
Disambiguating Authors in Academic Publications using
Random Forests

Pucktada Treeratpituk
Information Sciences and Technology

Pennslyvania State University
University Park, PA, 16802, USA

pxt162@ist.psu.edu

C.Lee Giles
Information Sciences and Technology
Computer Science and Engineering

Pennslyvania State University
University Park, PA, 16802, USA

giles@ist.psu.edu

ABSTRACT
Users of digital libraries usually want to know the exact au-
thor or authors of an article. But different authors may share
the same names, either as full names or as initials and last
names (complete name change examples are not considered
here). In such a case, the user would like the digital library
to differentiate among these authors. Name disambigua-
tion can help in many cases; one being a user in a search
of all articles written by a particular author. Disambigua-
tion also enables better bibliometric analysis by allowing a
more accurate counting and grouping of publications and
citations. In this paper, we describe an algorithm for pair-
wise disambiguation of author names based on a machine
learning classification algorithm, random forests. We define
a set of similarity profile features to assist in author disam-
biguation. Our experiments on the Medline database show
that the random forest model outperforms other previously
proposed techniques such as those using support-vector ma-
chines (SVM). In addition, we demonstrate that the vari-
able importance produced by the random forest model can
be used in feature selection with little degradation in the
disambiguation accuracy. In particular, the inverse docu-
ment frequency of author last name and the middle name’s
similarity alone achieves an accuracy of almost 90%.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval

General Terms
Algorithms, Experimentation

Keywords
Author Disambiguation, Medline, Random Forests

1. INTRODUCTION

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
JCDL’09, June 15–19, 2009, Austin, Texas, USA.
Copyright 2009 ACM 978-1-60558-322-8/09/06 ...$5.00.

In academic digital libraries, it is often desirable to be
able to disambiguate author names for many reasons. First,
while browsing and searching academic articles, users would
be interested to find articles written by a particular author.
However, since most academic digital libraries do not disam-
biguate between multiple authors of the same name, users
are generally required to manually sort through search re-
sults to find the correct authors. Second, disambiguation
of author names allows better bibliometrics analysis by per-
mitting more accurate counting and grouping of publica-
tions and citations; measures often used in academic promo-
tion and grant funding. Third, the resulting disambiguated
names can be used to improve other data mining tasks such
as homepage search and natural language processing. Typ-
ically, the ambiguity of person’s name comes in three vari-
eties: (1) the aliasing problem - when a person uses multiple
name variations such as “Ronald W. Williams” and “R.W.
Williams”, (2) the common name problem - when there are
more than one person with the same name; this is especially
problematic for high frequency names likes Chinese names,
and (3) the typographic errors.

A typical name disambiguation algorithm is composed of
two main components: a pair-wise linkage function and a
clustering algorithm. The pair-wise linkage function deter-
mines whether two records refer to the same entity based on
some attributes. A string matching is a special case of a link-
age function, where the number of attribute is one. Output
of a linkage function can be either a binary decision (yes or
no) or a similarity score between 0 and 1. The linkage func-
tion can be either rule-based or distance measure based (e.g.
Levenshtein distance). Supervised classifiers such as SVM,
and decision trees also have been used as the pair-wise link-
age function [14, 23]. The clustering algorithm then clusters
entities based on their similarities, as defined by the linkage
function.

This paper focuses on the problem of finding a high-quality
pair-wise linkage function for disambiguating author names
in the Medline database. More specifically, we propose to
use the machine learning method, random forests. Random
forests have been successfully applied to various classifica-
tion problems with comparable results to other top discrim-
inative classifiers such as SVMs and Adaboost. In addition,
random forests also produce variable importance measures
for each predictor variable, which can be used for feature
selection. This paper has three main contributions: 1) it
proposes a comprehensive feature set for disambiguating au-

thor names in Medline. 2) it explores the novel use of ran-
dom forests in the problem of name disambiguation, and 3)
through variable analysis and feature selection, it identifies a
small set of predictive features that can achieve high disam-
biguation performance. The rest of the paper is organized as
followed. Section 2 describes related works in author name
disambiguation. Section 3 gives a brief description of Med-
line database. Section 4 describes random forests algorithm
and the feature engineering. Section 5 discusses experimen-
tal results. Section 6 provides conclusion and discussion of
future works.

2. RELATED WORK
Name disambiguation is an instance of a more general

problem of record linkage. The goal of record linkage is to
link multiple records that refer to the same entity together.
In the case of author name disambiguation, the records are
the names and the entity is an author. Record linkage is well-
studied in many different research communities under mul-
tiple names. It is referred to as record linkage [10], database
hardening [9], and duplicate detection [27] in the database
community. The NLP community refers to it as coreference
resolution [22]. Other names include entity resolution, and
string matching [4].

Much research in this area has focused on the linkage func-
tion, especially on its accuracy [1, 4, 8, 11, 12, 23, 24]. This
research ranges from using simple string editing distance to
machine learning techniques such as decision trees. Tejada
et al. used decision tree to learn the mapping rules based
on attribute similarity between records [23]. Christen made
comparison study on person name matching [8]. Han et
al. proposed two classifiers, hybrid Naive Bayes and Sup-
port Vector Machine (SVM), for disambiguating authors in
the DBLP [11]. Bekkerman and McCallum used the link
structure of web pages to disambiguate between web pages
of people [1]. Huang et al. used density-based clustering
to cluster CiteSeer authors based on metadata such as af-
filiations, emails, addresses, name variations and URLs of
the papers. SVM-based distance function was used as the
pair-wise similarity function [14]. Song et al. developed a
topic-based disambiguation algorithm based on PLSA and
LDA to disambiguate author names based on the content of
the articles [21].

