
Comparing static and dynamic measurements and 
models of the Internet’s AS topology 

Seung-Taek Park David M. Pennock C. Lee Giles 
Department of Computer Science Yahoo Research Labs School of Information 

and Engineering 
Pennsylvania State University 

74 N. Pasadena Ave., 3rd floor Sciences and Technology 
Pasadena. CA, 91103 USA Department of Computer Science 

Universitv Park. PA 16802 USA Email: david.oennock@overtue.com and Engineering 
Email: separk@cse.psu.edu 

Abstract-Capturing a precise snapshot of the Internet’s 
topology is nearly impussihle. Recent efforts have produced 
autonomous-system (AS) level topologies with noticeably diver- 
gent characteristics [l], [Z], [3]. even calling into question the 
widespread belief that the Internet’s degree distribution follows 
a power law. In turn, this casts doubt on Internet modeling 
efforts, since validating a model on one data set does little 
to ensure validity on another data set, or on the (unknown) 
actual Internet topology. We examine six metr ic t three existing 
metrin and three of our own-applied to two large puhlicly- 
available topology data sets. Certain metrics highlight differences 
between the two topologies, while one of our static metrin and 
several dynamic metrin display an invariance hetween the data 
sets. Invariant metria may capture properties inherent to the 
Internet and independent of measurement methodology, and so 
may serve ns better gauges for validating models. We continue 
by testing nine models-seven existing models and two of our 
own-according to these metrics applied to the two data sets. 
We distinguish between growth models that explicitly add nodes 
and links over time in a dynamic process, and static models 
that add all node’and links in a batch process. AU existing 
growth models show poor performance according to at least one 
metric, and only one existing static model, called Iner, matches 
all metr ia  well. Our two new modelsgrowth models that are 
modest extensions ofoue of the simplest existing growth m o d e l s  
perform better than any other growth model acruss all metria. 
Compared with Inet, our models are very simple. As growth 
models, they provide a possible explanation for the processes 
underlying the Internet’s growth, explaining, for example, why 
the Internet’s degree distribution is more skewed than baseline 
models would predict. 

I. INTRODUCTION 

Researchers have explored characteristics and models of 
the Internet. mainly validating their conclusions using Oregon 
RouteViews (hereafter. simply Oregon), a well-known collec- 
tion of (sampled) snapshots of the Internet’s autonomous- 
systems (AS) level topology. Because of -the Internet’s dis- 
tributed nature, recording an accurate picture of its topology 
at any given time is nearly impossible, casting some doubt 
on the validity of measurements and models based on nec- 
essarily incomplete data. Recently, using new methodologies 
for measuring the Internet’s AS topology, researchers have 
created an extended source of data [2], [31 (hereafter, sim- 
ply Extended), combining several existing sources, including 
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Oregon. Looking Glass, RIPE, and other publicly available full 
BGP routing tables, and capturing 20-50% more physical links 
than Oregon. Note that the Internet’s AS topology encodes 
logical links between autonomous systems (roughly, Internet 
domains), often but not necessarily corresponding to direct 
physical connections: a link in a BGP routing table may 
encode an indirect physical connection through several routers 
and switches. Since most pronouncements regarding Internet 
characteristics and models-including the most cited property 
of a power-law degree distribution-are based on Oregon data, 
the new findings raise several questions. . What are the differences in characteristics of the Ore- 

gon and E.xtended topology data sets? Researchers have 
looked at differences in the two topologies’ degree dis- 
tributions, though other characteristics of the E.xtended 
topology are still largely unexplored. 
Wiaf  metrics, f an?, are invariant between the two 
topologies? Even E.rtended is a partial view of the true 
Internet topology: it is not clear whether Oregon or 
Ertended better represents the vue Internet. or if neither 
rqresent i t  well enough. However. identifying meaning- 
ful invariant metrics that are the same for both data sets 
may help identify properties inherent to the Internet and 
less dependent on measurement methodology, and help 
validate competing Internet models. . What models rnatch with characteristics observed in 
rhe two data s e a ?  To what extent ilo those models 
capture sorile essential aspect of the Internet’s growth 
inechanism? Models must be evaluated on two (often 
conflicting) dimensions: (1) their correspondence with 
data. and (2) their ability to abstract away inessential 
details while retaining some essential aspects of the 
system being modeled. 

