
What's the Code?
Automatic Classification of Source Code Archives

Secil Ugurel 1, Robert Krovetz 2, C. Lee Giles 1'z3, David M. Pennock 2,
Eric J. Glover 2, Hongyuan Zha ~

1 Department of Computer Science and
Engineering

The Pennsylvania State University
220 Pond Lab., University Park, PA

16802
{ugurel, zha} @cse.psu.edu

2NEC Research Institute
4 Independence Way, Princeton, NJ

08540
{krovetz, dpennock,

compuman}
@research.nj.nec.com

3School of Information Sciences and
Technology

The Pennsylvania State University
001 Thomas Bldg, University Park,

PA, 16802
giles@ist.psu.edu

ABSTRACT
There are various source code archives on the World Wide Web.
These archives are usually organized by application categories
and programming languages. However, manually organizing
source code repositories is not a trivial task since they grow
rapidly and are very large (on the order of terabytes). We
demonstrate machine learning methods for automatic
classification of archived source code into eleven application
topics and ten programming languages. For topical classification,
we concentrate on C and C++ programs from the Ibiblio and the
Sourceforge archives. Support vector machine (SVM) classifiers
are trained on examples of a given programming language or
programs in a specified category. We show that source code can
be accurately and automatically classified into topical categories
and can be identified to be in a specific programming language
class.

1. INTRODUCTION
Software reuse is the process of creating software systems from
existing software rather than building software systems from
scratch. Software reuse is an old idea but for various reasons has
not become a standard practice in software engineering [14] even
though software reuse should increase a programmer's
productivity by reducing the time spent on developing similar
codes. Seemingly, programmers benefit from a repository where
pre-written code is archived since such archives reportedly have
over 100,000 users. However, software reuse does not only mean
use of existing code [5]; it also involves organization and use of
conceptual information. Thus, there should be methods so that
programmers locate useful existing code quickly and easily.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the ~11 citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SIGKDD '02, July 23-26, 2002, Edmonton, Alberta, Canada.
Copyright 2002 ACM 1-58113-567-X/02/0007...$5.00.

There are various source code archives and open source sites on
the World Wide Web. If the programs in such sites are correctly
classified and topically components are useful classifications,
software reuse would be greatly facilitated. But how are the
software programs categorized? In most archives programs are
classified according to programming language and application
topic. A programmer attempting to organize a collection of
programs would most likely categorize resources based on the
source code itself, some design specifications and the
documentation provided with the program. But to understand
which application category the code belongs to, it is very likely
the programmer would try to gather natural language resources
such as comments and README flies rather than the explicit
representation of the algorithm itself. Information in natural
language can be extracted from either external documentation
such as manuals and specifications or from internal
documentation such as comments, function names and variable
names. This seems reasonable since algorithms do not clearly
reflect human concepts but eomrnents and identifiers do [8]. But
to identify the programming language, the programmer or
administrator will look at the code itself and distinguish some of
the keywords without trying to understand the algorithm. This
should be straightforward since almost every language has its own
reserved keywords and syntax. However, archives can be large
and are rapidly changing, which makes manual categorization of
software both costly and time consuming. If our goal is automatic
categorization, then we believe it is a good idea to take advantage
not only of the natural language information available in
documentation but also the code itself.

Researchers have applied different learning techniques for text
categorization: bayesian models, nearest neighbor classifiers,
decision trees, support vector machines (SVMs) and neural
networks. In text classification, each document in a set is
represented as a vector of words. New documents are assigned to
predefined categories using textual content. Recently, SVMs have
been shown to yield promising results for text categorization [6,
7, 11]. Although programming languages are written in a manner
different from natural languages and have some commented
information, programming languages have specific keywords and

632

features that can be identified. Using these characteristics we
show that text categorization techniques can also be effective for
source code classification.

To build a classifier our first and maybe most important step is the
extraction of features. For programming language classification,
our feature set consists of 'tokens' in the source code and/or
words in the comments. For the topical classification, we generate
our features from words, bigrams, and lexical phrases extracted
from comments and README files, and header file names
extracted from the source code. We perform feature selection
using the expected entropy loss. Each program is then represented
as a binary feature vector. For each specific class, we use these
vectors to train an SVM classifier. In order to evaluate the
effectiveness of our approach, we measure the true-positive and
false-positive rates for each class and the overall accuracy.

The rest of the paper is organized as follows. Section 2
summarizes background information and related work. In Section
3 we introduce our data set. In section 4 we describe our
methodology and algorithm. Results are presented in Section 5
and conclusions are in Section 6.