Other research has focused on improving the efficiency
and scalability [3, 2, 13, 15, 20, 18, 19], often assuming a
black-box linkage function. Monge and Elkan used a union-
find data structure and assumed transitivity of linkage to
efficiently merge linked records [18]. Often, the efficiency is
achieved by some types of a blocking scheme that reduces
the number of considered record pairs. Hernandez et al. de-
vised sorted neighborhood methods where records are first
sorted on their most discriminating attributes [13]. Each
record is then compared only with its local neighbors within
some fixed window. In [15], Jin et al. introduced an idea
similar to [13]. But instead of sorting records based on some
attributes lexically, which is susceptible to data-entry er-
rors, the records are mapped to multidimensional Euclidean
space that preserves domain-specific similarity. Typically,
the choice of the blocking function is arbitrary or is chosen
manually by trial and error. Winkler presented a method
for evaluating the accuracy of any given blocking function
through a capture-recapture model [26]. Recent work by
Bilenko et al. proposed a way to automatically learn the op-

timal blocking function. Given similarity predicates on dif-
ferent record fields, the algorithm tries to learn the optimal
combination of those predictions as the blocking function [3].
McCallum et al. also suggested that the efficiency can be
accomplished by first clustering/blocking data into smaller
partitions with an inexpensive distance measure, and later
used a more expensive distance measure to disambiguate
within each partitions [17]. Others have tried to improve the
efficiency by increasing the parallelism of the record linkage
[2, 20].

3. MEDLINE
Medline is a de facto literature resource for the biomedical

research. It has metadata of over 16 millions articles dating
from 1965, including 4,500 scientific journals from over 80
countries. In addition to usual metadata (titles, authors, af-
filiation, journal, abstract), every article in Medline is man-
ually indexed with the Medical Subject Heading (MeSH), a
controlled medical vocabulary. Each MeSH belongs to the
MeSH hierarchy. Each heading can belong to more than one
part of the hierarchy tree. A part of the MeSH hierarchy re-
lated to a MeSH, “Stomach Neoplasms” is shown in Figure
1. Notice that the MeSH hierarchy is not a tree, and each
node can have more than one parent. On average one article
is associated with 10-15 MeSHes. Table 1 shows examples
of three articles in Medline written by author with the name
“Watson, AJ.”

Disambiguating author names in Medline can be challeng-
ing even to a human assessor. On one hand, Medline pro-
vides much metadata such as affiliation and the MeSH terms
that can be used for author name disambiguation. On the
other hand, it lacks much information that have been re-
ported to be helpful in disambiguating author names, such
as email, URL, and citations [14, 1]. Furthermore, Med-
line only consistently recorded the affiliation of the first au-
thor for each article after 1988. Even now, no affiliations
other than that of the first author are recorded. In addi-
tion, the policy of how authors are recorded in Medline has
changed over time. Between 1966 and 1984, and between
2000 and present, every author of each article is included.
Between 1984 and 1995, only the first ten authors were in-
cluded. And only the first twenty five authors were included
between 1995 and 2000. Moreover, not until 2002 was the
author’s first name recorded. Previously, most authors are
listed with only their last names and first initials. The size
of Medline itself also results in high ambiguity. For exam-
ple, out of three million articles published in Medline after
1999, there are almost twelve million author names. Of those
twelve million names, only approximately 3.5 million names
are uniques. The name “Wang, Y.” alone appeared in more
than 7,000 articles.

Consider the three articles in Table 1 to illustrate how one
would possibly disambiguate authors in Medline. All three
articles contain the author name “Watson, AJ.” For articles
(1) and (2), it is difficult to determine whether they are both
written by the same “Watson, AJ.,” because (1)’s affiliation
is University of Calgary while (2)’s affiliation is University
of Missouri. The departments listed in both papers are also
different, Medical Biochemistry vs. Animal Sciences. There
are clues, however, that suggest the possibility of (1) and
(2) being a match. Both venues are related to “reproduc-
tion” and both articles are related to Animals (based on the
MeshHeading). For the articles (1) and (3), they are highly

Table 1: Examples of metadata in three Medline papers authored by a unique author

(1) ArticleTitle The cell biology of blastocyst development.
Affiliation Dept of Medical Biochemistry, University of Calgary Health Science Center, Alberta
Authors Watson, AJ
JournalTitle Molecular reproduction and development [ENG]
PubDate 1992 Dec
MeshHeading Animals, Blastocyst, Embryonic and Fetal Development, ...

(2) ArticleTitle Expression of bovine trophoblast interferon in conceptuses derived by in vitro techniques.
Affiliation Dept of Animal Sciences, University of Missouri, Columbia, 65211
Authors Hernandez-Ledezma, JJ, Sikes, JD, Murphy, CN, Watson, AJ, Schultz, GA, Roberts, RM
JournalTitle Biology of reproduction [ENG]
PubDate 1992 Sep
MeshHeading Animals, Base Sequence, Cattle, Culture Techniques, ...

(3) ArticleTitle How to make a blastocyst.
Affiliation Department of Medical Biochemistry, University of Calgary, Alta., Canada
Authors Watson, AJ, Kidder, GM, Schultz, GA
JournalTitle Biochemistry and cell biology = Biochimie et biologie cellulaire [ENG]
PubDate 1992 Oct-Nov
MeshHeading Animals, Animals & Domestic, Blastocyst, DNA & Recombinant, ...