To begin to answer the first two questions, we compare 
Oregon and Extended using three existing metrics and three 
new metrics of o u  own: linkdegree ratio, average node-degree 
ratio. and skewness. We find that, while the two data sets 
diverge according to most metrics. they agree nearly perfectly 
according to average node-degree ratio, suggesting that this 
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metric is a good candidate for an invariant measure. We also 
find that. although most of the metrics’ absolute values differ, 
their relative changes over time are very similar between the 
two data sets. So dynamic changes in metrics over time may 
serve as additional candidate invariant measures. 

In response to the third question, we compare the per- 
formance of nine generative models of the Internet, two of 
which are new. We examine both growth models that posit a 
particular mechanism of growth over time, and static models 
that input a number of nodes and edges and generate graphs 
all at once, without explicitly formulating a growth procedure. 
Among existing growth models, a subset show relatively good 
performance on some static meuics, though none follow the 
observed dynamic behavior of the Internet. A static model 
called Inet does well at matching both static and dynamic 
Internet characteristics. hut may be over-tuned to the Oregon 
data; the model says little about the underlying processes 
governing Internet growth, only mimicking it using a quite 
complicated procedure. In short. we believe that, while Inel 
certainly excels according to the first criteria of a good model 
(item (1) of question three above), it arguably falls short 
according to the second criteria (item (2) of question three). 
Our new models, on the other hand, are quite simple, and do 
make statements about the potential mechanisms underlying 
Internet growth. Our models fit the static characteristics of the 
Internet more closely than any other growth model. and as 
closely as Inet. However our models still fail to capture the 
dynamic evolution of the Internet; it remains an open problem 
to discover a plausible growth mechanism that meshes well 
with the dynamic characteristics clearly visible in  both Oregon 
and Ettended data. 

11. PREVIOUS WORK 

The Internet’s topology has been studied at macroscopic 
level [41, the link architecture [51, [6], the end-to-end path 
level [7], [SI. Scaling factors, such as power-law relationships 
and Zipf distributions, arise in all aspects of network topology 
[4], [9] and web-site hub performance [IO]. 

Recent research [ I l l ,  [121, [131, [141, 1151, 1161 bas argued 
that the performance of network protocols can be seriously 
effected by the network topology and that building an effec- 
tive topology generator is at least as important as protocol 
simulations. Previously, the Waxman generator 1171, which is 
a variant of the Erdos-Renyi random graph [181. was widely 
used for protocol simulation. In this generator, the probability 
of link creation depends on the Euclidean distance between 
two nodes. However, since real network topologies have a hier- 
archical rather than random StrUCNe. next generation network 
generators such as Transit-Stub [I91 and Tiers [201, which 
explicitly inject hierarchical structure into the network, were 
subsequently used. In 1999, Faloutsos et al. [41 discovered 
several power-law distributions in Internet data, leading to the 
creation of new Internet topology generators. 

Tangmunmnkit et al. [211 divide network topology genera- 
tors into two categories: structural and degi-ee-based network 
generators. The major difference between these two categories 

is that the former explicitly injects hierarchical structure into 
the network, while the later generates graphs with power- 
law degree distributions without any consideration of net- 
work hierarchy. Tangmunmnkit et al. argue that even though 
degree-based topology generators do not enforce hierarchical 
structure in graphs, they present a loose hierarchical structure, 
which is well matched to real Internet topology. Other recently 
proposed generators [91, [221, [231, [241, [XI,  [261 can be 
thought of as degree-based generators. 

Characteristics of the Internet topology and its robustness 
against failures have been widely studied 141, [91, [221, [271, 
[28], with focus on extracting common regularities from 
several snapshots of the real Internet topology (e.g., power-law 
degree distributions). Properties measured on a single snapshot 
of the Internet’s topology at a given time are examples of static 
metrics. On the other hand. researchers have shown that, for 
example, the clustering coefficient of the Internet is growing 
while the average diameter is decreasing over the past few 
years [26], [29]. A second class of reasonable metrics for 
characterizing the Internet are such dynamic metrics. 

Park et  al. [281, in examining the fault tolerance proper- 
ties of Internet network models, also uncover some dynamic 
patterns of the rea Internet’s growth that are not capNed by 
most existing models. One could of course simulate network 
protocols (and failures) using the full details of the sampled 
Internet topology instead of using models. but this limits one’s 
ability to develop. for example, network protocols that best 
fit future conditions. Though degree-based generators seem to 
represent the Internet’s topology better than structural ones, 
some degree-based topology generators seem to uy more to 
mimic generic properties than to provide explanatory power 
regarding the Internet’s growth mechanism. 