2. BACKGROUND
2.1 Related Work
Various software identification and reuse problems explained in
the literature vary in terms of the techniques they use and the
features of programs they take advantage of.

Rosson and Carroll [18] examined the reuse of programs for the
Smalltalk language and environment. They presented empirical
results of the reuse of user interface classes by expert Smalltalk
programmers. They observed extensive reuse by users and that the
programmers searched implicit specifications for reuse of the
target class and evaluated the contextualized information
repeatedly. The programmers used and adapted code when the
information provided matched their goals. Etzkom and Davis [8]
designed a system called Patricia, that automatically identified
object-oriented software components through understanding
comments and identifiers. They found object-oriented code more
reusable than functionally-oriented code. Patricia uses a heuristic
method deriving information from linguistic aspects of comments
and identifiers and from other non-linguistic aspects of object-
oriented code such as a class hierarchy. Merkl [16] suggested
organizing a library of reusable software components by using
self-organizing neural networks. Their approach is based on
clustering the software components into groups of semantically
similar components. They use keywords automatically extracted
from the manual of sottware components. Each component is
represented by this set of keywords, which does not include stop
word lists. These representations are utilized to build the
keywords-components matrix or the vector space model of the
data. Each column of the matrix, which corresponds to the
software components, is used to train the neural network. Search
tools for source code are also impoaant for software reuse. Chen
et.al. [4] build a tool called CVSSearch that uses fragments of
source code using Concurrent Version Systems (CVS) comments
and makes use of the fact that CVS comments describe the lines
of code involved. Evaluations of their technique show that CVS
comments provide valuable information that complements content
based matching. Henninger [10] also studied software

components. Their approach investigates the use of a retrieval tool
called CodeFinder, which supports the process of retrieving
software components when information needs are not well
defined and the users are not familiar with vocabulary used in the
repository.

2.2 Expected Entropy Loss
How do we decide which features to select? Expected entropy
loss is a statistical measure [I] that has recently been successfully
applied to the problem of feature selection for information
retrieval [8]. Expected entropy loss is computed separately for
each feature. It ranks the features lower that are common in both
the positive set and the negative set but ranks the features higher
that are effective discriminators for a class. Glover et. al. [9] used
this method for feature selection before training a binary
classifier. We use the same technique. Feature selection increases
both effectiveness and efficiency since it removes non-informative
terms according to corpus statistics [19]. A brief description of
the theory [1] is as follows.

Let C be the event that indicates whether a program is a member
of the specified class and let f be the event that the program

contains the specified feature. Let C and ff be their negations
and Pr() their probability.

The prior entropy of the class distribution is
e -= - Pr(C)lg Pr(C)- Pr(~)lg Pr(C)

The posterior entropy of the class when feature is present is

e f --- - Pr(c l f)Ig Pr(C]f)- Pr(C~f)Ig Pr(C~f)

likewise, the posterior entropy of the class when the feature is
absent is

e f -= - Pr(CJ, ?)ig Pr(C~j ?) - Pr(C-]f)lg Pr(C-]f)

Thus the expected posterior entropy is

e f Pr(f) + e ~ Pr(f)

and the expected entropy loss is

e-e fPr(f)+e~ Pr(f)

Expected entropy loss is always nonnegative, and
higher scores indicate more discriminatory features.

2.3 Support Vector Machines
We use support vector machines (SVMs) for the binary
classification task. Due to space restrictions, please see [2,3] for
more details on SVMs. Support vector machines are generally
applicable for text categorization problems and outperform other
methods [11]. Their ability to handle high dimension feature
vectors, to reduce problems caused by over-fitting, and to produce
solutions robust to noise makes them a well-suited approach to
text classification [15]. We choose a SVM classifier because our
problem is similar to that of text classification.

3. DATA AND F E A T U R E SETS
We gathered our sample source code files and projects from
different archives on the Internet including the Ibiblio Linux

633

Archive j, Sourceforge 2, Planet Source Code 3, Freecode 4 and from
pages on the web that include code snippets.

