives can be large 
and are rapidly changing, which makes manual categorization of 
software both costly and time consuming. If  our goal is automatic 
categorization, then we believe it is a good idea to take advantage 
not only of the natural language information available in 
documentation but also the code itself. 

Researchers have applied different learning techniques for text 
categorization: bayesian models, nearest neighbor classifiers, 
decision trees, support vector machines (SVMs) and neural 
networks. In text classification, each document in a set is 
represented as a vector of words. New documents are assigned to 
predefined categories using textual content. Recently, SVMs have 
been shown to yield promising results for text categorization [6, 
7, 11]. Although programming languages are written in a manner 
different from natural languages and have some commented 
information, programming languages have specific keywords and 
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features that can be identified. Using these characteristics we 
show that text categorization techniques can also be effective for 
source code classification. 

To build a classifier our first and maybe most important step is the 
extraction of features. For programming language classification, 
our feature set consists of 'tokens' in the source code and/or 
words in the comments. For the topical classification, we generate 
our features from words, bigrams, and lexical phrases extracted 
from comments and README files, and header file names 
extracted from the source code. We perform feature selection 
using the expected entropy loss. Each program is then represented 
as a binary feature vector. For each specific class, we use these 
vectors to train an SVM classifier. In order to evaluate the 
effectiveness of our approach, we measure the true-positive and 
false-positive rates for each class and the overall accuracy. 

The rest of the paper is organized as follows. Section 2 
summarizes background information and related work. In Section 
3 we introduce our data set. In section 4 we describe our 
methodology and algorithm. Results are presented in Section 5 
and conclusions are in Section 6. 

2. BACKGROUND 
2.1 Related Work 
Various software identification and reuse problems explained in 
the literature vary in terms of the techniques they use and the 
features of programs they take advantage of. 

Rosson and Carroll [ 18] examined the reuse of programs for the 
Smalltalk language and environment. They presented empirical 
results of the reuse of user interface classes by expert Smalltalk 
programmers. They observed extensive reuse by users and that the 
programmers searched implicit specifications for reuse of the 
target class and evaluated the contextualized information 
repeatedly. The programmers used and adapted code when the 
information provided matched their goals. Etzkom and Davis [8] 
designed a system called Patricia, that automatically identified 
object-oriented software components through understanding 
comments and identifiers. They found object-oriented code more 
reusable than functionally-oriented code. Patricia uses a heuristic 
method deriving information from linguistic aspects of comments 
and identifiers and from other non-linguistic aspects of object- 
oriented code such as a class hierarchy. Merkl [16] suggested 
organizing a library of reusable software components by using 
self-organizing neural networks. Their approach is based on 
clustering the software components into groups of semantically 
similar components. They use keywords automatically extracted 
from the manual of sottware components. Each component is 
represented by this set of keywords, which does not include stop 
word lists. These representations are utilized to build the 
keywords-components matrix or the vector space model of the 
data. Each column of the matrix, which corresponds to the 
software components, is used to train the neural network. Search 
tools for source code are also impoaant for software reuse. Chen 
et.al. [4] build a tool called CVSSearch that uses fragments of 
source code using Concurrent Version Systems (CVS) comments 
and makes use of the fact that CVS comments describe the lines 
of code involved. Evaluations of their technique show that CVS 
comments provide valuable information that complements content 
based matching. Henninger [10] also studied software 

components. Their approach investigates the use of a retrieval tool 
called CodeFinder, which supports the process of retrieving 
software components when information needs are not well 
defined and the users are not familiar with vocabulary used in the 
repository. 

2.2 Expected Entropy Loss 
How do we decide which features to select? Expected entropy 
loss is a statistical measure [I] that has recently been successfully 
applied to the problem of feature selection for information 
retrieval [8]. Expected entropy loss is computed separately for 
each feature. It ranks the features lower that are common in both 
the positive set and the negative set but ranks the features higher 
that are effective discriminators for a class. Glover et. al. [9] used 
this method for feature selection before training a binary 
classifier. We use the same technique. Feature selection increases 
both effectiveness and efficiency since it removes non-informative 
terms according to corpus statistics [19]. A brief description of 
the theory [1] is as follows. 

Let C be the event that indicates whether a program is a member 
of the specified class and let f be the event that the program 

contains the specified feature. Let C and ff be their negations 
and Pr( ) their probability. 

