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Abstract the specific data items) that a user is interested in receiv-

Push-based data delivery requires knowledge of user inter-
estsfor making scheduling, bandwidth allocation, and rout-
ing decisions. Such information is maintained as user pro-
files. We propose a new incremental algorithm for con-
structing user profiles based on monitoring and user feed-
back. In contrast to earlier approaches, which typically rep-
resent profilesas a singleweighted interest vector, we repre-
sent user profilesasmultipleinterest vectors, whose number,
size, and elements change adaptively based on user access
behavior. This flexible approach allows the profile to more
accurately represent complex user interests. Althoughthere
has been significant research on user profiles, our approach
isuniqueinthat it can be tuned to trade off profile complex-
ity and quality. This feature, together with its incremental
nature, makes our method suitablefor useinlarge-scalein-
formation filtering applications such as push-based WWW
page dissemination. We evaluate the method by experi-
mentally investigating its ability to categorize WMV pages
taken from Yahoo! categories. Our results show that the
method can provide high filtering effectiveness with modest
profile sizes and can effectively adapt to changes in users
interests.

1. Introduction

Publish/subscribemodel s and other forms of push-based
data delivery have been gaining popularity as ways to re-
lieve Internet users of the burden of having to continuoudly
hunt for new information. These techniques ddiver data
items to users according to a prearranged plan, so that they
do not have to make specific requests for items of interest.

In order to effectively target the right information to the
right peopl e, push-based systemsrely upon user profilesthat
indicate the general information types (but not necessarily
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ing. For users, profiles are a means of passively retrieving
relevant information. A user can submit a profileto a push-
based system once, and then continuously receive itemsthat
are relevant to him or her in atimely fashion. From a sys-
tems point of view, profiles fulfill arole similar to that of
gueriesin database or informationretrieval systems; in fact,
profiles are aform of continuously executing query.

1.1. Profile quality

The quality of user profilesis a key to making a push-
based system work. From the user’s point of view, there are
two potential problems. One is the precision problem: If a
large proportion of theitems that the system sendsto a user
are irrelevant, then the system becomes more of an annoy-
ance than a help. Conversdly, if the system failsto provide
the user with enough relevant information, then the bene-
fit of push-based delivery islargely lost, because the user
will still have to actively hunt for information. This latter
problemisknown astherecall problem. Both problems can
trand ate to unhappy users, which can ultimately render the
system worthless.

One contributing factor to profile quality isthelanguage
used to describe the profiles. For unstructured or semi-
structured items such as web pages, it is notorioudly diffi-
cult to formulate boolean (or relational) queries that return
result sets of manageable size. Such queries typicaly suf-
fer from the problems of either returning too many results,
or returning no results at all. Furthermore, the difficulty of
formulating effective queries growswith the size of thedata
set [23].

For text-based data items, profiles based on natural lan-
guagetechniquesfrom Information Retrieval (IR) have been
shown to be reasonably effective at representing user infor-
mation needs. Even assuming a good profile representa
tion, however, itisstill quitelikely that a user’s profile will
not provide adequate precision or recall with existing ap-
proaches. There are three main reasons for this. Thefirst is
that existing approaches represent user interestsin terms of
a single profile vector or multiple independent profile vec-



tors (e.g, SIFT [27], MyExcite [10]). Singlevectors, aswe
will demonstrate, are insufficient for adequately modeling
interests. Using multiple independent vectors, on the other
hand, results in redundant storage and processing of over-
lapping subscriptions, and overly broad specifications of in-
formation needs. Second, existing systemstypically require
usersto explicitly specify their profiles, often asaset of key-
words or categories. It isdifficult for a user to exactly and
correctly specify their information needs to such a system.
Third, state-of-the-art large-scale information filtering sys-
tems are typically built on the assumption that users change
their interests only infrequently (e.g,. [19, 27, 10]). If the
profile does not keep up with the user’s information needs,
then precision and recall problemswill quickly arise.