Ibiblio archives over 55 gigabytes of Linux programs and
documentation freely available for download via FTP and/or
WWW access. The Ibiblio archive includes binary files, images,
sound and documentation as well as the source files of programs.
It also archives different versions of the same project. The primary
programming languages of the projects in the archive are C and
C++. The projects are not classified into programming languages.
The Ibiblio t archive is organized hierarchically into the following
categories: applications, commercial, development tools, games,
hardware and drivers, science and system tools. SoureeForge.net 2
is owned by Open Source Development Network, Inc. and claims
to be the world's largest open source development website. At the
time of our study Soureeforge hosted 33,288 projects and had
346,328 registered users. The Soureeforge archive is categorized
under 43 different programming languages and 19 topics.
Programming languages include both popular languages such as
C/C++, Java, Fortran and Perl, and less popular ones such as
Logo and Zope. Users also have the capability of browsing
Soureeforge projects by development status, environment,
intended audience, license, natural language and operating
system. Planet Source Code 3 claims to be the largest public
programmer database on the web. During our analysis it had
4,467,180 lines of code. The code files are not organized by
application area. They have 9 programming language categories.
Free Code 4 is also owned by Open Source Development Network.
The Free Code archive is organized under 10 topical categories
and includes the programming language information for each
project.

To train the topic classifier we downloaded examples from the
Ibiblio and the Sourceforge archives, and concentrated on C/C++.
For programming language classification we downloaded files
from all of the resources. For our analysis, we select ten popular
programming languages: ASP, C/C++, Fortran, Java, Lisp,
Matlab, Pascal, Perl, Python and Prolog. These popular languages
are used in a wide range of applications. For each class we
randomly grouped our samples into disjoint training and testing
sets. The training data consists of 100 source code files and the
test data consists of 30 source code files from each category. Our
experiments include those with comments included in the files
and without comments. Although comments are used for giving
contextual information about the program, we speculate that they
might also be helpful in finding out the programming language of
the code, As far as the topics are concerned, we selected
categories/subcategories that contain sufficient number of projects
in both resources (Ibiblio and Sourceforge) and eliminated the
ones with a few projects or with no source code files in them.
Another reason that we chose a different categorization was to
evaluate the chance of mis-classification, which makes the task
more difficult. Thus, we have category pairs that are well
separated (e.g., "database" and "circuits") as well as category pairs
that are quite similar (e.g., "games" and "graphics"). Table 1 lists

i www.ibiblio.org/pub/linux
2 www.sourceforge.net
J www.planetsourcecode.com
4 www.freecode.eom

our categories and the number of software programs we used for
each from 2 resources.

Table 1. Number of programs used from each topic

CATEGORY IBIBLIO SOURCEFORGE

cmcorrs 30 25
DATABASE 31 33
DEVELOPMENT 75 30
GAMES 209 31
GRAPHICS 190 36
MATHEMATICS 30 30

NETWORK 270 30
SERIAL COMMUNICATION 40 30

SOUND 222 31
UTILITIES 245 31
WORD PROCESSORS 11 24

4. METHODOLOGY
Our system consists of three main components; the feature
extractor, vectorizer and the SVM classifier. There are also four
supplementary modules, which are necessary for topical
classification of programs: the text extractor, filter, phrase
extractor and the stemmer. Our system works in two distinct
phases: training and testing. Each of the components and phases
are explained in the sections below.

4.1 Feature Extractor
Examples in each category are considered as the positives and the
rest of the examples are counted as negatives. We compute the
probabilities for the expected entropy loss of each feature as
follows:
Pr(C)- numberOJPositiveExarwples

nuraberOfExamples
Pr(~)= 1 - Pr(C)

nuraberOJExaraples WithFeatureF
Pr~f) - numberOfExaraples

P r ~) = l - P r (f)

numberOfl~ositiveExaraplesWithFeatureF
P r (q f) = nuraberOJExaraplesWithFeatureF

Pr(C~f)= 1 - P r (~ f)

Pr(q.f)~- numberOfPositiveExarrples WithoutFeatureF
numberOfllxarnples WithoutFeatureF

Pr(C~f)= 1 - P r (~ f)

The feature extractor indexes each file and computes the expected
entropy loss for each feature. Then the features are sorted by
descending expected entropy loss. Some features that appear more
frequently in the negative set might also have large expected
entropy loss values. We call these features "negative features".
Thus, a feature that has a higher frequency in the negative set can
also be distinguishing for a category. Our feature extractor does
not eliminate stop words and can take bigrams into account. It can
also consider lexical phrases as features using the output of the
phrase extractor module. By default, the feature extractor module

634

removes the features that only appear in a single file. It is also
capable of eliminating features that occur below a given threshold
of positive and negative examples.