The prior entropy of the class distribution is 
e -= - Pr(C)lg Pr(C)-  Pr(~)lg Pr(C) 

The posterior entropy of the class when feature is present is 

e f --- - Pr( c l f  )Ig Pr( C]f )- Pr(C~f )Ig Pr(C~f) 

likewise, the posterior entropy of the class when the feature is 
absent is 

e f  -= - Pr(CJ, ?)ig Pr(C~j ? ) -  Pr(C-]f)lg Pr(C-]f) 

Thus the expected posterior entropy is 

e f  Pr(f)  + e ~  Pr(f) 

and the expected entropy loss is 

e-e fPr(f)+e~ Pr(f) 

Expected entropy loss is always nonnegative, and 
higher scores indicate more discriminatory features. 

2.3 Support Vector Machines 
We use support vector machines (SVMs) for the binary 
classification task. Due to space restrictions, please see [2,3] for 
more details on SVMs. Support vector machines are generally 
applicable for text categorization problems and outperform other 
methods [11]. Their ability to handle high dimension feature 
vectors, to reduce problems caused by over-fitting, and to produce 
solutions robust to noise makes them a well-suited approach to 
text classification [15]. We choose a SVM classifier because our 
problem is similar to that of text classification. 

3. DATA AND F E A T U R E  SETS 
We gathered our sample source code files and projects from 
different archives on the Internet including the Ibiblio Linux 
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Archive j, Sourceforge 2, Planet Source Code 3, Freecode 4 and from 
pages on the web that include code snippets. 

Ibiblio archives over 55 gigabytes of Linux programs and 
documentation freely available for download via FTP and/or 
WWW access. The Ibiblio archive includes binary files, images, 
sound and documentation as well as the source files of programs. 
It also archives different versions of the same project. The primary 
programming languages of the projects in the archive are C and 
C++. The projects are not classified into programming languages. 
The Ibiblio t archive is organized hierarchically into the following 
categories: applications, commercial, development tools, games, 
hardware and drivers, science and system tools. SoureeForge.net 2 
is owned by Open Source Development Network, Inc. and claims 
to be the world's largest open source development website. At the 
time of our study Soureeforge hosted 33,288 projects and had 
346,328 registered users. The Soureeforge archive is categorized 
under 43 different programming languages and 19 topics. 
Programming languages include both popular languages such as 
C/C++, Java, Fortran and Perl, and less popular ones such as 
Logo and Zope. Users also have the capability of browsing 
Soureeforge projects by development status, environment, 
intended audience, license, natural language and operating 
system. Planet Source Code 3 claims to be the largest public 
programmer database on the web. During our analysis it had 
4,467,180 lines of code. The code files are not organized by 
application area. They have 9 programming language categories. 
Free Code 4 is also owned by Open Source Development Network. 
The Free Code archive is organized under 10 topical categories 
and includes the programming language information for each 
project. 

To train the topic classifier we downloaded examples from the 
Ibiblio and the Sourceforge archives, and concentrated on C/C++. 
For programming language classification we downloaded files 
from all of the resources. For our analysis, we select ten popular 
programming languages: ASP, C/C++, Fortran, Java, Lisp, 
Matlab, Pascal, Perl, Python and Prolog. These popular languages 
are used in a wide range of applications. For each class we 
randomly grouped our samples into disjoint training and testing 
sets. The training data consists of 100 source code files and the 
test data consists of 30 source code files from each category. Our 
experiments include those with comments included in the files 
and without comments. Although comments are used for giving 
contextual information about the program, we speculate that they 
might also be helpful in finding out the programming language of 
the code, As far as the topics are concerned, we selected 
categories/subcategories that contain sufficient number of projects 
in both resources (Ibiblio and Sourceforge) and eliminated the 
ones with a few projects or with no source code files in them. 
Another reason that we chose a different categorization was to 
evaluate the chance of mis-classification, which makes the task 
more difficult. Thus, we have category pairs that are well 
separated (e.g., "database" and "circuits") as well as category pairs 
that are quite similar (e.g., "games" and "graphics"). Table 1 lists 

i www.ibiblio.org/pub/linux 
2 www.sourceforge.net 
J www.planetsourcecode.com 
4 www.freecode.eom 

our categories and the number of software programs we used for 
each from 2 resources. 