111. COMPARISON OF TWO INTERNET AS TOPOLOGIES 

Recently, [2]. [31 provided more extended Internet topolo- 
gies constructed using several sources, including Oregon 
RoriteViews. Looking Glass data, RIPE database, and other 
publicly available full BGP routing tables. Their extended 
topologies contain more nodes (2%) and links (20% - 50% 
more). Also, degree-frequency distributions of their extended 
topologies do not follow a strict power-law distribution while 
original topologies do. Chen et al. [31 reported that their 
extended topologies showed more ASes with degree between 
4 and 300, resulting in a curve line in the distribution, as can 
be seen in Figure l(a). 

Our first question is then “how different are the two 
topologies’?” Since both topologies offer only partial views 
of the whole Internet, we do not really know which is a truer 
reflection of the the real Internet topology.’ We compare the 
two topologies according to several metrics; according to some 
meuics the two topologies differ greatly. Our second question 
is “can we identify invariant metrics that are consistent be- 
tween the two Internet topologies?” If we can find them,-these 

‘ I f  is still possible that both available Internet AS maps are systemically 
biased due to limitation of traceroute-like methods [30]. 
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metric may prove more useful in validating new and existing 
Internet models. 

Characteristics of the Internet topology can be divided 
into two categories: sturic and dynamic characteristics [28]. 
For example, several common regularities (e.g.. power-law 
degree distributions), can be extracted from a snapshot of the 
Internet topology and those regularities can be defined as sruric 
characteristics because of their consistency over time. On the 
other hand, several growth patterns of the Internet can be 
derived by tracing the behaviors of the Internet topology over 
time. For example, the clustering coefficient of the Internet has 
been growing and the average diameter ofthe Internet has been 
decreasing over the past few years. We define these as dyuzmic 
characterislics of the Internet. Based on these definitions. 
we choose six basic metrics, three static (including two new 
metrics of our own) and three dynamic metrics (including one 
of our own), for our analysis. In the following section, we will 
briefly explain these metrics. 

A. Metria 

I )  Static rnerrics: Our first static metric is the cumulative 
degree-freqirencv distribution. It has been frequently observed 
that the Internet AS graph has a degree distribution consistent 
with a power law. Let V he the set of all nodes in the graph 
and V, the set of nodes of degree equal or less than k .  Then, 
F(k) = lVkl/lVl is ' the cumulative degree distribution. On 
plots of the degree distribution, the horizontal axis is the 
degree of nodes and the vertical axis plots 1 - F(k) .  

We define a second metric called the cumulative link-degree 
ratio distribution. Let lmi (lower degree node) and highi 
(higher degree node) be the two nodes connected by link i .  

denotes the degree of the lower degree node and kkig, 
denotes the degree of the higher degree node. Then the degree 
ratio U ,  of the link i can be calculated as k ; , , / k ~ i y h .  The 
cumulative distribution of U can be drawn similarly to the 
previous metric. 

Finally. we define a third metric called the cumulative 
average-node-degree rario distribution. Let v,' be the set of 
neighbor nodes of the node i. and let k& be the average 
degree of y. Then the average-nodedegree ratio 6; of node 
i is defined as ki /k&.  The cumulative distribution of 6 can 
be drawn as above. 

2 )  D?narnic metrics: We use three meuics for tracing the 
behavior of the Internet topology over time. 

We define skewness to measure how preferential the network 
is. Consider the degree-rank distribution of a network. Let, n, 
denote the number of nodes in the network and rj be the rank 
of node i according to its degree. The highest degree node 
has rank one and any two nodes cannot have the same rank. 
Skewness Sk is defined as that the sum over all nodes of the 
product of rank times degree: 

where Sku is the skewness of an idealized uniform network, 

where denotes the average (uniform) degree of the network. 
Note that SE;, is upper bound of C,(ri * ki) ,  so 1 2 Sli > 

0. Sk values close to 0 mean that the network is extremely 
preferential; Sk values close to 1 means that the network is 
extremely random or uniform. 

