Computational capabilities of
recurrent NARX neural networks'

Hava T. Siegelmann
Department of Information Systems Engineering
Faculty of Industrial Engineering and Management
Technion (Israel Institute of Technology)
Haifa 32000, Israel

Email: iehava@ie.technion.ac.il

Bill G. Horne and C. Lee Giles*
NEC Research Institute
4 Independence Way
Princeton, NJ 08540

Email: {horne,giles}@research.nj.nec.com

* Also with
UMIACS
University of Maryland
College Park, MD 20742

Abstract

Recently, fully connected recurrent neural networks have been proven to be computationally
rich — at least as powerful as Turing machines. This work focuses on another network which
is popular in control applications and has been found to be very effective at learning a variety
of problems. These networks are based upon Nonlinear AutoRegressive models with eXogenous
Inputs (NARX models), and are therefore called NARX networks. As opposed to other recurrent
networks, NARX networks have a limited feedback which comes only from the output neuron
rather than from hidden states. They are formalized by

y(t) =0 (u(t = na),. . ult = 1), u(t), gt =), y(t- 1)),

where u(t) and y(t) represent input and output of the network at time ¢, n, and ny are the input
and output order, and the function V¥ is the mapping performed by a Multilayer Perceptron. We
constructively prove that the NARX networks with a finite number of parameters are computa-
tionally as strong as fully connected recurrent networks and thus Turing machines. We conclude
that in theory one can use the NARX models, rather than conventional recurrent networks without
any computational loss even though their feedback is limited. Furthermore, these results raise the
issue of what amount of feedback or recurrence is necessary for any network to be Turing equivalent
and what restrictions on feedback limit computational power.

tPublished in IEEE Transactions on Systems, Man and Cybernetics—Part B: Cybernetics, 27(2), p. 208, 1997.

I. INTRODUCTION

The computational capabilities of recurrent neural networks have been studied for at least fifty years.
Some of the earliest work in this area by McCulloch and Pitts showed that networks of neuron—like
elements are capable of implementing some types of finite state machines (FSMs) [1]. Later Minsky
showed that any FSM could be mapped into such a network [2]. More recently, new results have
been developed to improve the efficiency of this mapping [3, 4, 5]. All of these results assume
that the nonlinearity used in the network is a hard-limiting threshold function. However, when
recurrent networks are used adaptively, continuous—valued, differentiable nonlinearities are almost
always used. Thus, an interesting question is how the computational complexity changes for these
types of functions. It has been recently shown that such networks are at least as powerful as Turing
machines, and in some cases can have super—Turing capabilities [6, 7, 8, 9]. The proof utilizes a
construction that shows how fully connected networks can simulate pushdown automata with two
stacks, which are computationally equivalent to Turing machines. The stacks are encoded in two of
the nodes of the network with the remaining nodes used to simulate the finite state control. There
is an initial period during which the network reads the input, then the network performs the desired
computation, and finally the output of the network is decoded.

An important class of discrete-time nonlinear systems is the Nonlinear AutoRegressive with

eXogenous inputs (NARX) model [10]:

y(®) = F (ult = nu), - ult = 1), u(®), gt —ny), oyt = 1)), (1)

where u(t) and y(t) represent input and output of the network at time ¢, n, and n, are the input and
output order, and the function f is a nonlinear function. When the function f can be approximated
by a Multilayer Perceptron, the resulting system is called a NARX network [11, 12]. It has been
demonstrated that this particular model is well suited for modeling nonlinear systems such as heat
exchangers [11], waste water treatment plants [13, 14], catalytic reforming systems in a petroleum
refinery [14], nonlinear oscillations associated with mutli-legged locomotion in biological systems [15],
and various artificial nonlinear systems [11, 12, 16]. Furthermore, in a previously published paper we
benchmarked NARX networks against nine other recurrent neural network architectures on problems
including grammatical inference and nonlinear system identification [17, 18]. We found that NARX
networks typically converge much faster and generalize better than these other networks. We have

also shown that NARX networks perform better on problems involving long—term dependencies [19,

Fig. 1: A fully connected recurrent neural network.

20].