Digestive System Diseases

Gastrointestinal Diseases Digestive System Neoplasms

Stomach Diseases Gastrointestinal Neoplasms

Stomach Neoplasms

Neoplasms

Neoplasms by Site

Figure 1: An example of Medical Subject Headings
(MeSH)’s structure.

likely to be written by the same“Watson, AJ.”Not only that
University of Calgary is the affiliation of both first authors,
but both articles are also about Blastocyst (which is related
to “embryo” and“reproduction”). Given that (1) and (3) are
matched, then all three articles are likely to be written by
the same“Watson,”because (2) and (3) are both co-authored
by “Schultz, GA.” In fact, if one has access to the article (2)
not just its metadata in Medline, one will discover that the
affiliation of “Watson” and “Schultz” indeed are University
of Calgary. This example highlights the difficulty of dis-
ambiguating author names in Medline where some essential
information is missing. It also illustrates some limitations
of pair-wise disambiguations. For some article pairs such as
(1) and (2), it is difficult to disambiguate based solely on
the pair, and, only when an additional instance, in this case
the article (3), is included that the accurate disambiguation
becomes possible.

Algorithm 1 Constructing a random forest

Given a set of instances, S = {(x1i, x2i, ..., xMi, yi)},
i ∈ 1...N , where N is total number of instances, M is the
total number of predictors. xki refers the kth attribute
(predictor variable) of the ith instance, and yi is the class
label (response variable) of the ith instance.

Choose T , the number of trees to grow, and m << M , the
number of predictors to be considered when splitting each
node.

When growing a tree t
1: Construct a bootstrap sample (with replacement) St

from S. Use St to construct the tree t.
2: At each node, randomly select m variables out of M .
Select the best split for that node out of these m variables.
3: Grow the tree to the maximum extent without pruning.

4. DISAMBIGUATION ALGORITHM
In this section, we first explain the random forest classifier,

define variable importance, and how variable importance can
be inferred from the model. Then, we define the feature set
for disambiguating author names in Medline.

4.1 Random Forest
Random forest is an ensemble classifier proposed by Breiman

that combines a collection of decision trees [5]. Each deci-
sion tree within the forests is built with a different bootstrap
sample drawn from the original data set. Each tree is then
constructed to the maximum size without any pruning. The
variable selection for each split in the tree is conducted on a
randomly selected subset of features, instead of on the full
feature set as is usually done in the traditional decision tree
(see Algorithm 1). Once the forest is built, the classification
can be done by simply aggregating the votes of all trees.

Consider the building block of a random forest, a decision
tree, while it has low bias, it generally suffers from high vari-
ance leading to a high error rate. It is usually susceptible

to noise in the data. A slight change in the training data
often affects the structure of the tree dramatically. Random
forests gain their performance improvement over decision
trees by achieving both low bias and low variance. It accom-
plishes this by aggregating a large number of low-correlated
decision trees, each of which has low bias and high variance.
The low bias of a forest is achieved by growing each tree
without any pruning. The low variance is obtained from
bagging (bootstrap aggregating) and random variable selec-
tion. Random forests have been reported to achieve perfor-
mance that is even better than that of SVMs over a wide
range of classification problems [5].

There are only two parameters to tune in random forests:
T , the number of trees to grow, and m, the number of fea-
tures to consider when splitting each node. The error rate
of a random forest depends on two factors: the correlation
between trees in the forest and the strength of each indi-
vidual tree. The more correlated each tree is, the higher
the error rate becomes. The stronger each individual tree
is (high accuracy), the lower the error rate becomes. By
increasing m, the number of features selected, both the cor-
relation and the strength of each tree increases. By lowering
m, each tree becomes more independent (less correlated),
but also becomes weaker at the same time. Thus, there
exists some optimal values of m that provide the optimal
balance between the correlation and the strength to get the
best error rate. Breiman suggested the default value for m
to be log2(M +1), where M is the total number of features.
This default value has been reported to work well in practice
[16]. Also, since only small randomly selected subset of fea-
tures (m << M) are used at each split, random forests tend
to work well even for data with high dimensionality where
there are more variables than observations.

From its use of bagging, the test error of a random forest
can be estimated internally without a cross-validation or a
seperate test set. Since each tree in the forest is constructed
on a different bootstrap sample, about one-third of the origi-
nal data is left-out from that tree’s training sample and thus
can be used for error estimation. For every data point x in
the original data, define the out-of-bag (OOB) trees of x as
the set of trees where x is not included in their bootstrap
samples. Then, calculate the error rate of the random for-
est on the entire original data, where the classification for
each data point is done only by its out-of-bag trees. We call
this error estimate the out-of-bag (OOB) error, which was
shown to be an unbiased estimate of the test set error [5].
This OOB error estimate is also used later in the computa-
tion of variable importance.

A random forest has many nice characteristics that make
it promising for the problem of name disambiguation. First,
random forest can achieve good accuarcy even for the prob-
lem with many weak variables (each variable conveys only
a small amount of information). Furthermore, since each
classifier in the forest is just a decision tree, random forest
can model interactions and dependencies between features
in making predictions. This is useful because users gener-
ally use such rules to disambiguate names; for an example,
“if the affiliations are matched, and both are the first author,
then ...”. In addition, a random forest is very fast both in
the training and making predictions, thus making it ideal
for a large scale problem such as name disambiguation. The
voting of the trees in the forests can also naturally be used
as the similarity distance in any clustering algorithm.