Average diaineler and clustering coef/icient [271, [31], [32] 
are widely used metrics for the analysis of networks. Average 
diameter or average shortest path length. z, is defined as 
follows. Let d( u ,  w) be the length of the shortest path between 
nodes U and 70, where d(u :  w) = 90 if there is no path between 
v and w. Let II denote the set of distinct node pairs (v, w) 
such that d ( v ,  70) # '30. 

where U # w .  
The clustering coefficient gives a measure of the probability 

of connection between node a's neighbors. Let K be the set of 
neighbor nodes of node i ,  and p; the number of links between 
nodes in V,. Then, the clustering coefficient Ct for node i is 
defined as follows: 

Then the clustering coefficient of the network is: 

(4) 

where V denotes the set of all nodes in the network, 

B. Comparing rhe Oregon and Extended Internet topologies 

I )  Sturic measurements: Among other findings. the creators 
of the Extended data set noticed that their measurements do not 
corroborate the strict power-law degree-frequency distribution 
that the Oregon data display. This is recreated in Figure l(a). 
We find that the separation between the two data sets is even 
larger when examined according to link-degree ratio. as seen 
in Figure l(b). However. according to average-node-degree 
ratio, plotted in Figure I(c), the two Internet topologies have 
nearly identical distributions. Average node-degree-ratio. then. 
might be considered one of the key measures along which 
to validate Internet topology generative models, since there 
is a clear standard+onstant across two distinct samples of 
the Internet-against which to compare. The above analyses 
were conducted using Oregon and Extended snapshots of the 
Internet, both from April 21, 2001.' 

'For all static measurements, we conduct the same analyses with several 
snapshots of two Internet topologies and do not find any significant differences 
among lesulw. 
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(a) Degree (b) Link-degree ratio (c) Average node degree ratio 

Fin. 1. Storic merricr for Oregon and Extended topologies on April ? I .  7001. (a) Degree-frequency disulbution: Ertended shows a looser fit to a power law. 
while Oregon follows a nearly ~ U i c t  power law. @) Link degree ratio: this metic dearly differentiates the two Internet topologies. (Q Average o d e  degee 
ratio: this measure appears invanant under both the Oregon and E n d e d  topologies. 

2 )  Dyarnic rneasurernents: To trace the behaviors of two 
Internet topologies, we downloaded nine snapshots of each 
AS topology from 1331, for weeks between March 31 and 
May 26 '2001. According to metric Sk, E.rtended is more 
preferential than Oregon. The skewness of Oregon is between 
0.37 and 0.38, while that of Extended is between 0.30 and 
0.32. Also, the extended topologies show smaller average 
diameters. but larger clustering coefficients than the original 
topologies. Figure 2 shows these results. 

One interesting observation is that the behaviors of the two 
Internet topologies over the nine week period are quite similar. 
even though their absolute metric magnitudes are differenL3 To 
confirm this observation. we trace several other properties of 
the two topologies, including the number of nodes and links, 
the average degree, node birth/death rates, and link birth/death 
rates, and observe that all of these measures display dynamic 
invariances-meaning that temporal trends strongly correlate 
between the two data sources, even if absolute values differ. 
Some of these results are shown in Figure 3.4. We argue that, 
like the static metric average-node-degree ratio, these invariant 
dynamic metrics should prove valuable for validating network 
models. 

Iv. EXISTING INTERNET TOPOLOGY GENERATORS AND 
OUR MODELS 

In this section, we describe seven existing generative Inter- 
net topology models. and two new models of our own. We 
categorize the models according to whether they are static 
models, meaning that they build the full network en masse 
without an explicit model of growth over time, or dynamic 
growfti models, meaning that they incorporate an explicit 
procedure for the network's growth over time. In growth mod- 
els, node connectivities are in general time-dependent-older 

'Differences hetween absolute muic values may be caused by differences 
in the dah collection methodologies employed for Oregon RoureOfews [ I 1  and 
the Tbpdogy Project 1331. 

?Due to space limilztioos. we do not present all resultr. 

nodes tend to have higher probabilities of gaining edges- 
whereas there is no explicit notion of time in static models. 

For growth models, there is a further distinction regarding 
the way in which links are added to (or removed from) the 
graph. Links can be added born a newly created node lo the 
existing network; we call these external link additions. Or links 
can be added between already existing nodes in the network 
we call these internal link additions. 

Table I summarizes the characteristics of all nine models 
employed in our experiments. For all network models, we 
prohibit sclf links. Also, we prohibit network models from 
generating duplicate links. rather than merging duplicate links 
at the end; we choose to prohibit duplicates because merging 
would reduce the number of links significantly. When a 
network model does not generate a fully connected graph, 
we only consider the largest connected component. (This 
process also potentially reduces the number of nodes and links 
significantly; however this method of canonicalization seems 
as appropriate as any). In this section we briefly explain each 
network model. 