Based on the mapping theorems of [21, 22], NARX networks should be capable of representing
arbitrary systems expressible in the form of equation (1). However, using such an approach there is
no bound to the number of nodes required to achieve a good approximation. Furthermore, it is not
clear how such systems relate to conventional models of computation. In this paper we theoretically
explore the computational capabilities of this network compared to those of the fully connected
networks. We prove that NARX networks are computationally at least as strong as fully connected
networks within a linear slowdown. This implies that NARX networks with a finite number of nodes
and taps are at least as powerful as Turing machines, and thus are universal computation devices.
This result is somewhat unexpected given the limited nature of feedback in these networks.

We also provide some related results concerning NARX networks with non-linear output func-
tions. In particular, when hard-limiting nonlinearities are used, we show that NARX networks
are only capable of implementing a subclass of finite state machines (FSMs) called finite memory
machines (FMMs). However, we show that FSMs can be simulated by FMMs within a sublinear

slowdown.

II. RECURRENT NEURAL NETWORK MODELS

We consider two recurrent neural network models: fully—connected networks and NARX networks.
We shall restrict our attention to single-input, single-output systems, which are sufficient for es-
tablishing the computational capabilities of the network. Our results might be of some interest for

other types of problems, and can easily be extended to the multi—variable case, by simply replacing

scalars by vectors where appropriate and creating multiple tapped delay lines from the outputs of
the network. Each tapped delay line would be constructed following the method used for a single
output.

We shall adopt the notation that z corresponds to a state variable, u to an input variable, y
to an output variable, and z to a node activation value. In each of these networks we shall let N
correspond to the dimension of the state space. When necessary to distinguish between variables of
the two networks, those associated with the NARX network will be marked with a tilde, e.g. 2;(2)
and &;(t) will refer the the ith state variable in the fully connected and NARX networks respectively.

The state variables of a recurrent network are defined to be the memory elements, i.e. the set of
time delay operators. In a fully connected network there is a one—to—one correspondence between
node activations and state variables of the network, since each node value is stored at every time

step. Specifically, the value of the N state variables at the next time step are given by
.Z‘Z'(t + 1) = Zl(t) .

Each node weights and sums the external inputs to the network and the states of the network.

Specifically, the activation function for each node is defined by

N
z(t) =0 | > aijz;(t)+but) +¢ | | (2)
ji=1
where a;;, b;, and ¢; are fixed real valued weights, and o is a nonlinear function which will be

discussed below. The output is assigned arbitrarily to be the value of the first node in the network,

y(t) = z1(1) -

The network is said to be fully connected because there is a weight between every pair of nodes.
However, when weight a; ; = 0 there is effectively no connection between nodes ¢ and j. Thus,
a fully connected network is very general, and can be used to represent many different kinds of
architectures, including those in which only a subset of the possible connections between nodes
are used. Alternatively, one can think of fully connected networks as a single layer of nodes with
complete feedback, as shown in Figure 1.

A NARX network consists of a Multilayer Perceptron (MLP) which takes as input a window of

past input and output values and computes the current output. Specifically, the operation of the

network is defined by

90 =W (@t —n), @t — 1,40, 5t —ny), . 5= 1)) | (3)

where the function ¥ is the mapping performed by the MLP, as shown in Figure 2.
The states of the NARX network correspond to a set of two tapped—delay lines. One consists of
n, taps on the input values, and the other consists of n, taps on the output values. Specifically, the

states are updated as

Lit+1) = g(t) i=ny+ny

Zip1(t) 1 <i<ngandn, <i<ng+ny
so that at time ¢ the taps correspond to the values
z(t) = at —ny) ... at —1) gt —mny) ... gt —1)

The MLP consists of a set of nodes organized into two layers'. There are H nodes in the first layer

which perform the function

The output layer consists of a single linear node,
A
) =D wi () +0; .
j=1

A detailed picture of a NARX network with n, = n, = 2 and H = 3 is shown in Figure 2.

Definition 1 A function o is said to be a bounded, one-side saturated (BOSS) function if it satisfies

the following conditions:
i. o has a bounded range, i.e., L < o(x) < U, L #U for all € R.

ii. o is left-side saturated?, i.e. there exists a finite value s, such that o(z) = S for all 2 < s.