4.2 Variable Importance
Since a random forest is an ensemble of trees, it cannot be

as easily interpreted as a decision tree. However, a random
forest offers a simple way to measure variable importance for
each of its features, giving insights into the interaction be-
tween each feature and the prediction accuracy. This makes
random forest attractive compared to other classifiers such
as kernel-based SVM, which though often achieves good clas-
sification error rates, is hard to interpret.

Variable importance is a measurement of how much influ-
ence an attribute has on the prediction accuracy. There are
two methods of measuring variable importance in a random
forest: by Gini importance and by permutation importance.
Gini importance is calculated based on Gini Index (or Gini
Impurity), which is the measure of class distribution within
a node. Gini index of a node i, IG(i), is defined as:

IG(i) =
K

X

j=1

pj(1 − pj) = 1 −
K

X

j=1

p2
j

where pj is the proportion of instances of class j in the node
i, and K is the number of classes. IG(i) is minimum (= 0)
when the node is pure. Gini index is used as the criteria for
selecting the split at each node in the decision tree construc-
tion; the split that yeilds the biggest reduction in Gini index
is selected. Therefore, in a decision tree, Gini impurity of
the two descendent nodes is always less than that of the par-
ent. Then, Gini importance of a variable can be computed
by averaging the Gini decreases for that variable over all
trees in the forest. A variable with high Gini importance is
the one that on average provides informative partitioning of
data. The Gini importance measure is related to the concept
of Information Gain, which is another popular splitting cri-
teria for decision tree based on information theory. Since it
has been shown that Gini index and Information Gain pro-
duce almost indistinguishable splits in most problems [6], we
will not discuss Information Gain here.

The other measure of variable importance is the permu-
tation accuracy importance. To compute the permutation
accuracy importance of a variable Xi, for each tree that
contains variable Xi, first randomly permute the feature Xi

in its out-of-bag data and then calculate the new OOB ac-
curacy for this permuted input compared with its original
OOB accuracy. Then, the variable importance of Xi is this
decrease in accuracy averaged over all trees that contains
Xi. The rationale is that if the variable Xi is strongly cor-
related with the response, by permuting the value of Xi,
the prediction accuracy should decrease significantly. Both
permuation importance and Gini importance can be used to
measure the relevance of each variable in the feature selec-
tion.

4.3 Similarity Profile
Here, we first give the formal formulation of the author

name disambiguation problem and then define the set of
attributes, called the similarity profile, that will be used
by random forest for disambiguation. Given two papers,
paperA and paperB, both containing an author with the
name “lname, init” where lname refers to the last name
and init, the first initial. We want to disambigute whether
they refer to the same person. We use a naive blocking func-
tion that blocks author name based on the last name and the
first initial. Thus, only two papers that shared an author

with the same last name and the first initial will be disam-
biguated. This is a reasonable assumption for a manually
created database such as Medline, where the errors in the au-
thor names are low. For databases such as CiteSeerX, where
author names are automatically extracted, this assumption
shoud be tested. The following metadata of paperA and
paperB are used to construct the similarity profile:

paperA = (lnameA, fnameA, initA, midA, sufA, coauthA,
affA, titleA, jourA, langA, yearA, meshA)

paperB = (lnameB, fnameB , initB , midB , sufB , coauthB ,
affB , titleB, jourB , langB , yearB, meshB)

where

lnamei = the author’s last name in paperi

fnamei = the author’s first name in paperi

initi = the author’s first initial in paperi

midi = the author’s middle name in paperi, if given
sufi = the author’s suffix in paperi, if given, e.g. “Jr”, “Sr”
coauthi = set of coauthors’ last name in paperi

affi = affiliation of the paperi’s 1st author
titlei = paperi’s title
jouri = paperi’s journal name
langi = paperi’s journal language e.g. English, Chinese
yeari = paperi’s year of publication
meshi = set of mesh terms in the paperi

The similarity profile between author name“lname, initA”
in paperA and paperB consists of 21 features, which can
be grouped into six categories based on the metadata, they
are calculated from: author similarity, affiliation similarity,
coauthors similarity, concept similarity, journal similarity,
and title similarity. The 21 features are defined as followed:

Author Similarity
1) auth fst: the first name similarity.

auth fst =

8

>

>

<

>

>

:

0 if fnameA #= fnameB and both are fullname
1 if initA #= initB and are not both fullname
2 if initA = initB and are not both fullname
3 if fnameA = fnameB and both are fullname

2) auth mid: similarity between midA and midB .

auth mid =

8

>

>

<

>

>

:

0 if midA, midB are given, and midA #= midB

1 if both midA, midB are not given
2 if only one of midA, midB are given
3 if midA, midB are given, and midA = midB

3) auth suf : similarity between sufA and sufB .

auth suf =

1 if sufA, sufB are given, and sufA = sufB

0 otherwise

4) auth ord: similarity between the orders of author.

auth ord =

8

<

:

2 if both authors are the 1st author
1 if both authors are the last author
0 otherwise

5) auth lname idf : IDF weight of the author last name.
IDF is the inverse of the fraction of names in the corpus.

auth lname idf = log(IDF (lnameA))

where

IDF (lnameA) = IDF (lnameB) =
L

DFlnameA

and L is the total number of articles in Medline, DFlnameA

is the total numbers of lnameA in Medline. High value of
IDF (lname) means that lname is rare, thus is less likely to
be ambiguous.