A. Static e.xponentia1 (random) model 
?his model generates a random graph in the classic Erdos- 

Renyi sense. All nodes are added initially, then links are added 
one by one between pairs of (uniformly) randomly selected 
nodes. For every edge endpoint added the probability that the 
edge endpoint attaches to a given node is 

where V is the set of all nodes. Random graphs often partition 
into several disconnected subgraphs; as mentioned we keep 
only the largest connected component. The model generates 
most nodes with roughly the same degree. 

B. Growing e.rponentia1 (FE) model 
GE is a dynamic or growth-model version of the random 

graph model. At each time step, one node and rn links are 
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(a) Skewness @) Average diameter (c) Clustering coefficient 

Fig. 2. 
threi different metncs. 

Skewness. average diameter, and clustering cazfficient: Our rssult clearly shows that the behaviors of two topulogies are quite similar according to 

I +  
i .+ '1 - .+ + + + - ''. 

W S l U l r m  Marn $3  ,"*U" 26mm3 w e  IromUard'lllaMayil6mZml 

(c) Rohability of dead nodes with degree 
k. Oregon k Extended 

(d) Rohbility of dead nodes with d e p e  

Fig. 3. Node birih vs node d e a h  (a) and (b): About 75% of new nodes has d e p e  one and 25% of nodes are added with degree two io the Oregon 
topologiss. In the Extended topologies. About 70% of new nodes has degree one and 30% of new nodes has degree two. In both cases. probability of new 
nodes with degree mora than two is negligible. (c) and (d): Io both cases. more than 96% of dead nodes has degree lcss lhan Lhree. In both topologies, numtw 
of nodes with degree one is lsss than number of degee two nodes. All measures aye consistent oxer time. 
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TABLE I 
COMPARING NINE GENERATIVE INTERNET TOPOLOGY MODELS 

I Static/Growth 1 NehvorkPartition 1 Operations J 

added. The m links are connected external@, meaning that 
they all connect from the new node to one of the existing 
nodes. The identity of the existing node is chosen uniformly 
at random from among all nodes added to the graph in the 
past. The probability that a given edge endpoint attaches to a 
particular existing node is 

(7) 

where V ( t )  is the number of nodes in the graph at time t .  
Note that, although nodes are chosen uniformly at any given 
time step. as the network grows, older nodes tend to gain more 
links simply because they have more chances to. 

C. Barab6si-Alberi (BA) model 
The BA model [22] resembles GE except that destination 

nodes are chosen according to a linear preferential attachment 
function, rather than uniformly at random. Again, at each time 
step, one new node and m new links are added. Links are 
added externally from the new node to an existing node. The 
probability that existing node i is chosen is proportional to its 
degree: 

(8) 

where -a < p < 1. This model has two link addition 
operations: 

1) with probability p, m links are added internally-links 
are added between two existing nodes. For each end- 
point, a node is chosen with probability (9). 

2 )  With probability 1 - p ,  one new node and m new links 
are added externally from the new node to an existing 
node chosen according to (9). 

In the simulation, we set parameters as P = 0.i124, m = 1.13, 
and p = 0.4294, which are the same as those in the [26]. The 
fractional m. value of 1.13 means that 1 3 8  of new nodes are 
added with two links while 57% are added with one link, 
yielding an expected number of linksledge of 1.13. 

E. Albert-Barabdsi (AB) model 
The AB model [?5] is the authors’ own extension of their 

BA model. In this model, three operations are used as the 
network grows: 

I )  With probability p.  m links are added internally. One 
edge endpoint is selected uniformly at random while the 
other endpoint is selected according to 

where k i ( t )  denotes the degree of node i at time t .  The BA 
model is remarkable in its simplicity, and it seems to capture 
the minimal assumptions required to generate graphs with 
power-law degree distributions. However. in its basic form, 
it is not flexible enough to fit different power law exponents. 
The BA model, often cited as a more generic model (e.g.. for 
the World Wide Web, the power grid, the co-star graph of 
Hollywood actors. etc.)? touched off a wave of extensions and 
analysis among computer scientists and physicists. 

D. Generalized linear performance (GLP) model 
GLP [26] is one of the proposed extensions of BA. In this 

model, the probability of attachment is modified to better fit 
Internet-like graphs: 

which is like (8) but with a “Laplacian smoothing”-like 
term. 