4.1.1 Programming Language Feature Extractor
Features correspond to tokens in the code and words in the
comments. We define a "token" to be any alphabetical sequence
of characters separated by non-alphabetical characters. We do not
consider any numeric values or operators as tokens. Tokens are
gathered by splitting the source code text at any non-alphabetical
character such as white space. For example, in an expression like
"if (topicClassl0 = 'network')", the tokens will be "if ' ,
"topicClass" and "network".

The top 20 features selected by expected entropy loss from each
of 10 classes were used to generate a set of 200 features. We
excluded features that occurred in less than 10% of both the
positive and negative set in the vocabulary.

4.1.2 Application Topic Feature Extractor
The feature extractor for topic classification uses 3 different
resources: comments, README files and the code. The
extraction of comments from the source code files and
identification of README files for each program is performed by
the text extractor module. We do not run the feature extractor
directly on the output of the text extractor but preprocess the data
by filtering, stemming and phrase extraction modules. The filter
module is written to eliminate data that are uninformative for
identification of an application category, such as license and
author information, which appear in any program. Although the
expected entropy loss technique is likely to rank these features
very low, filtering decreases the size of our files and improves the
speed of our algorithms.

We used KSTEM for grouping morphological variants. KSTEM
uses lexicon and morphological rules to determine which word
forms should be grouped together. It is designed to avoid
grouping word forms that are not related in meaning [13].
Stemming is useful because, for example, "colors" and "color",
which typically refer to the same concept, are merged into one
feature. Lexical phrases are important because they reduce
ambiguity (they are usually less ambiguous than the component
words in isolation). In addition, sometimes terms are only
meaningful as phrases (i.e. "work station"). That is, sometimes a
phrase is essentially a word with an embedded space.

We combine the README files and the comments for each
program separately and pull out single words, bigrams and lexicai
phrases. From the code itself we just include the header file
names. The top 100 features from each 11 categories are
combined to generate a set of 1100 features. We believe 100
features would be sufficient for a good classification. We have a
selection threshold of 7.5% for application topic classification.

4.2 Vectorizer
The vectofizer generates feature vectors for each program/source
code file. We do not consider the frequency of the features. The
elements of the vectors consist of I s and 0s. A '1 ' in a feature
vector means that the corresponding feature exists in the
corresponding example and a '0 ' means that it does not. The
vectorizer module uses the features extracted from the training

data for creating vectors for both the test and the training set.

4.3 SVM Classifier
The SVM classifier is trained on vectors generated from the
training set in which each document has a class label. It returns
the overall accuracy of the classification, which is the percentage
of programs that are categorized correctly.

We use "LIBSVM - A Library for Support Vector Machines" by
Chang and Lin [3], which is integrated software for support vector
classification, regression and distribution estimation. LIBSVM is
capable of performing cross validation, multi-categorization and
using different penalty parameters in the SVM formulation for
unbalanced data. LIBSVM uses the "one-against-one" approach
[12] for multi-class classification. In the one-against-one
approach, k(k-1)/2 classifiers are constructed where k is the
number of classes. Each classifier trains data from two different
classes. Chang and Lin [3] utilize a voting strategy where each

. example is voted against a class or not in each binary
classification. At the end the program is assigned to the class with
the maximum number of votes. In the case that two classes have
the same number of votes, the one with the smaller index is
selected. There is also another approach for multi-class
classification called "one-against-all". In this technique, the
number of SVM models as many as the number of classes are
constructed. For each class, the SVM is trained with all the
examples in that class as positives and the rest of the examples as
negatives. Previous research has shown that one-against-one
approach for multi-class categorization outperforms the one-
against-all approach[17].

5. EXPERIMENTAL RESULTS
5.1 Programming Language Classification
For programming language classification, we performed our
experiments both with the comments included in the code and
without comments to ascertain the impact of comments. The
feature extraction step gives us a list of words that best describes a
programming language class.