Affiliation Similarity
6) aff jac: the jaccard similarity between affA and affB

aff jac =
|affA

T

affB |
|affA| + |affB |

7) aff tfidf : the sum of TFIDF weights of shared terms
in affA and affB .

aff tfidf =
X

t∈affA
T

affB

TFIDF (t, affA)×TFIDF (t, affB)

where TFIDF (t,S) = log(TFt,S + 1) × log(IDF (t)), and
TFt,S is the frequency of t in S.

8) aff softtfidf : the soft-TFIDF distance between affA

and affB . The soft-TFIDF distance is a hybrid distance
that combines a string-based distance with the TFIDF dis-
tance. soft-TFIDF does not only account for TFIDF of
terms that occur in both strings, but also of a term that
occurs in one string and has a similar term appearing in the
other string [4]. Here, we use Jaro-Winkler distance as the
measurement whether two terms are similar [25].

Jaro(t, v) =
1
3
×(

|CCt,v|
|Ct|

+
|CCv,t|
|Cv |

+
|CCt,v|− TCCt,v ,CCv,t

2|CCt,v |
)

where Ci is all characters in i, CCi,j is all characters in i
that appear in j, and Tp,q is the number of transpositions of
characters in p relative to q. And

JaroWinkler(t, v) = Jaro(t, v)+
max(L,4)

10
×(1−Jaro(t, v))

where L is the length of the longest common prefix of t and
v. Then, define a set C(affA, affB) to be the set of term
t ∈ affA such that ∃v ∈ affB , JaroWinkler(t, v) < 0.8.
And ∀t ∈ C(affA, affB), define N(t, affB) = maxv∈affB

JaroWinkler(t, v). Then,

aff softtfidf =
X

t∈C(affA,affB)

TFIDF (t, affA)

×TFIDF (t, affB)

×N(t, affB)

Coauthors Similarity
9) coauth lname shared: the number of shared coauthor
last names between the two papers.

coauth lname shared = |coauthA

\

coauthB |

10) coauth lname idf : the sum of IDF values of all shared
coauthor last names.

coauth lname idf =
X

ln∈coauthA
T

coauthB

log(IDF (ln))

11) coauth lname jac: the jaccard similarity between coauthA

and coauthB .

coauth lname jac =
|coauthA

T

coauthB |
|coauthA| + |coauthB |

Concept Similarity
12) mesh shared: the number of shared mesh terms be-
tween the two papers.

mesh shared = |meshA

\

meshB|

13) mesh shared idf : the sum of IDF values of all shared
mesh terms.

mesh shared idf =
X

t∈meshA
T

meshB

log(IDF (t))

14) mesh tree shared: Define a set T (meshi) to be the
set of all ancestor concepts of meshi in MeSH hierarchy.
c ∈ T (meshi) if c is in a path from the root to meshi. Note
that each MeSH concept can have multiple parents, thus
there could be multiple paths from the root to meshi. The
feature takes into account the tree structure of the MeSH
hierarchy. For instance, “Breast Neoplasms” and “Lactation
Disorders” would be thought of as two different concepts in
mesh shared, thus have zero similarity. However, since they
share a parental concept “Breast Diseases,” they will have
positive similarity according to mesh tree shared.

mesh tree shared = |T (meshA)
\

T (meshB)|

15) mesh tree shared idf : similar to mesh tree shared, but
instead of the number of shared MeSH headings in the hier-
archy, use the IDF weight sum.

mesh tree shared =
X

c∈T (meshA)
T

T (meshB)

log(IDF (c))

Journal Similarity
16) jour shared idf : IDF value of the shared journal, if
both are published in the same journal. The less common
the journal is, the more informative this feature should be.

jour shared idf =

log(IDF (jourA)) if jourA = jourB

0 otherwise

17) jour lang: similarity between language of both journals.

jour lang =

8

>

>

<

>

>

:

0 if langA #= langB and both are non-English
1 if langA #= langB and one is English
2 if langA = langB and are English
3 if langA = langB and are non-English

18) jour lang idf : IDF value of the shared journal’s lan-
guage.

jour lang idf =

log(IDF (langA)) if jourA = jourB

0 otherwise

19) jour year: categorical variable reflecting change in Med-
line’s policy. 1988 is the first year that affiliation of the 1st
author is included, and 2002 is the first year that author full

ooo
ooooooo

o
o

o
o

o

o

o

0 20 40 60 80

0
20

0
40

0
60

0
80

0
10

00

rank of names based on the number of clusters

nu
m

be
r o

f c
lu

st
er

s

Figure 2: Number of unique author clusters for each
of 91 sampled author names.

names are included.

jour year =

8

>

>

>

<

>

>

>

:

0 if both are before 1988
1 if one is before 1988 and one is after 1988
2 if both are between 1988 and 2002
3 if both are after 1988 and one is after 2002
4 if both are after 2002

20) jour year diff : difference in publication years.

jour year diff = |yearA − yearB|

Title Similarity
21) title shared: the jaccard similarity between titleA and
titleB.