2) With probability q, rn links are rewired. Node i is 
randomly selected and one of the links l i , j  connecting i 
with j is randomly selected. Link li ,j  is replaced with a 
new link l i , k ,  where k is chosen according to (IO). 

3) With probability 1 - p - q, one new node and m links 
are added externally from the new node to an existing 
node chosen according to ( I O ) .  

The rewiring operation often causes the graph to become 
partitioned; we keep only the main connected component. In 
the experiments, we use parameters m = 1, p = 0.45, and 

E “Pretly good” (PC) model 
The PG model [34] is another extension of the BA model. 

This model adds a parameterized component of uniform 
attachment to the BA model’s strictly preferential attachment 

y = 0.1. 
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policy. Specifically edge endpoints are chosen according to a 
mixture a of preferential attachment and 1 - oi of uniform 
attachment: 

This additional degree of freedom is enough to allow flexibility 
in fitting differing power-law exponents, and to fit typical 
divergences from the strict power law often observed in the 
low-degree region of a variety of naturally-occurring graphs, 
including communities on the World Wide Web. The PG 
model employs only infernal link additions. That is. all edge 
endpoints are chosen according to ( I I ) ,  and new nodes are not 
explicitly differentiated. 

Note that in the limit as a + 0, PG corresponds to 
GE. while as a + 1. PG corresponds to BA (modulo the 
internallexternal distinction). 

The main problem in adapting this model to our problem is 
that, because it employs only internal link additions, it gener- 
ates too many disconnected nodes. For example, when a = 0.7 
and m = 2, around 50% of nodes are disconnected. Because 
we choose to keep only the largest connected component 
the average degree within this component is artificially high. 
Alternative 'canonicalization policies might have yielded more 
comparable results for this model. 

G. Inet 3.0 - 

Inet-3.0 is the latest version of a complex yet very accurate 
model [23], [35]. The user provides the desired number of 
nodes N and the fraction k of nodes with degree one. The 
model proceeds in five steps. First, the model calculates the 
number of months ( t )  it would take the Internet to grow from 
its initial size in Nov. 1997 to size N according to: 

N = ezp(0.0298 * t + 7.9842). (12) 

Second, the model defines VI, V t o p ~ ,  and V', respectively, 
as the set of all degree-one nodes, the set of the three highest- 
degree nodes, and the set of all nodes except nodes in VI and 
Iltop3. The model calculates the cumulative degree distribution 
(defined above in Section III-A.l) for all nodes in V' in order 
to match a power law: 

1 - F ( d )  = e c  * d"'+b. (13) 

The degrees of particular nodes in V' are then assigned in 
order to agree with (13). The degrees of nodes in V,,,, are 
assigned according to: 

d = e P t + q  * ? E .  (14) 

The parameters a. b, e. p .  q. and R are known constants 
estimated from Oregon data. and t is the number of months 
since Nov. 1997. 

Ihird. the model builds a spanning tree among all nodes 
in V& and V'. The spanning tree construction proceeds one 
node at a time, although any interpretation in terms of the 
network's natural evolution seems unwarranted, since the final 
degree values have already been pre-assigned in step two. In 

each step a node is selected randomly. One of the node's pre- 
assigned edges connecu to the existing graph according to: 

where 

This procedure continues until all nodes in Vtop3 and V' are 
added to the graph. Note that P(ij)  depends not only the degree 
of destination node j but also the degree of departure node i .  If 
the degrees of two nodes are very different, the probability for 
two nodes to be connected is higher than the linear preference 
assumption. Otherwise, it roughly follows the linear preference 
assumption. . 

Fourth, the model connects all degree-one nodes (VI) to 
the graph according to (15). Fifth, the model connects the 
remaining free edge endpoints (edges that have been assigned 
one endpoint in step two, but have not yet been assigned a 
particular second endpoint), staning from the highest degree 
nodes. according to (15). 

We consider Inet to be a static model. since the probabilities 
of connections are time-independent; each node's degree is 
assigned in a batch process in step two. One interesting 
characteristic of this model is that number of links is nor an 
input parameter; this value is computed to match the proper 
degree distribution using (in part) parameter t. This model is 
extremely accurate in generating random topologies similar in 
many respects to the Oregon data; in fact it fits this data much 
better than every other model we tested. However, the model 
seems particularly well-tuned to Oregon, and its flexibility in 
adapting to other data sets appears limited; for example. the 
model does not fit the Extended data as well. Since the model 
is effectively static-it generates graphs with the explicit 
intention of matching particular aggregate characteristics like 
the degree distribution (13)-it is limited in its ability to 
provide any bottom-up explanation of why those particular 
aggregate characteristics arise. For our experiments, we did not 
re-implement Inet; we used the code made publicly available 
by the model's authors [33]. 