1.2. Basic approach and contributions

In this paper, we present a novel approach for repre-
senting, learning, and maintaining user profiles. The d-
gorithm is intended to support targeted dissemination of
loosdly structured documents such as web pages to large
numbers of users. Assuch, it workswell in an incremental
fashion, whereweb pages are presented to usersindividually
or insmall batches.

A key featurethat distinguishesour approach from previ-
ouswork on user profile construction isthat it uses amulti-
modal representation of user profiles; i.e., aprofileisrepre-
sented asacollection of (inter-related) clusters of user inter-
ests rather than as a single entity. The agorithm automati-
caly and dynamically adjuststhe content and the number of
clusters used to represent a profile. Our agorithm is based
on relevance feedback [20, 22]: Users provide feedback to
thesystem about the dataitemsthat they have been sent (typ-
ically abinary indication of whether or not theitem was con-
sidered useful). The system then usesthisfeedback to adjust
theuser’sprofile. Thistechniquefreesthe user from thebur-
den of explicitly specifying the profile, and manually iden-
tifying and making profile changes, yielding higher quality
profiles[11]. Our agorithm isincremental; it receives user
feedback one at-a-time and modifies the user profile accord-
ingly. Thisincremental nature also allows the algorithm to
adapt profiles to cope with changes in user interests over
time.

Our approach to user profile construction utilizes a
single-pass, non-hierarchical clustering agorithm (see [12]
for aniceoverview of clustering algorithmsfor information
retrieval). Clustering-based approaches have gained alot of
attention lately and have been used in a variety of applica
tions such as data mining (e.g., [28, 13]) and searching the
WWW (e.g., [17]). These approaches typicaly rely on ex-
pensive batch processing techniques that require al datato
be stored and available, which is clearly impractical in our
target environment and application.

The main contributions of this paper can be summarized

as follows: First, we propose a new self-adaptive profiling
approach that represents user interests as a dynamic set of
inter-related profile vectors. We demonstrate that our ap-
proach can be parameterized to adjust its tendency to gen-
erate more or less complicated profiles. This flexibility en-
ables our approach to trade off effectiveness and efficiency,
which, in turn, enables it to be tuned based on the require-
ments/characteristics of the target environment. Although
there has been significant research on user profiles (see Sec-
tion 6), our approach isuniqueinthat it enables such aqual-
ity vs. efficiency tradeoff. Second, we describe how to effi-
ciently implement this approach by extending an incremen-
tal clustering algorithmwith structuresand operators specif-
ically designed for filtering environments. Third, we eval-
uate our approach by using a detailed experimenta frame-
work based on WWW pages obtained fromthe Yahoo! topic
hierarchy [25], analyzing the effectiveness, efficiency, and
adaptability issues involved and comparing it to other al-
gorithmsthat are representatives of the existing related ap-
proaches.

The remainder of the paper is organized as follows: In
Section 2, we give an overview of themain issuesrelated to
user profileconstructionfor push-based datadelivery, focus-
ing on relevance feedback. In Section 3, we describe our ap-
proach for profile constructionand maintenance. Wediscuss
theexperimental environment and workloadsused totest the
ability of the algorithm to recognize relevant web pages in
Section 4, and present the results of experiments based on
Yahoo! categoriesin Section 5. Wediscuss previousrelated
work in Section 6, and present our conclusionsin Section 7.

2. Background

Effective profile management requires techniques for
representing dataitemsand profiles, ng therelevance
of the profilesto dataitems, and updating the profil es based
on user feedback. In this section, we briefly discuss these
issuesin the context of a push-based data dissemination en-
vironment.

2.1. The vector space model

Unlike databases, in which all correct systems must pro-
vide the same answer to a given query on a given database,
information filtering systems can differ widely in the qual-
ity of filtering they provide. As such, comparing filtering
approaches requires more than simply measuring the effi-
ciency of the system. Rather, the effectiveness of the fil-
tering is a primary metric for comparing such systems. Ef-
fectivenessistypically measured using recall and precision.
Recall isthe ratio of the number of relevant documents re-
turned to the user to thetotal number of relevant documents
that exist in the collection. Precision is the percentage of
the documentsreturned to the user that are actually relevant.
These two metrics are somewhat contradictory. For exam-



ple, to achieve perfect recdl, a system could ssimply return
all the documentsin the collection. Such an approach, how-
ever, would have terrible precision.