title shared =
|titleA

T

titleB |
|titleA| + |titleB |

5. EXPERIMENTS

5.1 Comparative Studies
To evaluate the performance of the random forest for

disambiguation, we first randomly select 91 unique author
names (as defined by the last name and the first initial) from
Medline database. For each selected name, we then manu-
ally cluster all the articles in Medline written by that name.
Each resulting cluster corresponds to the set of articles writ-
ten by one unique author. These are used as the gold stan-
dard in the training and the evaluation. Figure 2 shows the
number of unique authors for each of the 91 names. The
most ambiguous name is “Park, J”, with 997 unique authors
for 6,803 total articles. 46 names out of 91 contain only one
or two unique authors. The clusters are constructed by man-
ually examining metadata provided in Medline in deciding
whether two articles were written by the same author. We
also utilize information not provided in Medline in the man-
ual disambiguation. For instance, if two articles seem likely
to be written by the same author but their first author’s
affiliations in Medline are different, we will look at the full
affiliations of every author (through other data source such
as the internet, since it is not available in Medline) in the
disambiguation process. For articles that have little infor-
mation (e.g. empty affiliation), we assume each was written
by a unique author. We then randomly sample without re-
placement 100 article-article pairs from each of the 91 names
gold standard, and aggregate them all together to create
the evaluation set called S100. S100 contains the total of

Table 2: Classification Accuracy (%) for various
classifiers on different sample sizes

Accuracy (%)
set S100 S200 S300 S400 S500

#instances 8,064 15,643 22,860 29,612 35,732

Majority 56.69 55.33 55.10 54.15 53.52
NaiveBayes 77.79 78.32 78.22 78.30 77.66

Logistic 90.29 90.04 90.55 90.65 90.87
DT 91.15 92.73 93.37 93.43 94.15

SVM 92.78 93.10 93.39 93.66 93.68
RF 94.87 95.35 95.55 95.85 95.99

0 100 200 300 400 500

0.
92

0.
94

0.
96

Number of trees in the forest

Ac
cu

ra
cy

 (%
)

Figure 3: Accuarcy of the random forest on S500.
Black=the total accuracy, Red=class 1’s accuracy
Blue=class 0’s accuracy.

8,064 instances (article-article pairs). Similarly, we also cre-
ate S200, S300, S400, S500 evaluation set with the sample
size = 200, 300, 400, 500 respectively. The sampling is done
to make the evaluation feasible since SVM takes a long time
to train, and to investigate the effect of size of the training
data on the accuracy. In order to calculate IDF, and TFIDF
for different features in similarity profile, we collect statis-
tics such as name frequency and number of articles in each
journal from the entire Medline database. For the computa-
tion of mesh tree shared and mesh tree shared idf , 2008
version of the MeSH hierarchy is used.

We compared the performance of our random forest model
(RF) with four other traditional classifiers, logistic regres-
sion, Naive-Bayes, a decision tree, and a SVM (Table 2).
We also included a classifier that simply predicts the ma-
jority class in the training data as the baseline (Majority).
For NaiveBayes, the normal distributions are assumed for
the numerical features such as coauth shared in calculating
the probability, P (Xk = xki|Y = yi). For SVM, we use the
RBF (Radial Basis Function) kernel, where RBF (x, y) =
eγ||x−y||2. The parameters and C (the penalty of errors) in
the SVM are then tuned using grid-search with 10-fold cross-
validation. We use the libsvm implementation of SVM [7].

Table 3: Training time (minutes & seconds) on dif-
ferent sample sizes

set S100 S200 S300 S400 S500

SVM 25.83s 1m59s 4m31s 7m49s 12m39s
RF 21.39s 46.80s 1m16s 1m47s 2m20s

The decision tree (DT) is built using C4.5 algorithm with
pruning. In our experiment, the random forest is built with
500 trees (T = 500), and m = int(log2(21 + 1)) = 4. The
number reported in Table 2 are computed using 10-folds
cross-validation. Each fold is stratified so that it contains
approximately the same proportions of class distribution as
the original dataset. Random forest consistently outper-
forms all other classifiers for every data set, achieving al-
most 96% accuracy for the S500 data. Figure 3 shows the
accuracy on S500 data, as the trees were grown in the ran-
dom forest. There is small change from 100 to 500 trees,
suggesting that 100 trees might be sufficient to get a rea-
sonable result. The next best classifiers are SVM and the
decision tree, which achieved around 94% accuracy. In com-
paring SVM and random forests, the ANOVA shows that the
difference in accuracy between the two are significant. Lo-
gistic regression performs reasonably well with around 90%
accuracy. NaiveBayes performs noticeably poor compared
to the other classifiers. This might be because high correla-
tions between features violate the independence assumption
of NaiveBayes. The normal distribution assumption of nu-
merical features used in our NaiveBayes is also not valid. It
is interesting to note that logistic regression, decision tree,
SVM and random forests all can achieve over 90% accuracy.
This is actually not bad considering that none of the non-
first author’s affiliations is available to these classifiers.

We also look at the effect of training data size on the ac-
curacy and training time. Each classifier achieves similar
accuracy across all five data set. The random forests and
the decision tree seem to perform slightly better on the big-
ger data set. Further experiments with larger data set are
needed to see whether such a improvement will persist. Ta-
ble 3 compares the training time between SVM and random
forests (all other classifiers take under four seconds to train
on each data set). The training time of random forests in-
creases linearly with the size of the training data, while SVM
takes noticeably longer time as the size of the training data
increases. Additionally, parameter tuning in SVM takes up
substantial amount of time, for instance, the grid search on
S200 took over 6 hrs.

5.2 Features Selection
Since name disambiguation is often run on a large amount

of ambiguous names, scalability is often a concern. The
problem of name disambiguation in its most naive form in-
volves N ×N pair-wise comparisons, where N is the number
of instances. For a digital library with millions of articles
and author names, a cheaper distance measure that can be
used to partition data into smaller subsets without sacrific-
ing much performance is desirable [17]. Here, we investigate
the relevance of each features to the prediction, and then
look at the effectiveness of the feature selection.