H. Our models 
In this section, we describe our own generative network 

models. Our models are very simple and provide one possible 
explanation for the degree distribution displayed in the Oregon 
data set, and why other growth models disagree. Two assump- 
tions help motivate our models: (1) For each link between 
two nodes-that is_ between two ASS-we consider that the 
higherdegree node is a service provider and the lower-degree 
node is a customer; and (2) customers decide which providers 
they would like to connect to. Our models posit reasonable 
policies for customers to choose providers. Note that. by l i d  
we mean a logical link. or an entry in a BGP routing table, to 
be consistent with the two AS-level data sources that we are 
benchmarking against. 
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1 )  Firsf model; O w  first model can be thought of as yet 
another extended BA model, with a new attachment probability 
equation. Let node i be the customer node, which tries to 
generate a new link and kt the degree of node i. Also, let 
V(ki  + y) be the set of nodes with degree higher than k, + y. 
Then, consumer i chooses provider j according to: 

0 othenvise 
(17) 

In other words. a customer node always selects a provider 
node that has degee  higher than k$ t ~ ;  among this group the 
customer still prefers higher-degree nodes according to the 
linear preference function. This assumption seems reasonable: 
customers prefer to link up to providers whose connectivity is 
strictly greater than their own. The assumption is supported by 
our observations that most links on the Internet are hierarchical 
(endpoints have greatly varying degrees) rather than peer-to- 
peer (endpoints have similar degrees). 

Our model has two operations: node birth and link birth. 
With probability p ,  a new internal link is added between 
existing nodes. The customer node is randomly selected and 
connected to a provider according to (17). With probability 
1 -p .  one new node and m external links are added. The new 
node is considered a customer and the m links are connected 
to providers using (17). For the experiments. we set n = 1.25, 
meaning that 25% of new nodes are added with two links and 
75% are added with one link [28], p = 0.45, and y = 1. 

2 )  Second model: Since the average degree of the Internet 
changes continuously over time, Our second model adapts the 
probability p (the internal link addition probability) dynam- 
ically. We compute P ( N ) ,  the average ratio of internal link 
additions compared to all link additions, from the Oregon data 
using 

In = L - N s r n  

P ( N )  = I n / ( N  + In) ,  (18) 

where N is the number of nodes, L is the number of links, 
and In is the number of internal links added after November 
1997. Then the probability p can be computed as follows: 

= p ( ~ )  - (3 I N) + 
3.6 10-5, (19) 

where p(0) = 0.3, determined empirically. So, the number of 
internal link additions versus external addition more closely 
reflects the trends seen on the Internet. This change to the 
model causes the average degree of nodes to increase over 
time, as the number of internal link additions grows. Figure 
4 shows that the resulting trend in average degree growth for 
our model matches the trend found in the Oregon data quite 
closely. 

Note that 7 determines how preferential a generated network 
is. In BA and its other extensions, y = -cn, meaning that all 

existing nodes have a certain probability to be chosen as a 
provider. However, in our models, customers choose providers 
only among candidate nodes which have higher degree than 
their own. We find that o w  models generate very similar 
Internet-topology-like graphs when y = 1. All experiments 
show results for y = 1. 

V. MODEL COMPARISON 

In this section, we compare nine Internet models according 
to the three static and three dynamic metrics defined in 
Section 111-A. 

A. Static metric performance 
We first compare the cumulative degee-frequency distri- 

bution for the nine models. Figure 5(a) shows a few of the 
models that do not perform particularly well according to this 
metric. Figure 5(b) shows that AB, GLP, Inet, and our two 
model do  match the Internet (Oregon) data relatively well; with 
our models and Inet performing best. Note, however, that all 
models fit Extended considerably less well. Link-degree ratio 
clearly differentiates the models. Figures 5(c) and i(d) split 
the models according to the same partition used in separating 
Figures 5(a) and 5(b). lnef matches Oregon the best. and our 
two model match Oregon very closely as well; GLP matches 
Extended best. According to average node-degree-ratio, we 
find that our models, along with AB, Inef and GLP, show 
relatively good performance. Again, Figures 5(e) and 5(0 
categorize models by their ability to fit the Oregon degree 
distribution. 