Table 2. Top 10 features for each class

CLASS COMMENTS ARE INCLUDED COMMENTS ARE EXCLUDED

ASP asp, dim, vbscfipt, td, head asp, vbscdpt, dim, td,
language

c\c++ struct, void, sizeof, include, struct, void, ifdef, sizeof,
unsigned include

FORTRAN subroutine, pgslib, logical, subroutine, logical, pgslib,
implicit, dimension dimension, implicit

JAVA throws, jboss, java, ejb, lgpl jboss, throws, java, package,
util

LISP defun, lisp, setq, emacs, defun, let, setq, progu,
MATLAB zeros, -type, denmark, zeros,-name,-type,-string,

veterinary, -license plot
PASCAL unit, sysutils, procedure, implementation, unit, luses,

synedit, mpl procedure, sysutils
PERL speak, voice, my, said, print my, speak, voice, said, print
PYTHON def, moinmoin, py, def, moinmoin, py, copying,

ihermann, hermann rgen
PROLOG pro1og, predicates, diaz, -if, fail, built, bip, atom

descr 1 fail
Table 2 lists only the top 5 words when comments are used with
the code and when comments are filtered. A minus sign indicates

635

the negative features (ones that are more frequent in the negative
set compared to the positive set). We generated a set of 200
features by taking the top 20 features from each class. Our
training data consists of 100 source code files and test data
consists of 30 source code files from each language class.

Table 3 lists the true-positive rates and false-positive rates for
each language class and the overall accuracy of our classifier.

Table 3. TP rate, FP rate and the accuracy of the classifier

COMMENTS ARE INCLUDED COMMENTS ARE EXCLUDED

CLASS TP RATE FP RATE TP RATE FP RATE ,1 , , ,
ASP 100.00% 0.34% 90.00% 1.75%
C\C++ 93.33% 0.00% 93.33% 0.00%
FORTRAN 81.48% 0.68% 95.24% 0.35%
JAVA 70.00% 0 .00% 63.33% 0 .00%

LISP 93.33% 0.00% 83.33% 0.00%
MATt~,B 96.30% 7.53% 100.00% 8.39%
PASCAL 86.21% 0.00% 86.66% 0.00%
PERL 100.00% 1.03% 93.33% 1.05%
PHYTON 96.66% 0.00% 89.65% 1.05%
PROLOG 72.41% 1.37% 82.14"/, 0.00%

ACCURACY 89.041% 87.41%

We think that the performance of each class highly depends on
the programming language that is being classified and the overlap
between the tokens in source code files. For this reason, we
explored the intersections between the top 100 features of each
class and presented the results in Table 4.

Table 4. Overlap of features between categories. The upper
triangle shows the overlap rates when comments are

included. The lower triangle shows when comments are
excluded.

CAT ASP C\C++ FORT JAVA LISP MATL PAS PERL FHYT PRO

ASP I - I 1% 1% 1% 0% 3% 0% 1% 0% !%

C\C 1%[1% 4% 1% 0% 1% 0% 0% 20%

FOR 2% 2% 4% 0% 22% 0% 23% 1% 5%

JAVA 0% 7% 0% [1% 3% 1% 5% 2% 1%

LISP 0% 1% 1% 0% [10~0 1% 1% 0% 1%
MATt 1% 2% 18% 6% 0% I 0% 36% 1% 7%
PAS 1% 1% 2% 1% 1% !% I 0% 2% 1%
PERL 1% 2% 9% 6% 2% 23% 0% 2% 6%
PHYT 0% 2% 3% 5% 1% 5% 0% 6% 0%

PRO 1% 1% 13% 3% 0% 18% 1% 13% 2% I
I I l l l I I ~ l I

The upper triangle of the table lists the overlaps when features are
extracted from both the code and the comments. The lower
triangle, on the other hand, lists the overlaps when features are
gathered only form the code. We observe that in both cases,
Matlab class has the highest overlap percentages with other
language classes (especially with Perl) and it is also the class with
the highest false positive as well. It is also true that most of the
examples that are not correctly classified are assigned to the
Matlab class. On the other hand the effect of the use of comments
in programming language classification depends on the language.
Although comments help to increase the overall accuracy of

classification, they have a bad effect on identification of Fortran,
Matlab, Pascal and Prolog classes.

5.2 Application Topic Classification
To test our method for topical classification we performed five
different experiments on different data sets using combinations of
the three types of features: single words, lexical phrases and
bigrams. In each experiment, we chose 100 features from each of
11 categories and generated a set of 1100 features. Features were
selected according to their expected entropy loss. Table 5 lists the
abbreviations of experiments and the feature types used in each
experiment. These sets were generated from both the Sourceforge
and the Ibiblio archive.