First, we examine the correlation between features, and
their class distribution. The correlation between each fea-
tures and the class label are shown in Figure 5. The shape
and the color of each circle indicates the strength of the cor-
relation. The green circle indicates that there is little or no
correlation between features. The yellow ellipse indicates
the positive correlation between the two features, while the
blue ellipse indicates the strong negative correlation. The
stronger the correlation, the thinner the ellipse. Since each
attribute has the correlation of 1 with itself, each diago-
nal entry is a thin ellipse. One can quickly see the group-

Figure 4: Variable importance according to permu-
tation and Gini importance for the random forests.

ing of related features, whether they are affiliation-based
or coauthors-based, which show up as the yellow square
blocks. The correlation plot also shows that the class la-
bel, “same,” is strongly positively correlated with auth mid,
auth last idf, aff softtfidf, aff tfidf, aff jac, coauth lname jac,
mesh shared, mesh shared idf , mesh tree shared, and
mesh tree shared idf . It is also negatively correlated with
jour year diff. Figure 6 shows the distribution for each fea-
ture in each of the two classes, 1 for same person and 0 for
different person. The plots clearly show that the normality
assumption used in the NaiveBayes is violated, partly ex-
plain the poor performance by NaiveBayes. Also, the two
classes are not well-separated along any one feature.

We ranked all twenty-one features by permutation impor-
tance and Gini importance (Figure 4). auth last idf and
auth mid have the highest importance for both measures
with around 0.2 mean decrease accuracy. For permutation
importance, the features ranked third (aff tfidf) till seven-
teenth (mesh shared) have approximately the same mean
decrease accuracy. All top six variables with high permuta-
tion importance show the strong correlation with the class
label in the correlation chart. The top permutation impor-
tance attributes, auth last idf and auth mid, indeed show
good seperation between two classes in the boxplot (Figure
6). The range between the 1st quartile and the 3rd quar-
tile for both attributes are almost disjointed. Affiliation
similarity also have smaller importance than we expected.
Even though all three affiliation similarities still rank high
on permutation importance, their effect did not stand out
as we thought they would. This is probably because Med-
line does not provide affiliations for every authors. If the
author name in question is not the first author, then the
affiliation similarities might not help much. For other data
set, such as CiteSeerX, we do expect affiliation similarity to
have more influences. Surprisingly, all the coauthor similar-
ity features have low permutation importance, even though
coauth lname jac is highly positively correlated with the
class label. This contradicts [24] which reported common
coauthor names to be the most discriminative feature. We

Table 4: Accuracy based on the top 6 features with
the highest variables importance ranked by permu-
tation importance and Gini importance respectively
(ie. auth last idf , auth mid, aff tfidf , jour year diff ,
aff softtfidf , mesh shared idf for RF-P)

Accuracy (%)
#features 1 2 3 4 5 6 full

RF-P 86.1 89.4 91.7 95.1 94.9 95.5 95.9
RF-G 86.1 89.4 91.4 95.5 95.3 95.2 95.9

think that this is because coauthors similarities, especially
coauth lname jac, are highly correlated with affiliation sim-
ilarities (Figure 5). Thus, when other features are included,
the permutation of coauthors similarities do not have much
effect on the predicted accuracy. The permutation variable
importance curve is quite flat with a sharp drop off for the
low rank features. We think that it is because there are mul-
tiple features that convey similar information (high correla-
tion among features). Thus, when the value of one variable
is permuted, the accuracy of the random forest does not
decrease much. In contrast, the Gini variable importance
curve shows sharp drop off after the top two features, and
shows flat line for lower rank features. We believe that this
is because features other than the top two are weak, in a
sense that each is not very informative by itself. They need
to be considered in conjunction with other features. Thus,
on average, their splits lower the Gini index by only small
amount.

The accuracy of random forest with feature selections is
shown in Table 4. RF-P and RF-G are the random forests
with feature selection based on permutation importance,
and Gini importance respectively. For instance, RF-P with
#features = 3 refers to the random forest constructed with
only the top three features ranked according to the permuta-
tion importance. With only the top variable auth lname idf ,
RF-P already performs with 86.1% accuracy. With the top
six features, RF-P can achieve 95.5% accuracy, compared to
95.9% with all 21 features. With the top four features, RF-P
already outperforms SVM (93.68% in Table 2). The perfor-
mance of RF-G is almost identical to that of RF-P. The
accuracy for both RF-P and RF-G seems to converge with
four features. This result shows that high level of disam-
biguation accuracy can be achieved with only small subset
of features. In disambiguating a pair of author names, com-
puting the similarity profile for the reduced model is much
cheaper than for the full model. And this can be done with-
out much deterioration in the accuracy.

6. CONCLUSIONS
We demonstrate how random forests can be adapted to

the problem of author name disambiguation in scientific
databases. We propose a wide-range of features for comput-
ing similarity profiles based on metadata available in Med-
line. These features can be easily adapted to other digi-
tal libraries. Our experiments show that the random forest
model outperforms other previously used classifiers, such as
SVM, in the pair-wise disambiguation task. By analyzing
variable importance in the random forest, we were able to
identify a small number of predictive features for disam-
biguating author names. We found that the inverse docu-
ment frequency value of author’s last name and the similar-

Figure 5: Correlations between different features and the class label. The shape and the color of the circle
indicate the strength of the correlations.