1More layers could be used, but are not necessary for our purposes.
2Equivalently, the function can be defined to be saturated to the right, i.e. o(z) = S for all z > s, and we would

Fig. 2: A NARX network with n, = n, = 2 and H=3.

iii. o is non—constant (i.e. there exist at least two values 2y and x5 such that o(z1) # o(z2)).
O

BOSS functions include many sigmoid-like functions; for example, hard-limiting threshold functions,

0 2<0
o(x) = (4)
1 2>0.
and the saturated linear function
0 =z<0
o(z) =1z 0<z<1 (5)
1 z2>1

are both BOSS functions.

Although the sigmoid function, o(z) = [1 + exp(—=z)]”", is not considered to be a BOSS function

because it does not saturate, it can be slightly modified to be so. Specifically, a “one side saturated

obtain the same results.

. -
sigmoid”,

is a BOSS function, where ¢ € R.

III. MAIN RESULT

In this section we prove that NARX networks with BOSS functions are capable of simulating fully
connected networks with only a linear slowdown. Because of the universality of some types of fully
connected networks with a finite number of nodes, we conclude that the associated NARX networks

are Turing universal as well.

Theorem 1 NARX networks with one hidden layer of nodes with BOSS activation functions and a
linear output node can simulate fully connected recurrent networks with BOSS activation functions

with a linear slowdown. O

Proof: To prove the theorem we show how to construct a NARX network A that simulates a
fully connected network F with N nodes, each of which uses a BOSS activation function o. The
NARX network requires N + 1 hidden layer nodes, a linear output node, an output shift register
of order ny, = 2N, and no taps on the input. Without loss of generality we assume that the left
saturation value of ¢ is S = 0. This assumption makes the proof somewhat simpler, but can be
easily generalized.

The simulation suffers a linear slowdown; specifically, if F computes in time 7', then the total
computation time taken by A is (N + 1)7. In particular, time ¢ is simulated during time steps
k=(N+1t+ii=1,..., N+ 1 Because of the linear slowdown, the input to A" must be kept

constant for each simulation period, i.e.

QN+ t+i) =ut) i=1,... N+1.

For each 1 < i < N, A will simulate the value of exactly one of the nodes in F. The additional time

step will be used to encode a sequencing signal indicating which node should be simulated next.

Specifically,

() 1<i=j<N
GN+DE+I) = o(a) i=j=N+1 (6)

0 otherwise

for 1 < i < N+ 1, where o(a) is related to the sequencing signal and will be discussed at length
below.

The output taps of N will be used to store the simulated states of F; no taps on the input are
required, i.e. n, = 0. At any given time the tapped delay line must contain the complete set of
values corresponding to all N nodes of F at the previous simulated time step. To accomplish this,
a tapped delay line of length n, = 2N is sufficient. Specifically, at time (N + 1)t + ¢, the tapped

delay line contains the values (i=1,... ,N+1, j=1,...,2N):

I i1+j=N
LN+t +i) =9z nvt—1) N<i+j<2N+1 (7)
I 1+ =2N+1

ZZ'+]'_2N_1(t) 2N+1<i—|—j

where g (the sequencing signal) is outside the range [L, U] (see Definition 1i); this constant will be
discussed shortly. With this representation the taps will always contain all of the values of F at
time ¢ — 1 immediately preceding the sequencing signal, p, to indicate where these variables are in
the tap. The contents of the taps at various times are illustrated in Figure 3.

We next show how to chose the dynamics of the hidden neurons. The sequencing signal is chosen
in such a way that we can define a simple function f, that is used to either “turn off” neurons or to
yield a constant value, according to the values in the taps. Let = U + ¢ for some positive constant

€. We define the affine function,

@)=z —n. (8)

Then, f,(u) = 0 and fu(z) < —e for all z € [L,U]. According to equations (6) and (7), node

Zi((N + 1)t 4+ j) may take on a non—zero value only when ¢ = j, or equivalently when Zan_;41 = 1;

region of interes

Xl e XN XN+1 XN+2 et X2N
X, (t-1) | X(t-1) H | X, (1) | X (t)
(N _____________Y ______ > STt TTT T
region of interes
)~(1 et)~(Nf1)~(N XNHL e)~(2N

w1y | [xen [w [xo [[xo]

Fig. 3: The contents of the output tapped delay line of the NARX network at times (N + 1)t 4+ 1
when #1(t) is to be simulated next (top), (N + 1)t + N when zy(?) is to be simulated next (middle),
and (N + 1)t + (N + 1) when the sequencing signal p is to be generated next (bottom). After each
time step, the contents of the taps move to the left, and the value of the output is stored in the right
most tap.

in this case, the values of z;(t — 1) are stored in the taps #yym—i;, m = 1,...,N. Thus, using

equations (2) and (8), the ith node in the hidden layer of A/ is updated as follows.