Our models seem to exhibit excellent performance accord- 
ing to the static metrics. Our models show better agreement 
to the Internet than any other growth models across all three 
metrics. Only Inet show slightly better performance than our 
models. In general, we do not find any noticeable differences 
between the first and second model and conclude that the 
average degree increment over time does not affect the static 
metric performance of o w  model. 

B. Dynamic metric performance 
Next, we trace the behaviors of the models while the number 

of nodes in the networks increases. For the experiments, the 
Internet AS topologies from Oregon over a four year period 
ti’om November 1997 to February 2002 were used. In each 
month, random graphs generated by network models include 
the same number of nodes with the Internet AS topologies. In 
Figure 6(a), only three network models (GLP, PG. and Inet) 
show continuous skewness decrement. With average diameter. 
only AB, GLP, and Iner shows decrement of the average 
diameter. With clustering coefficient, only Iner shows the 
continuous increment. Except Inet, all network models fail to 
follow the dynamic characteristics of the Internet: significant 
decrement of skewness and average diameter and significant 
increment of clustering coefficient. 

With dynamic metrics. our models show small-world effects 
[311; that is, their average diameters are very small but their 
clustering coefficients are much larger than those of classical 
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(a) Cumulative internal-link probability (b) Average degree 

Fig. 4. Average degree growth of OUT semnd model compared to the Internet (Oregon) 

random graphs. Note that absolute metric values of our model 
are very similar to those of the Internet, However, our models 
still do not match the clear relative trends in the data. and this 
cannot explain our observed dynamic characteristics of the In- 
ternet. When p is generated dynamically in our second model, 
the resulting networks display higher clustering coefficients 
but lower average diameters. However, its dynamic behavior 
is quite similar to our first model and dynamic p does not affect 
these trends. We can only conclude that the Internet's average 
degree change over time is not the main factor for determining 
network structure according to the metrics we examined. 

According to our analysis. Inet is the best Internet topology 
generator in terms of matching the data. especially the Oregon 
data. However, fnel has several weaknesses. First. as it is 
effectively a static model rather than a growth model, it is 
limited in its ability to explain how the Internet grows. The 
model's complex heuristics designed to mimic Oregon data 
may in effect be overfitting or over-tuning to that particular 
data source, making the model considerably less flexible in 
matching other data sources or in generalizing toward the 
future evolution of the Internet, even if that future topology 
is a relatively slight variant of what is seen today. Among 
growth models- our two new models appear to perform best, 
with GLP the best among the seven existing models tested. 

VI. LIMITATION AND FUTURE WORK 

One major limitation of our models is that. like other growth 
models, they do not consider nodellink deaths, for reasons 
of simplicity. However. Figure 7 shows that death events 
are another important factor that can greatly affect Internet 
topologies. 

One may argue that it is somewhat strange that our second 
model shows poor metric performance with average node- 
degree ratio even though it resembles real Internet topologies 
more. However. the current slow expansion of the Internet 
is due to the rapid increment of death events coupled with 
a slower increment of birth events. So. the actual internal- 
link probability p should be larger than our model [?SI. These 
differences may affect the Internet's topology and be a source 
for the poor performance of our second model according to 

dynamic metrics. 
We also built a third model to explain Internet's dynamic 

characteristics. This model increases y continuously according 
to the number of nodes to make a network more preferential 
while it grows. This model shows good dynamic metric 
performance. but does not work well with static metrics. We 
believe that death events in the Internet affect the growth 
pattern of the Internet significantly. and we need a closer 
analysis of death events to explain the dynamic characteristics 
of the Internet. 

VII. CONCLUSION 

Recent studies have reported differing aggregate character- 
istics of the Internet's topology depending on the methodology 
used for sampling the Internet's true underlying structure. We 
examine two different data sets using six meuics (three of our 
own), showing that one static metric does a particularly good 
job at differentiating the data sets, one static metric appears 
invariant across the data sets, and all dynamic metrics exhibit a 
degree of invariance. We then compare nine generative models 
(two of OUI own). Among growth models, ours perform hest, 
but all growth models (including our own) fail to capture the 
observed dynamic behavior of the Internet, A particular static 
model called fnef does match the data well. but also is lacking 
in terms of an explanation for the Internet's growth pattern. 
We eagerly await any breakthroughs-perhaps incorporating a 
model of nodellink deaths-that might yield plausible expla- 
nations for this striking behavior. 
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