Table 1. Number of programs used from each topic 

CATEGORY IBIBLIO SOURCEFORGE 

cmcorrs 30 25 
DATABASE 31 33 
DEVELOPMENT 75 30 
GAMES 209 31 
GRAPHICS 190 36 
MATHEMATICS 30 30 

NETWORK 270 30 
SERIAL COMMUNICATION 40 30 

SOUND 222 31 
UTILITIES 245 31 
WORD PROCESSORS 11 24 

4. METHODOLOGY 
Our system consists of three main components; the feature 
extractor, vectorizer and the SVM classifier. There are also four 
supplementary modules, which are necessary for topical 
classification of programs: the text extractor, filter, phrase 
extractor and the stemmer. Our system works in two distinct 
phases: training and testing. Each of the components and phases 
are explained in the sections below. 

4.1 Feature Extractor 
Examples in each category are considered as the positives and the 
rest of the examples are counted as negatives. We compute the 
probabilities for the expected entropy loss of each feature as 
follows: 
Pr(C)-  numberOJPositiveExarwples 

nuraberOfExamples 
Pr(~)= 1 -  Pr(C) 

nuraberOJExaraples WithFeatureF 
Pr~f) - numberOfExaraples 

P r ~ ) =  l - P r ( f )  

numberOfl~ositiveExaraplesWithFeatureF 
P r ( q f ) =  nuraberOJExaraplesWithFeatureF 

Pr(C~f)= 1 -  P r ( ~ f )  

Pr(q.f)~- numberOfPositiveExarrples WithoutFeatureF 
numberOfllxarnples WithoutFeatureF 

Pr(C~f)= 1 - P r (~ f )  

The feature extractor indexes each file and computes the expected 
entropy loss for each feature. Then the features are sorted by 
descending expected entropy loss. Some features that appear more 
frequently in the negative set might also have large expected 
entropy loss values. We call these features "negative features". 
Thus, a feature that has a higher frequency in the negative set can 
also be distinguishing for a category. Our feature extractor does 
not eliminate stop words and can take bigrams into account. It can 
also consider lexical phrases as features using the output of the 
phrase extractor module. By default, the feature extractor module 
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removes the features that only appear in a single file. It is also 
capable of  eliminating features that occur below a given threshold 
of  positive and negative examples. 

4.1.1 Programming Language Feature Extractor 
Features correspond to tokens in the code and words in the 
comments. We define a "token" to be any alphabetical sequence 
of  characters separated by non-alphabetical characters. We do not 
consider any numeric values or operators as tokens. Tokens are 
gathered by splitting the source code text at any non-alphabetical 
character such as white space. For example, in an expression like 
"if (topicClassl0 = 'network')", the tokens will be "if ' ,  
"topicClass" and "network". 

The top 20 features selected by expected entropy loss from each 
of 10 classes were used to generate a set of  200 features. We 
excluded features that occurred in less than 10% of both the 
positive and negative set in the vocabulary. 

4.1.2 Application Topic Feature Extractor 
The feature extractor for topic classification uses 3 different 
resources: comments, README files and the code. The 
extraction of  comments from the source code files and 
identification of README files for each program is performed by 
the text extractor module. We do not run the feature extractor 
directly on the output of the text extractor but preprocess the data 
by filtering, stemming and phrase extraction modules. The filter 
module is written to eliminate data that are uninformative for 
identification of  an application category, such as license and 
author information, which appear in any program. Although the 
expected entropy loss technique is likely to rank these features 
very low, filtering decreases the size of  our files and improves the 
speed of  our algorithms. 

We used KSTEM for grouping morphological variants. KSTEM 
uses lexicon and morphological rules to determine which word 
forms should be grouped together. It is designed to avoid 
grouping word forms that are not related in meaning [13]. 
Stemming is useful because, for example, "colors" and "color", 
which typically refer to the same concept, are merged into one 
feature. Lexical phrases are important because they reduce 
ambiguity (they are usually less ambiguous than the component 
words in isolation). In addition, sometimes terms are only 
meaningful as phrases (i.e. "work station"). That is, sometimes a 
phrase is essentially a word with an embedded space. 

We combine the README files and the comments for each 
program separately and pull out single words, bigrams and lexicai 
phrases. From the code itself we just include the header file 
names. The top 100 features from each 11 categories are 
combined to generate a set of  1100 features. We believe 100 
features would be sufficient for a good classification. We have a 
selection threshold of  7.5% for application topic classification. 