N
G+ D) =0 | | D aimEngmoi(k)+ biu(k) +ci| + i |Fan_ipa(k) —p| |, (9)

m=1

where the constant §; is large enough to make the input to ¢ less than s when Zan_;41(k) # u so
that the whole function is zero®.

There exists at least one fixed value « such that o(a) # 0. The value Zy41 (k) will toggle between
0 and o(«). Specifically, Zy41(k) should equal o(«) only when &y = p, otherwise it should equal

zero. Thus using equation (8), its update equation can be written

(k)= o (Bwar [En(k) = 4] +a) | (10)

where once again, Sy41 is large enough to make the entire function zero when &y (k) # p.

3We assume the value of the input is bounded.

So far the construction ensures that equation (6) will hold. Next, the output node of A is then

simply the linear combination

0k = ~Fnpa (k) + D E(k) (11)

so that the output of the network is equal to the value of the currently active hidden layer node,
which in turn ensures that the feedback will be consistent with equation (7).
Finally, we consider the initial conditions of the network. The taps should be initially configured

as follows,

where * stands for any value in the range [L, U]. At the next time step the network will be ready to

simulate zq(1). [|

It has been shown that fully connected networks with a fixed, finite number of saturated linear
activation functions are universal computation devices [7, 8]. As a result it is possible to simulate a
Turing machine with the NARX network such that the slowdown is constant regardless of problem

size. Thus, we conclude that

Corollary 1 NARX networks with one hidden layer of nodes with saturated linear activation func-

tions and linear output nodes are Turing equivalent. O

IV. RELATED RESULTS

In this section, we look at variants of the NARX networks, in which the output functions are not

linear combiners but rather some kind of nonlinear activation function.

A. Hard-limiters

If the nonlinearity is a hard-limiting function (see equation (4)) and the inputs are binary, then
recurrent neural networks are only capable of implementing Finite State Machines (FSMs), and

NARX networks are only capable of implementing a subset of FSMs called finite memory machines

(FMMs) [23, 24], which are defined to be an FSM whose input/output relationship can be described

by the equation

y(t) = 6 (ult = na), . ult = 1) u(t),y(t = ny), ...yt = 1)) |

where u(t) and y(t) assume boolean values, and ¢ is a combinational logic function. Clearly this
equation has the same form as equation (3), so when a hard-limiter is used for the nonlinearity of the
output node, the function ¥ is a logic function, and it is clear that NARX networks are equivalent
to FMMs.

Not all FSMs are FMMs. FMMs have the property that the state of the machine can always be
determined from a finite number of observations of the inputs and outputs of the system when the
initial state is unknown. In other words, the states of an FMM are observable. For example, the
Dual Parity FSM, shown in Figure 4, is not finite memory since one can observe an infinite sequence
of ones at the input and an infinite sequence of zeros at the output without being able to determine
whether the FSM is in state ¢2 or ¢s. In contrast, the FSM shown in Figure 5, is an FMM since for
any input sequence of length two, the state of the FSMs can always be determined from knowledge
of the past two inputs and the last output as illustrated in Table 1.

Intuitively, the reason why FMMs are constrained is that there is a limited amount of information
that can be represented by feeding back the outputs alone. If more information could be inserted into
the feedback loop, then it should be possible to simulate arbitrary FSMs in structures like NARX
networks. In fact, we next show that this is the case. We will prove that NARX networks with
hard-limiting nonlinearities are capable of simulating fully connected networks with a slowdown
proportional to the number of nodes. As a result, the NARX network will be able to simulate
arbitrary FSMs. To do this, the network uses the extra time steps associated with the slowdown
to insert information about the state of the FSM. We provide an upper bound for the amount of

slowdown, which is a function of the number of states of the FSM.