Table 5. Types of features used in each experiment

EXP. TOP TEN FEATURES EXTRACTED
SW Top 100 features from single words
LP Top I00 features from lexical phrases
20 Top I00 features from bigrams

SW2G Top I00 features from single words and bigrams
Swl~ Top 100 features from single words and lexical phrases

The outputs of the feature extractor were promising for each
category. We were able to select the features, from which one can
easily guess the corresponding category. For example, Table 6
tabulates the top five words and lexical phrases extracted from the
Ibiblio Archive. It is not surprising that we have "calculator" for
the mathematics class, "high score" for the games class and
"database" for the database class. On the other hand, some of the
features are shared among the categories since they have multiple
meanings; for example, "play" appears in both the sound and the
games classes. Another observation is that the utilities category
has more negative features than positive ones. This means that the
words like "play" and "client" are unlikely to appear in the utility
programs and the "socket.h" library is not included in most of
them.

To evaluate our classifier and to be able to find the appropriate
penalties for training, we first applied 5-fold cross validation to
each data set (Sorceforge and Ibiblio) separately and to the
combined sets. In 5-fold cross validation, the data is divided into
5 subsets and each time one subset is used as the test set and the 4
subsets are used for training. We did not use the same archive for
both training and testing because the number of examples in some
of the categories in an archive were not sufficient. Another factor
about our data is that it is unbalanced. For example the number of
programs in the word processors category is 11 where it is 270 in
the network category. Thus, we used the weighted version of the
SVM and changed the penalty parameters (C) for categories.
Penalty for each category is computed by multiplying the weights
by the specified cost C. We chose the linear kernel function and
assigned 100 to C.

Table 7 lists the accuracies of the cross validations performed on
the Sourceforge, the Ibiblio archive and the on the combined sets
for each experiment. We have 2 experiments for the combined
sets because one set uses the features extracted from the Ibiblio
Linux and the other uses the features extracted from Sourceforge.

636

Table 6. Top ten words and lexical phrases from each category of Ibiblio archive

CLASS TOP FIVE WORDS TOP FIVE LEXICAL PHRASES
CIRCUITS
DATABASE
DEVELOPMENT
GAMES
GRAPHICS
MATH
NETWORK
SERIAL COMM.
SOUND
UTILITIES
WORD PROCES.

circuit, spice, pin, simulator, transistor
sql, database, query, postgresql, libpq
class, thread.h, new.h, iostream.h, malloc
game, games, play, score, xlib.h
image, jpeg, gif, ppm, pixel
calculator, mathematics, exponent, math, fractal,
socket.h, netdb.h, in.h, ip, inet.h
modem, zmodem, voice, fax, serial
soundcard.h, sound, audio, mixer, soundcard
-game, -netdb.h, -socket.h, -client, floppy
tex, dvi, latex, lyxrc, tetex

standard ceil, transfer curve, circuit interface, cell library, short channel
database, database system, database server, sql statement, method code
class library, first item, class hierarchy, global function, header file
high score, new game, new level, computer player, map
image, independent jpeg, jpeg library, jpeg software, image file
plot fimction, radix mode, real numbers, palette change, complex numbers
ip address, security fix, error output, backup copy, libc version
serial port, modem device, script language, voice modem, incoming data
sound driver, cd player, sound card, audio device, track
floppy disk, illegal value, block device, other locale, appropriate system
latex command, style sheet, dvi driver, default value, vertical scale

Table 7. Cross validation accuracies. In the third data set
features used are extracted from Sourceforge and in the

fourth data set features used are extracted from the Ibiblio
Archive.

DATA SET ACCURACY

SW LP 2G SW2G SWLP

SOURCEFORGE 43.20% 19.64% 27.79% 38.37% 41.39%

IamLIO 72.51% 49.96% 56.24% 72.36% 72.58%

COMBINED 64.13% 33.73% 36.10% 56.77% 60.22%
(SOURCEFORGE)

COMBINED 64.55% 46.50% 50.53% 67.34% 66.80%
(IBIBLIO)

Table 8. TP, FP rates and the overall accuracies for each
experiment using the features from Ibiblio