4.2 Vectorizer 
The vectofizer generates feature vectors for each program/source 
code file. We do not consider the frequency of the features. The 
elements of  the vectors consist of  I s and 0s. A '1 '  in a feature 
vector means that the corresponding feature exists in the 
corresponding example and a '0 '  means that it does not. The 
vectorizer module uses the features extracted from the training 

data for creating vectors for both the test and the training set. 

4.3 SVM Classifier 
The SVM classifier is trained on vectors generated from the 
training set in which each document has a class label. It returns 
the overall accuracy of  the classification, which is the percentage 
of programs that are categorized correctly. 

We use "LIBSVM - A Library for Support Vector Machines" by 
Chang and Lin [3], which is integrated software for support vector 
classification, regression and distribution estimation. LIBSVM is 
capable of performing cross validation, multi-categorization and 
using different penalty parameters in the SVM formulation for 
unbalanced data. LIBSVM uses the "one-against-one" approach 
[12] for multi-class classification. In the one-against-one 
approach, k(k-1)/2 classifiers are constructed where k is the 
number of classes. Each classifier trains data from two different 
classes. Chang and Lin [3] utilize a voting strategy where each 

. example is voted against a class or not in each binary 
classification. At the end the program is assigned to the class with 
the maximum number of  votes. In the case that two classes have 
the same number of votes, the one with the smaller index is 
selected. There is also another approach for multi-class 
classification called "one-against-all". In this technique, the 
number of  SVM models as many as the number of classes are 
constructed. For each class, the SVM is trained with all the 
examples in that class as positives and the rest of the examples as 
negatives. Previous research has shown that one-against-one 
approach for multi-class categorization outperforms the one- 
against-all approach[ 17]. 

5. EXPERIMENTAL RESULTS 
5.1 Programming Language Classification 
For programming language classification, we performed our 
experiments both with the comments included in the code and 
without comments to ascertain the impact of  comments. The 
feature extraction step gives us a list of  words that best describes a 
programming language class. 

Table 2. Top 10 features for each class 

CLASS COMMENTS ARE INCLUDED COMMENTS ARE EXCLUDED 

ASP asp, dim, vbscfipt, td, head asp, vbscdpt, dim, td, 
language 

c\c++ struct, void, sizeof, include, struct, void, ifdef, sizeof, 
unsigned include 

FORTRAN subroutine, pgslib, logical, subroutine, logical, pgslib, 
implicit, dimension dimension, implicit 

JAVA throws, jboss, java, ejb, lgpl jboss, throws, java, package, 
util 

LISP defun, lisp, setq, emacs, defun, let, setq, progu, 
MATLAB zeros, -type, denmark, zeros,-name,-type,-string, 

veterinary, -license plot 
PASCAL unit, sysutils, procedure, implementation, unit, luses, 

synedit, mpl procedure, sysutils 
PERL speak, voice, my, said, print my, speak, voice, said, print 
PYTHON def, moinmoin, py, def, moinmoin, py, copying, 

ihermann, hermann rgen 
PROLOG pro1og, predicates, diaz, -if, fail, built, bip, atom 

descr 1 fail 
Table 2 lists only the top 5 words when comments are used with 
the code and when comments are filtered. A minus sign indicates 
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the negative features (ones that are more frequent in the negative 
set compared to the positive set). We generated a set of 200 
features by taking the top 20 features from each class. Our 
training data consists of 100 source code files and test data 
consists of  30 source code files from each language class. 

Table 3 lists the true-positive rates and false-positive rates for 
each language class and the overall accuracy of  our classifier. 

Table 3. TP rate, FP rate and the accuracy of the classifier 

COMMENTS ARE INCLUDED COMMENTS ARE EXCLUDED 

CLASS TP RATE FP RATE TP RATE FP RATE ,1 , , ,  
ASP 100.00% 0.34% 90.00% 1.75% 
C\C++ 93.33% 0.00% 93.33% 0.00% 
FORTRAN 81.48% 0.68% 95.24% 0.35% 
JAVA 70.00% 0 .00% 63.33% 0 .00% 

LISP 93.33% 0.00% 83.33% 0.00% 
MATt~,B 96.30% 7.53% 100.00% 8.39% 
PASCAL 86.21% 0.00% 86.66% 0.00% 
PERL 100.00% 1.03% 93.33% 1.05% 
PHYTON 96.66% 0.00% 89.65% 1.05% 
PROLOG 72.41% 1.37% 82.14"/, 0.00% 

ACCURACY 89.041% 87.41% 

We think that the performance of  each class highly depends on 
the programming language that is being classified and the overlap 
between the tokens in source code files. For this reason, we 
explored the intersections between the top 100 features of  each 
class and presented the results in Table 4. 