Theorem 2 NARX networks with hard-limiting activation functions and one hidden layer of nodes
can simulate fully connected networks with hard-limiting activation functions with a linear slow-

down. O

Proof: By a construction similar Theorem 1, we show that a NARX network A, consisting of
a shift-register of length 4N 4+ 1, N + 1 BOSS hidden neurons, and a hard-limiter activation at

the output level, can simulate a fully connected network F with N nodes, each of which uses a

10

1/0
()
- 1/1

00| |01 0/0 | | 00

- v
O; (»)
10

Fig. 4: The Dual Parity FSM.

71

0/0,2/0

o1 Mo W e U™

Fig. 5: A finite memory machine.

state
q3
q3
q3
q3
q2
q0
q1
q0

<
—_
o+
—
~—
=
—_
o+
—
~—

5=
— — 0O~ K~ o o|s
N
>

=== = OO OO
—_ O = O O =O

Table 1: The state of the machine as a function of the previous two inputs and previous output.

11

hard-limiting activation function o.

The simulation suffers a linear slowdown. Except here, if F computes in time 7', then the total
computation time taken by A is (2N + 3)T". The extra computations are used to implement a null
signal (chosen to be zero) between the simulation of each node, and the “end of sequence” signal
(chosen as two consecutive 1s). By interleaving the simulation of the node values with zeros, the
only way two consecutive ones can appear within the tap is if they correspond to the end of sequence
signal.

The network will require a tapped delay line of length n, = 4N + 1 on the output, but still
no taps on the input. Figure 6 illustrates the tap contents at various times. The indexing scheme
is similar to the one given in equation (7), but because of the interleaved zeros, it is excessively
cumbersome, and so we omit it for the sake of brevity. With this representation the taps will always
contain all of the values of F at time ¢ — 1 preceding the sequencing signals, to indicate where these
variables are in the tap.

We pursue a similar approach to define the dynamic equations of the neurons: we define a simple
function f that “turns off” nodes or produces a constant value, depending on the contents of the

taps. Specifically, define the affine function,

fler,z0) =21+ 22— 2. (12)

Then, f(1,1) = 0 and f(z,0) and f(0,z) are both less than or equal to —1 for all z € {0, 1}.
The network will still have N + 1 hidden nodes, corresponding to the nodes of F. Each node will

correspond to the values

ut) i=2j-1, 1<j<N

N +3)t+7)=1 o(a) i=N+1, 2N+1<j<2N+2 (13)

0 otherwise
The 2th node has a non-zero value when Zany_2:41 = Tan—_2:4+2 = 1, and values of z1,...,zy
correspond to tap values Fy(n4pm—i)—1, m = 1,...,N. So, using equations (2) and (12), the ith

node in the hidden layer of A" is updated as follows.

N
Zik+1)=0¢ Z @i mEaN4m—i)—1(k) + biu(k) +c; | + Bi |Zan—2ip1(k) + Tan_2ig2(k) = 2| |,

m=1
where the constant #; is large enough to make the whole function 0 if Z4n_2;41(k) and Zan_2;42(k)

12

are not equal to one.

The node that implements the sequencing signal becomes activated either when Zan_2(k) =
Zan-1(k) = 1 or when &an_1(k) = Zan(k) = 1, as illustrated in Figure 6. Since the logic func-
tion f(a,b,¢) = ab+ be is a threshold logic function, it follows that the sequencing signal can be
implemented as a single node.

The output node of A is then simply the function

N+1
gk) =0 (Z zz-(/c)) .

i=1
The interleaved zeros are implemented by default since no hidden layer nodes will be activated
when the sequencing signal is in a position where the next value to be produced is an interleaved
Z€ETO.
As in Theorem 1, the taps are initialized to values appropriate for simulating z1(1) on the first

time step.