Figure 6: Box plot of each features with the exception of auth suf, which has the smallest variable importance,
for each class, 1: same entity, and 0: otherwise.

ity between author’s middle name are the most predictive
variables for disambiguating names in Medline. The reduced
random forest model using just those two variables can at-
tain almost 90% accuracy. Our experiments with feature
selections also demonstrate that near-optimal accuracy can
be achieved with just four variables, the inverse document
frequency value of author’s last name and the similarity be-
tween author’s middle name, their affiliations’ tfidf similar-
ity, and the difference in publication years. For future work,
we would like to explore the possiblity of incorporating this
inexpensive classifier with a clustering algorithm to cluster
entities on large scale problems such as the entire Medline
database.

7. ACKNOWLEDGMENTS
The authors would like to acknowledge partial support

from the National Science Foundation and Raytheon. We
gratefully acknowledge Prasenjit Mitra for his help with the
Medline data, and he, Jian Huang, Zheng Shuyi, Pradeep
Teregowda, and B.J. Simpson for their useful suggestions.

8. REFERENCES
[1] R. Bekkerman and A. McCallum. Disambiguating web

appearances of people in a social network. Proc of Int’l
World Wide Web Conf (WWW), 2005.

[2] O. Benjelloun, H. Garcia-Molina, H. Kawai, and
T. Larson. D-swoosh: A family of algorithms for
generic, distributed entity resolution. Proc of the 27th
Int’l Conf on Distributed Computing Systems, 2007.

[3] M. Bilenko, B. Kamath, and R. Mooney. Adaptive
blocking: Learning to scale up record linkage. IEEE
Int’l Conf on Data Mining (ICDM’06), 2006.

[4] M. Bilenko, R. Mooney, W. Cohen, P. Ravikumar, and
S. Fienberg. Adaptive name matching in information
integration. Intelligent Systems, 2003.

[5] L. Breiman. Random forests. Machine Learning, 2001.
[6] W. Buntine and T. Niblett. A further comparison of

splitting rules for decision-tree induction. Machine
Learning, 8(1):75–85, 1992.

[7] C. Chang and C. Lin. Libsvm: a library for support
vector machines. http://www. csie. ntu. edu.
tw/cjlin/libsvm, 2001.

[8] P. Christen. A comparison of personal name matching:
Techniques and practical issues. Workshop on Mining
Complex Data (MCD), 2006.

[9] W. Cohen, H. Kautz, and D. McAllester. Hardening
soft information sources. Proc of Conf on Knowledge
Discovery and Data Mining, 2000.

[10] I. Fellegi and A. Sunter. A theory for record linkage.
Journal of the American Statistical Association, 1969.

[11] H. Han, C. L. Giles, H. Zha, C. Li, and
K. Tsioutsiouliklis. Two supervised learning
approaches for name disambiguation in author
citations. Proc of the Joint Conf on Digital Libraries,
2004.

[12] H. Han, H. Zha, and C. L. Giles. Name
disambiguation in author citations using a k-way
spectral clustering method. Proc of the Joint Conf on
Digital Libraries, 2005.

[13] M. Hernández and S. Stolfo. The merge/purge
problem for large databases. Proc of the 1995 ACM
SIGMOD, 1995.

[14] J. Huang, S. Ertekin, and C. L. Giles. Efficient name
disambiguation for large-scale databases. Proc of The
European Conf on Principles and Practice of
Knowledge Discovery in Databases, 2006.

[15] L. Jin, C. Li, and S. Mehrotra. Efficient record linkage
in large data sets. Database Systems for Advanced
Applications (DASFAA), 2003.

[16] A. Liaw and M. Wiener. Classification and regression
by randomforest. R News.

[17] A. McCallum, K. Nigam, and L. Ungar. Efficient
clustering of high-dimensional data sets with
application to reference matching. Proc of the Int’l
Conf on Knowledge Discovery and Data Mining, 2000.

[18] A. Monge and C. Elkan. An efficient
domain-independent algorithm for detecting
approximately duplicate database records. Proc of
SIGMOD, 1997.

[19] B. On, D. Lee, J. Kang, and P. Mitra. Comparative
study of name disambiguation problem using a
scalable blocking-based framework. Proc of the Joint
Conf on Digital Libraries, 2005.

[20] H. sik Kim and D. Lee. Parallel linkage. Proc of the
16th ACM Conf on Information and Knowledge
Management, 2007.

[21] Y. Song, J. Huang, I. Councill, J. Li, and C. Giles.
Efficient topic-based unsupervised name
disambiguation. Proc of the Joint Conf on Digital
Libraries, 2007.

[22] W. Soon, H. Ng, and D. Lim. A Machine Learning
Approach to Coreference Resolution of Noun Phrases.
Computational Linguistics, 27(4):521–544, 2001.

[23] S. Tejada, C. Knoblock, and S. Minton. Learning
object identification rules for information integration.
Information Systems, 2001.

[24] V. Torvik, M. Weeber, D. Swanson, and
N. Smalheiser. A probabilistic similarity metric for
medline records: A model for author name
disambiguation. Journal of the American Society for
Information Science and Technology, 2005.

[25] W. Winkler. The state of record linkage and current
research problems. Statistics of Income Division, 1999.

[26] W. Winkler. Approximate string comparator search
strategies for very large administrative lists. Proc of
the Section on Survey Research Methods, 2004.

[27] H. Yang and J. Callan. Near-duplicate detection for
eRulemaking. In Proc of the National Conf on Digital
government research, 2005.