Table 4. Overlap of features between categories. The upper 
triangle shows the overlap rates when comments are 

included. The lower triangle shows when comments are 
excluded. 

CAT ASP C\C++ FORT JAVA LISP MATL PAS PERL FHYT PRO 

ASP I -  I 1% 1% 1% 0% 3% 0% 1% 0% !% 

C\C 1%[ 1% 4% 1% 0% 1% 0% 0% 20% 

FOR 2% 2% 4% 0% 22% 0% 23% 1% 5% 

JAVA 0% 7% 0% [ 1% 3% 1% 5% 2% 1% 

LISP 0% 1% 1% 0% [ 10~0 1% 1% 0% 1% 
MATt 1% 2% 18% 6% 0% I 0% 36% 1% 7% 
PAS 1% 1% 2% 1% 1% !% I 0% 2% 1% 
PERL 1% 2% 9% 6% 2% 23% 0% 2% 6% 
PHYT 0% 2% 3% 5% 1% 5% 0% 6% 0% 

PRO 1% 1% 13% 3% 0% 18% 1% 13% 2% I 
I I l l l  I I ~ l  I 

The upper triangle of the table lists the overlaps when features are 
extracted from both the code and the comments. The lower 
triangle, on the other hand, lists the overlaps when features are 
gathered only form the code. We observe that in both cases, 
Matlab class has the highest overlap percentages with other 
language classes (especially with Perl) and it is also the class with 
the highest false positive as well. It is also true that most of  the 
examples that are not correctly classified are assigned to the 
Matlab class. On the other hand the effect of  the use of  comments 
in programming language classification depends on the language. 
Although comments help to increase the overall accuracy of 

classification, they have a bad effect on identification of Fortran, 
Matlab, Pascal and Prolog classes. 

5.2 Application Topic Classification 
To test our method for topical classification we performed five 
different experiments on different data sets using combinations of 
the three types of  features: single words, lexical phrases and 
bigrams. In each experiment, we chose 100 features from each of 
11 categories and generated a set of 1100 features. Features were 
selected according to their expected entropy loss. Table 5 lists the 
abbreviations of experiments and the feature types used in each 
experiment. These sets were generated from both the Sourceforge 
and the Ibiblio archive. 

Table 5. Types of features used in each experiment 

EXP. TOP TEN FEATURES EXTRACTED 
SW Top 100 features from single words 
LP Top I00 features from lexical phrases 
20 Top I00 features from bigrams 

SW2G Top I00 features from single words and bigrams 
Swl~ Top 100 features from single words and lexical phrases 

The outputs of the feature extractor were promising for each 
category. We were able to select the features, from which one can 
easily guess the corresponding category. For example, Table 6 
tabulates the top five words and lexical phrases extracted from the 
Ibiblio Archive. It is not surprising that we have "calculator" for 
the mathematics class, "high score" for the games class and 
"database" for the database class. On the other hand, some of the 
features are shared among the categories since they have multiple 
meanings; for example, "play" appears in both the sound and the 
games classes. Another observation is that the utilities category 
has more negative features than positive ones. This means that the 
words like "play" and "client" are unlikely to appear in the utility 
programs and the "socket.h" library is not included in most of 
them. 

To evaluate our classifier and to be able to find the appropriate 
penalties for training, we first applied 5-fold cross validation to 
each data set (Sorceforge and Ibiblio) separately and to the 
combined sets. In 5-fold cross validation, the data is divided into 
5 subsets and each time one subset is used as the test set and the 4 
subsets are used for training. We did not use the same archive for 
both training and testing because the number of  examples in some 
of the categories in an archive were not sufficient. Another factor 
about our data is that it is unbalanced. For example the number of  
programs in the word processors category is 11 where it is 270 in 
the network category. Thus, we used the weighted version of the 
SVM and changed the penalty parameters (C) for categories. 
Penalty for each category is computed by multiplying the weights 
by the specified cost C. We chose the linear kernel function and 
assigned 100 to C. 