In [4] it was shown that any n—state FSM can be implemented by a four layer recurrent neural
network? with O (\/W) hard-limiting nodes. It is trivial to show that a fully connected recurrent
neural network can simulate an L—layer recurrent network with a slowdown of L. Based on the fact
that a NARX network with hard-limiting output nodes is only capable of implementing FMMs, we

conclude that

Corollary 2 For every FSM M, there exists an FMM which can simulate M with O (\/nlog n)

slowdown. |

B. Partially affine output functions

Theorem 1 holds also when the output nonlinearity is partially affine. Denote an affine transfor-
mation by
(d—c)(x —a)

A[a,b],[c,d](l‘) = I S +c,

so that if = € [a, b], then A, j)c,q(x) € [c,d]. Then a nonlinearity is said to be partially affine if

o(x) = A p)[e,aq)(x), for z € [a,b]. For example, the saturated linear function given in equation (5)

4 A multilayer recurrent network is like the network shown in Figure 1, except that the single layer feedforward
section is replaced by a MLP.

13

is partially affine with a =¢=0and b=d = 1.

The modification of Theorem 1 is simply acquired by transforming the values of the hidden layer
nodes, which are in [L, U + €] = [L, p] to the range [a, b]. These values are then passed through the
partially affine region to produce values in the range [¢, d], which is fed back. This transformation
can be undone by another affine transformation which converts values in [¢, d] to [L, u].

Specifically, the representation of the contents of the taps given in equation (7) is modified as

follows

Al fe,d) (Zidj+1(t—2)) 0<i+j<N
AL, fe, a1 (1) i+j=N
(N4t +1) = Ay ezt —1) N<it+j<2N+1
AL fe,a (1) i+j=2N+1

Arn e, d(zigj—an—1(t)) 2N+ 1<i+j

These values can be achieved by modifying the output node equation (11) to

N
~ H ~ ~
y(k)=o (—NA[L,N],[a,b](O) + —U(Q)A[L,u],[a,b](ZNH(k)) + ZA[L,M],[a,b](Zz’(’C))) ~

Although only one hidden layer node is active, the affine transformation will, in general, convert
zero node values to some nonzero value. The term N Az .1 14,5(0) compensates for this bias.

The hidden layer nodes are then modifications of equation (9)

N
G+ D) =0 | | D aijApamm@nsi—i(k) +biulk) + ci| + B | Aea . (Fan—ipa (k) —

ji=1

for i = 1...N, and equation (10)

ana (k) = o (Bya A i@ (k) = p) +a) .

V. CONCLUSION

Recent results suggest that gradient descent learning is more effective in NARX networks than in

recurrent neural network architectures that have “hidden states” [18]. We have also shown that

14

NARX networks perform better on problems involving long—term dependencies [20]. We have shown
here that NARX networks are capable of simulating fully connected networks within a linear slow-
down, and as a result are universal dynamical systems. This theorem is somewhat surprising since
the nature of feedback in this type of network is so limited, i.e. only output neuron feedback.

What does the Turing equivalence of neural networks imply? It implies that these networks
are capable of representing solutions to just about any computational problem we want to apply
them. Thus, we conclude that in theory one may use NARX networks in place of fully recurrent
nets without loosing any computational power.

On the other hand, Turing equivalence implies that the space of possible solutions is extremely
large. Thus, it may be prohibitively difficult to search with gradient descent learning algorithms.
So far, experience indicates that it is difficult to learn even small FSMs from example strings in
either of these types of networks (unless the FSM has little logic in its implementation [25]). Often,
a solution is found that classifies the training set perfectly, but the network in fact learns a chaotic
system which cannot necessarily be equated with any finite state machine [26].

We also showed some related results that NARX networks with neurons with hard-limiting
nonlinearities are only capable of implementing a subclass of finite state machines called finite
memory machines. But, if a sublinear slowdown is allowed, then such networks can implement
arbitrary finite state machines.

Our results open several questions for future research. What is the simplest feedback or recur-
rence necessary for any network to be Turing universal? What do these results imply about the
computational power of recurrent networks with local recurrence [27, 28, 29]7 And finally, can the

efficiency of the simulation described in this paper be improved upon?

ACKNOWLEDGEMENTS

We would like to thank Peter Tifio and Hanna Siegelmann for many helpful comments.