CLASS SW 2G LP SW2G SWLP

TP%FP% TP% FP% TP%FP% TP%FP% TP% FP%

cmctaT 18.51 2.08 28.57 14.0221.43 2.46 28.57 1.60 28.57 1.11

DATAB. 60.601.11 38.71 3.21 19.35 2.96 45.16 1.11 75.160.99

DEVEL. 40.384.05 50.94 5.84 26.41 11.5554.72 5.58 50.94 5.84

GAMES 71.664.58 69.174.02 60.83 6.24 80.83 3.88 80.004.02

GRAPH. 64.60 5.63 56.64 8.24 50.44 9.20 72.57 10.16 70.80 8.79

MATH 30.00 1.11 6.67 2.34 30.00 3.45 26.67 1.36 30.00 1.85

NET. 82.66 7.38 59.33 4.48 52.57 3.91 84.00 4.34 82.00 5.21

SERIAL. 31.43 1.48 11.43 1.61 25.71 6.45 42.86 0.87 34.28 0.50

SOUND 77.95 2.66 65.08 4.33 49.21 5.03 82.54 2.24 83.33 2.94

UTIL. 67.15 10.94 34.53 4.13 40.29 7.55 52.52 6.84 54.68 6.84

WORDP. 5.550.12 23.532.55 29.412.79 17.650.36 23.53 0.97

ACCUR. 64.25% 50.24% 44.65% 66.39% 65.80%

When we compare the two data sets, Ibiblio performs better than
Sourceforge. Although we apply cross validation, the reason for
the poor performance appears to be the number of examples in the
Sourceforge data. For most of the categories, we used fewer
examples from the Sourceforge than the lbilio archive. As far as
the types of features, single words together with lexical phrases
are the most helpful feature group for classification. Although,
lexical phrases alone do not perform well, they increase the
accuracy of the cross validation on Ibiblio archive when used with

the single words. Single words with bigrams are also useful and
outperform the other techniques for the last data set.

Second, we split our combined data set to two subsets and used
one subset for training and the other for testing. We used the
features extracted from the Linux archive in this experiment.
Table 8 shows the true positive and false positive rates and the
overall accuracy of the SVM classifier trained by the features
from the Ibiblio Archive and tested on the combined set. Similar
to the programming language classification, single words when
used with bigrams and lexical phrases perform the best on overall.
This is also true for each category but the utilities. Between the
categories, the database, games, graphics, network and the sound
classes performed much better than the other classes. This is again
related to the few examples we have in the other classes and the
fuzziness of the utilities class. We observe that the utilities class
always has a high false positive rate.

Table 9. TP, F P ra tes and the overal l accuracies for
each exper iment us ing the features f r o m Sourceforge

CLASS SW 2G LP SW2G SWLP

TP% FP% TP% FP% TP%FP% TP% FP%TP% FP%

CIRCUIT 17.86 1.48 25.00 12.8021.43 3.81 32.142.95 25.00 1.84

DATAB. 41.93 0.86 19.35 1.48 16.13 2.83 51.61 1.48 38.71 0.99

DEVEL. 50,94 5.46 26.41 6.98 20.75 6.34 54.71 1.05 37.74 4.95

GAMES 74.17 4.30 39.17 1.32 37.50 12.62 77.504.58 71.67 6.10

GRAPH. 82.30 14.2935.40 8.24 38.05 12.91 70.80 15.8073.45 16.08

MATH 43.33 1.48 36.67 3.33 23.33 1.48 36.67 1.36 43.33 1.23

NET. 80.00 2.60 22.67 1.01 22.00 1.30 46.67 1.44 68.67 2.75

SERIAL. 22.86 1.61 20.00 5,71 22.86 5.46 25.71 1.61 25.71 1.36

SOUND 86.51 4.61 47.62 1.97 57.14 25.59 73.02 7.69 75.40 7.41

UTIL. 38.13 3.70 16.55 2.99 12.95 4.42 23.02 3.28 40.29 4.70

WORD
17.65 1.21 23.53 2.55 23.53 2.67 29.41 2.06 0.00 1.09

P.

ACCUR. 64.60% 30.05% 30.88% 52.97% 57.48%

In the third step, the classifier was trained with features from the
Sourceforge archive and tested on the combined data set. Table 9
shows the accuracy of the SVM classifier for each category. This
time experiments on single words have the highest performance.
The classes that perform the best do not change for this
experiment but the false positive rate of the graphics category is

637

worse than the others. When the two data sets are compared, not
surprisingly the accuracy is higher when we train our classifier
with features from the Ibiblio archive. Please note that we used
the same penalties in each method of the experiments to be able to
compare the feature types. However, weights can be different for
each feature type to increase the overall accuracy.

6. CONCLUSIONS AND FUTURE WORK
Our experiments show that source code can be accurately
classified with respect to programming language and application
category. However the accuracy of this classification depends on
many factors. The variance of our data, the application categories,
the selection of features used, the information retrieval techniques
and the programming language all affect performance.