Table 7 lists the accuracies of the cross validations performed on 
the Sourceforge, the Ibiblio archive and the on the combined sets 
for each experiment. We have 2 experiments for the combined 
sets because one set uses the features extracted from the Ibiblio 
Linux and the other uses the features extracted from Sourceforge. 
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Table 6. Top ten words and lexical phrases from each category of Ibiblio archive 

CLASS TOP FIVE WORDS TOP FIVE LEXICAL PHRASES 
CIRCUITS 
DATABASE 
DEVELOPMENT 
GAMES 
GRAPHICS 
MATH 
NETWORK 
SERIAL COMM. 
SOUND 
UTILITIES 
WORD PROCES. 

circuit, spice, pin, simulator, transistor 
sql, database, query, postgresql, libpq 
class, thread.h, new.h, iostream.h, malloc 
game, games, play, score, xlib.h 
image, jpeg, gif, ppm, pixel 
calculator, mathematics, exponent, math, fractal, 
socket.h, netdb.h, in.h, ip, inet.h 
modem, zmodem, voice, fax, serial 
soundcard.h, sound, audio, mixer, soundcard 
-game, -netdb.h, -socket.h, -client, floppy 
tex, dvi, latex, lyxrc, tetex 

standard ceil, transfer curve, circuit interface, cell library, short channel 
database, database system, database server, sql statement, method code 
class library, first item, class hierarchy, global function, header file 
high score, new game, new level, computer player, map 
image, independent jpeg, jpeg library, jpeg software, image file 
plot fimction, radix mode, real numbers, palette change, complex numbers 
ip address, security fix, error output, backup copy, libc version 
serial port, modem device, script language, voice modem, incoming data 
sound driver, cd player, sound card, audio device, track 
floppy disk, illegal value, block device, other locale, appropriate system 
latex command, style sheet, dvi driver, default value, vertical scale 

Table 7. Cross validation accuracies. In the third data set 
features used are extracted from Sourceforge and in the 

fourth data set features used are extracted from the Ibiblio 
Archive. 

DATA SET ACCURACY 

SW LP 2G SW2G SWLP 

SOURCEFORGE 43.20% 19.64% 27.79% 38.37% 41.39% 

IamLIO 72.51% 49.96% 56.24% 72.36% 72.58% 

COMBINED 64.13% 33.73% 36.10% 56.77% 60.22% 
(SOURCEFORGE) 

COMBINED 64.55% 46.50% 50.53% 67.34% 66.80% 
(IBIBLIO) 

Table 8. TP, FP rates and the overall accuracies for each 
experiment using the features from Ibiblio 

CLASS SW 2G LP SW2G SWLP 

TP%FP% TP% FP% TP%FP% TP%FP% TP% FP% 

cmctaT 18.51 2.08 28.57 14.0221.43 2.46 28.57 1.60 28.57 1.11 

DATAB. 60.601.11 38.71 3.21 19.35 2.96 45.16 1.11 75.160.99 

DEVEL. 40.384.05 50.94 5.84 26.41 11.5554.72 5.58 50.94 5.84 

GAMES 71.664.58 69.174.02 60.83 6.24 80.83 3.88 80.004.02 

GRAPH. 64.60 5.63 56.64 8.24 50.44 9.20 72.57 10.16 70.80 8.79 

MATH 30.00 1.11 6.67 2.34 30.00 3.45 26.67 1.36 30.00 1.85 

NET. 82.66 7.38 59.33 4.48 52.57 3.91 84.00 4.34 82.00 5.21 

SERIAL. 31.43 1.48 11.43 1.61 25.71 6.45 42.86 0.87 34.28 0.50 

SOUND 77.95 2.66 65.08 4.33 49.21 5.03 82.54 2.24 83.33 2.94 

UTIL. 67.15 10.94 34.53 4.13 40.29 7.55 52.52 6.84 54.68 6.84 

WORDP. 5.550.12 23.532.55 29.412.79 17.650.36 23.53 0.97 

ACCUR. 64.25% 50.24% 44.65% 66.39% 65.80% 

When we compare the two data sets, Ibiblio performs better than 
Sourceforge. Although we apply cross validation, the reason for 
the poor performance appears to be the number of  examples in the 
Sourceforge data. For most of  the categories, we used fewer 
examples from the Sourceforge than the lbilio archive. As far as 
the types of  features, single words together with lexical phrases 
are the most helpful feature group for classification. Although, 
lexical phrases alone do not perform well, they increase the 
accuracy of  the cross validation on Ibiblio archive when used with 

the single words. Single words with bigrams are also useful and 
outperform the other techniques for the last data set. 