15

yStr oy uwo dey jse[o) Ul Paio)s st yndjno o} Jo anfeA oY} pue ‘39|
o1} 03 aaowr sdey o) JO $HULIT0D 8T} ‘dols STITY DRI I9IJY “IXoT PajeIsTaS oq 0} ST [euSis SuTmT) pruodes o) Wwaym 7 + A’z + (¢ + A7) pue ‘(uropoq
S[PPIWI) J¥oU pajelausd aq 0} sI [eUSIS Suruiry 381 o) waym T + N7 + 2(¢ + A/g) ‘(doy o[pprur) jxou peje[nuils aq 0} st () Nz ueym T — NG + (¢ + NG)
‘(doy) yxeu pajenurts oq o) st (2)Tx weym T + 2(¢ + A7) SoWTy je YIomjeu XYYN 2} Jo aur] Aepap paddey yndino a1y jo sjusjuoo oYy, :9 "S17

saJlajul jo uoibal

—_—
T 0 0 0 o [[= [o (' [x| o |
Ty N Ny T TTTTTTTTITT STt TTTTTTTTTTTTTT Tenzy Ney TNy 2Ny ey e STt T B gwA
saJlajul Jo uoibal
—_—
Hlezx @' 0 T _ T _ 0 _ (T-0"% _ (T-9% 0 (T-1%
R w T TTTTTTTTTIIT SLTTTTTTTrTTTTTmT Nz THNgy Ny TNz ey o STttt o Nx o
salajul jo uoibal
~
I B o [o [v [= [o Tew [o [i o [oo]
TN T TTTTTTTT SLTTTTTTTTTTTTTTT Nz eeny ey Ty Ney = e TTTTTTTT TTTTTTTTTTmoes ey ~

0 1 T 0 (T-)"% 0 0 (T-)'% 0 T eyx | o]

TNy Nby TNy Z-Npy -y PoNry - Nzy T-Ney Z-Nzy £-Nzy - 2 Ty

16

Ignore this page.

17

(1]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

REFERENCES

W. McCulloch and W. Pitts, “A logical calculus of the ideas immanent in nervous activity,”
Bulletin of Mathematical Biophysics, vol. 5, pp. 115-133, 1943.

M. Minsky, Computation: Finite and infinite machines. Englewood Cliffs: Prentice-Hall, 1967.

N. Alon, A. Dewdney, and T. Ott, “Efficient simulation of finite automata by neural nets,”
Journal of the Association of Computing Machinery, vol. 38, no. 2, pp. 495-514, 1991.

B. Horne and D. Hush, “Bounds on the complexity of recurrent neural network implementations
of finite state machines,” in Advances in Neural Information Processing Systems 6 (J. Cowen,
G. Tesauro, and J. Alspector, eds.), pp. 359-366, Morgan Kaufmann, 1994.

H. Siegelmann, E. Sontag, and C. Giles, “The complexity of language recognition by neural

networks,” in Algorithms, Software, Architecture (Proceedings of IFIP 12t world Computer
Congress) (J. van Leeuwen, ed.), (Amsterdam), pp. 329-335, North-Holland, 1992.

J. Kilian and H. Siegelmann, “On the power of sigmoid neural networks,” in Proceedings of the
Sizth ACM Workshop on Computational Learning Theory, pp. 137-143, ACM Press, 1993.

H. Siegelmann and E. Sontag, “Turing computability with neural nets,” Applied Mathematics
Letters, vol. 4, no. 6, pp. 77-80, 1991.

H. Siegelmann and E. Sontag, “On the computational power of neural networks,” Journal of
Computer and System Science, vol. 50, no. 1, pp. 132-150, 1995.

H. Siegelmann and E. Sontag, “Analog computation via neural networks,” Theoretical Computer

Science, vol. 131, pp. 331-360, 1994.

I. Leontaritis and S. Billings, “Input—output parametric models for non-linear systems: Part I:
deterministic non-linear systems,” International Journal of Control vol. 41, no. 2, pp. 303-328,

1985.

S. Chen, S. Billings, and P. Grant, “Non-linear system identification using neural networks,”
International Journal of Control, vol. 51, no. 6, pp. 1191-1214, 1990.

K. Narendra and K. Parthasarathy, “Identification and control of dynamical systems using
neural networks,” IEEE Transactions on Neural Networks, vol. 1, pp. 4-27, March 1990.

H.-T. Su and T. McAvoy, “Identification of chemical processes using recurrent networks,” in
Proceedings of the American Controls Conference, vol. 3, pp. 2314-2319, 1991.