We demonstrate an SVM based approach to programming
language and topic classification of sottware programs. We train
our classifier with automatically extracted features from the code,
comments and the README files. For programming language
classification, these features are tokens in the code and words in
the comments. For topical classification, we use words, bigrams
and lexical phrases in the comments and README files and
header file names in the code as features. We perform feature
selection by expected entropy loss values and train SVM
classifiers using these features. Though our work shows
promising results, there is much to explore, including the choice
and number of feature vectors. Using values such as term
frequency in the vectors, instead of binaries can improve the
performance of our classifier. Our work for programming
language classification can also be extended by adding more
syntactic features together with the words. We believe that other
properties of programrning languages, such as the way comments
are included and the tokens used for arithmetic or logical
operations, will help in identifying the programming language.

These results imply that large archive collections of mixed data
such as text and source code can effectively be automatically
classified and categorized. We feel this will lead to more effective
use of code archives and a reduction in duplication of
programmer effort.

7. A C K N O W L E D G E M E N T S
We gratefully acknowledge Gary Flake, Eren Manavoglu and
Burak Onat for their comments and contributions.

8. R E F E R E N C E S
[1] Abramson, N. "Information Theory and Coding." McGraw-

Hill, New York, 1963.

[2] Bennett, K. P. and Campbell, C. "Support vector machines:
Hype or Hallelujah." ACM Special Interest Group on
Knowledge Discovery and Data Mining (SIGKDD)
Expolarations 2(2): I- 13, 2000.

[3] Chang, C. and Lin, C. "LIBSVM: A library for support vector
machines." Software available at
http://www.csie.ntu.edu.tw/-cjlin/libsvm.

[4] Chen, A., Lee Y. K., Yao A. Y., and Michail A. "Code search
based on CVS comments: A preliminary evaluation,"
(Technical Report 0106). School of Computer Science and
Eng., University of New South Wales, Australia, 2001.

[5] Creps, R. G., Simos, M. A., and Pfieto-Diaz R. "The STARS
conceptual framework for reuse processes, softward
technology for adaptable, reliable systems (STARS)"
(Technical Report). DARPA, 1992.

[6] Dumais, S. T. "Using SVMs for text categorization." IEEE
Intelligent Systems Magazine, Trends and Controversies,
13(4):21-23, 1998.

[7] Dumais, S. T., Platt J., Heckerman D., and Sahami M.
"Inductive learning algorithms and representations for text
categorization." Proceedings of the ACM Conference on
Information and Knowledge Management, 148-155, 1998.

[8] Etzkorn, L. and Davis, C. G. "Automatically identifying
reusable OO legacy code." IEEE Computer, 30(10): 66-71,
1997.

[9] Glover, E. J., Flake, G. W., Lawrence, S., Birmingham, W. P.,
Kruger, A., Giles, L. C., and Pennoek, D. M. "Improving
category specific web search by learning query modification."
IEEE Symposium on Applications and the Internet (SAINT
2001), 23-31. San Diego, CA, US: IEEE, 2001.

[10] Henninger, S. "Information access tools for software reuse."
Systems and Software, 30(3): 231-247, 1995.

[11] Joachims T. "Text categorization with support vector
machines." Proceedings of the Tenth European Conference
on Machine Learning, 137-142, 1999.

[12] Knerr, S., Personnaz, L., and Dreyfus, G. "Single layer
learning revisited: a stepwise procedure for building and
training a neural network." Neurocomputing: Algorithms,
Architectures and Applications. J. Fogelman (Ed.), Springer-
Verlag, 1990.

[13] Krovetz, R. "Viewing Morphology as an Inference Process."
Artificial Intelligence, 20, 277-294, 2000.

[14] Krueger, C. W. "Software resuse." ACMComputing Surveys,
24(2):131-183, 1992.

[15] Kwok J. T. "Automated text categorization using support
vector machines." Proc. of the International Conference on
Neural Information Processing, 347-351, 1999.

[16] Merkl, D. "Content-based software classification by self-
organization." Proc. of the IEEE International Conference on
Neural Networks, 1086-1091, 1995

[17] Platt, J.C., Cristianini, N., and Shawe-Taylor, J. "Large
margin DAGs for multiclass classification." Advances in
Neural Information Processing Systems 12, 547-553. MIT
Press, 2000.

[18] Rosson, M.B. and Carroll, J.M. "The reuse of uses in
Smalltalk Programming." ACMTransactions on Computer-
Human Interaction, 3(3), 219-253, 1996.

[19] Yang, Y. and Pederson, J. "A comparative study on feature
selection in text categorization." Proceedings of the
Fourteenth International Conference on Machine Learning
(ICML'97), 412-420, 1997.

638