Second, we split our combined data set to two subsets and used 
one subset for training and the other for testing. We used the 
features extracted from the Linux archive in this experiment. 
Table 8 shows the true positive and false positive rates and the 
overall accuracy of  the SVM classifier trained by the features 
from the Ibiblio Archive and tested on the combined set. Similar 
to the programming language classification, single words when 
used with bigrams and lexical phrases perform the best on overall. 
This is also true for each category but the utilities. Between the 
categories, the database, games, graphics, network and the sound 
classes performed much better than the other classes. This is again 
related to the few examples we have in the other classes and the 
fuzziness of  the utilities class. We observe that the utilities class 
always has a high false positive rate. 

Table  9. TP,  F P  ra tes  and the overal l  accuracies  for 
each exper iment  us ing  the features  f r o m  Sourceforge  

CLASS SW 2G LP SW2G SWLP 

TP% FP% TP% FP% TP%FP% TP% FP%TP% FP% 

CIRCUIT 17.86 1.48 25.00 12.8021.43 3.81 32.142.95 25.00 1.84 

DATAB. 41.93 0.86 19.35 1.48 16.13 2.83 51.61 1.48 38.71 0.99 

DEVEL. 50,94 5.46 26.41 6.98 20.75 6.34 54.71 1.05 37.74 4.95 

GAMES 74.17 4.30 39.17 1.32 37.50 12.62 77.504.58 71.67 6.10 

GRAPH. 82.30 14.2935.40 8.24 38.05 12.91 70.80 15.8073.45 16.08 

MATH 43.33 1.48 36.67 3.33 23.33 1.48 36.67 1.36 43.33 1.23 

NET. 80.00 2.60 22.67 1.01 22.00 1.30 46.67 1.44 68.67 2.75 

SERIAL. 22.86 1.61 20.00 5,71 22.86 5.46 25.71 1.61 25.71 1.36 

SOUND 86.51 4.61 47.62 1.97 57.14 25.59 73.02 7.69 75.40 7.41 

UTIL. 38.13 3.70 16.55 2.99 12.95 4.42 23.02 3.28 40.29 4.70 

WORD 
17.65 1.21 23.53 2.55 23.53 2.67 29.41 2.06 0.00 1.09 

P. 

ACCUR. 64.60% 30.05% 30.88% 52.97% 57.48% 

In the third step, the classifier was trained with features from the 
Sourceforge archive and tested on the combined data set. Table 9 
shows the accuracy of the SVM classifier for each category. This 
time experiments on single words have the highest performance. 
The classes that perform the best do not change for this 
experiment but the false positive rate of the graphics category is 
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worse than the others. When the two data sets are compared, not 
surprisingly the accuracy is higher when we train our classifier 
with features from the Ibiblio archive. Please note that we used 
the same penalties in each method of the experiments to be able to 
compare the feature types. However, weights can be different for 
each feature type to increase the overall accuracy. 

6. CONCLUSIONS AND FUTURE WORK 
Our experiments show that source code can be accurately 
classified with respect to programming language and application 
category. However the accuracy of this classification depends on 
many factors. The variance of our data, the application categories, 
the selection of features used, the information retrieval techniques 
and the programming language all affect performance. 

We demonstrate an SVM based approach to programming 
language and topic classification of sottware programs. We train 
our classifier with automatically extracted features from the code, 
comments and the README files. For programming language 
classification, these features are tokens in the code and words in 
the comments. For topical classification, we use words, bigrams 
and lexical phrases in the comments and README files and 
header file names in the code as features. We perform feature 
selection by expected entropy loss values and train SVM 
classifiers using these features. Though our work shows 
promising results, there is much to explore, including the choice 
and number of feature vectors. Using values such as term 
frequency in the vectors, instead of binaries can improve the 
performance of our classifier. Our work for programming 
language classification can also be extended by adding more 
syntactic features together with the words. We believe that other 
properties of programrning languages, such as the way comments 
are included and the tokens used for arithmetic or logical 
operations, will help in identifying the programming language. 

These results imply that large archive collections of mixed data 
such as text and source code can effectively be automatically 
classified and categorized. We feel this will lead to more effective 
use of code archives and a reduction in duplication of 
programmer effort. 
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