H.-T. Su, T. McAvoy, and P. Werbos, “Long-term predictions of chemical processes using
recurrent neural networks: A parallel training approach,” Industrial Engineering and Chemical

Research, vol. 31, pp. 1338-1352, 1992.

S. Venkataraman, “On encoding nonlinear oscillations in neural networks for locomotion,” in
Proceedings of the Fighth Yale Workshop on Adaptive and Learning Systems, pp. 14-20, 1994.

S.-Z. Qin, H.-T. Su, and T. McAvoy, “Comparison of four neural net learning methods for
dynamic system identification,” IEFEE Transactions on Neural Networks, vol. 3, no. 1, pp. 122-
130, 1992.

C. Giles and B. Horne, “Representation and learning in recurrent neural network architectures,”
in Proceedings of the Eigth Yale Workshop on Adaptive and Learning Systems, pp. 128-134,
1994.

B. Horne and C. Giles, “An experimental comparison of recurrent neural networks,” in Advances
in Neural Information Processing Systems 7, pp. 697-704, MIT Press, 1995.

17

[19]

[20]

[21]

[22]

[23]
[24]
[25]
[26]
[27]
[28]

[29]

Y. Bengio, P. Frasconi, and P. Simard, “Learning long—term dependencies with gradient descent
is difficult,” IFEE Transactions on Neural Networks, vol. 5, no. 2, pp. 157-166, 1994.

T. Lin, B. Horne, P. Tiflo, and C. Giles, “Learning long—term dependencies is not as difficult with
NARX recurrent neural networks,” Tech. Rep. UMIACS-TR-95-78 and CS-TR-3500, Institute
for Advanced Computer Studies, University of Maryland, 1995.

G. Cybenko, “Approximation by superpositions of a sigmoidal function,” Mathematics of Con-
trol, Signals, and Systems, vol. 2, no. 4, pp. 303-314, 1989.

K. Funahashi, “On the approximate realization of continuous mappings by neural networks,”
Neural Networks, vol. 2, no. 3, pp. 183-192, 1989.

T. Booth, Sequential machines and automata theory. New York, NY: Wiley, 1967.
7. Kohavi, Switching and finite automata theory. New York, NY: McGraw—-Hill, 2nd ed., 1978.

C. Giles, B. Horne, and T. Lin, “Learning a class of large finite state machines with a recurrent
neural network,” Tech. Rep. UMIACS-TR-94-94 and CS-TR-3328, Institute for Advanced
Computer Studies, University of Maryland, College Park, Maryland, 1994.

J. Pollack, “The induction of dynamical recognizers,” Machine Learning, vol. 7, no. 2/3, pp. 227—
252, 1991.

A. Back and A. Tsoi, “FIR and IIR synapses, a new neural network architecture for time series
modeling,” Neural Computation, vol. 3, no. 3, pp. 375-385, 1991.

B. de Vries and J. Principe, “The gamma model — A new neural model for temporal process-
ing,” Neural Networks, vol. 5, pp. 565-576, 1992.

P. Frasconi, M. Gori, and G. Soda, “Local feedback multilayered networks,” Neural Computa-
tion, vol. 4, pp. 120-130, 1992.

18

(]

()]

LisT OF FIGURES

A fully connected recurrent neural network., .
A NARX network with n, = ny, =2 and H=3. ..
The contents of the output tapped delay line of the NARX network at times (N+1)t+1
when 1(¢) is to be simulated next (top), (N + 1)t + N when zn(t) is to be simulated
next (middle), and (N +1)t+ (N +1) when the sequencing signal y is to be generated
next (bottom). After each time step, the contents of the taps move to the left, and
the value of the output is stored in the right most tap.
The Dual Parity FSM.
A finite memory machine. L
The contents of the output tapped delay line of the NARX network at times (2N +
3)t + 1 when z1(¢) is to be simulated next (top), (2N + 3)t + 2N — 1 when zn(?) is
to be simulated next (middle top), (2N + 3)t + 2N + 1 when the first timing signal
is to be generated next (middle bottom), and (2N + 3)t + 2N + 2 when the second
timing signal is to be generated next. After each time step, the contents of the taps
move to the left, and the value of the output is stored in the last tap on the right.

LisT oF TABLES

The state of the machine as a function of the previous two inputs and previous output.

19

11
11

16

11