Our agorithm is based on the Vector Space Model
(VSM) [21]. In the VSM, text-based documents are repre-
sented as vectorsin a high-dimensional vector space where
the value of dimensions are based on the words occurring
in the documents. Documents describing similar topics are
likely to becloseto each other, asthey possibly includecom-
mon words. A profile can also be represented as avector (or
acollection of vectors), which can bederived fromthe previ-
oudly judged document vectors. In general, a profile vector
should have a position close to those of relevant document
vectors (in the vector space). If a new document is close
to the profile, then it will also be close to other documents
which are known to be relevant; thus, it will aso be likely
to be relevant.

IntheVSM, each document is represented as a vector of
termand weight pairs. If there are n distinct termsin adoc-
ument d, then d will be represented by avector

Vo= ((t1,w1), (t2, w), ..., (tn, wn))

In general, aterm isaword that exists in the document, and
itsweight, anon-negativevalue, isameasure of therelative
importance of the term in the document. The standard pro-
cess for computing the vector representation of adocument
includesstop-list removal and stemming[12]. Theweight of
aterm iscommonly calculated by its tf-idf (term frequency-
inverse document frequency) value:

Wya = tft,d xloga(N/dfy),

where w; 4 is the weight of term t in document d, ¢ f; 4 is
the frequency of term tin document d (i.e., termfrequency),
df, isthenumber of documentsthat containtermt (i.e., doc-
ument frequency), and NV is the total number of documents
inthe collection. Length normalizationis used to cope with
documents of differing lengths. This is accomplished by
computing the length of the vector and dividing the weights
of itsterms by thisvalue.

The angle between two vectors has been exploited as an
effective measure of content similarity, and many systems
use the cosine similarity measure to compute the similarity
among document and profile representations [12]. The co-
sine similarity between two vectors, v; and 5, is based on
theinner (dot) product of v; and v-, and can be formulated
as:

cosine(vy, vy) = Y12 D Wy We g

|vl||vz| \/Zt wtz,vl ’ \/Zt wtz,vz

2.2. Relevance feedback
Relevance feedback is an effective information retrieval
technique that can be used to form query vectors based on

document contents [21]. The main idea is to use the docu-
ments that have aready been evaluated by the user, empha
sizing the terms that occur in relevant ones while deempha-
sizing those occurring in non-rel evant onesin futureformu-
lations of the same query. More formally,

Qis1 Iaer-ﬁZvd—’y Z v,

deER deENR
where ); isthe initial query vector, @;+1 is the modified
query vector, v4 IS a vector representation of document d,
«, 3, and v are the feedback parameters to be set, and R
and NR represent the sets of relevant and non-relevant doc-
uments respectively. Several relevance feedback schemes
have been proposed, which mainly differ in the way they
set the parameters «, 3, and v. Among those, Rocchio rel-
evance feedback [20] is a well-known, effective scheme
whichinstantiatesthefeedback parametersasa = 1, 3 = 2,
andy = 0.5.

Traditional relevance feedback assumes that the docu-
ment collection isfixed and that al the documents relevant
tothe query are avail able at the time of query reformulation.
Thisis referred to as a batch relevance feedback approach.
Batch approaches are not suitable for an information filter-
ing environment, where there is a continual stream of docu-
ments and arelatively fixed query (or profile). Thus, anin-
cremental approach isneeded. Purely incrementa feedback
can update aquery (or profile) for each individua document
judgment that is received by the system. It is dso possi-
ble to combine such judgmentsinto groups and incorporate
each groupusingasingleupdate. Allan[2] studied theeffect
of group size on the effectiveness of incremental relevance
feedback (in a non-filtering environment). He showed that
effectiveness increases with group size, and that the highest
effectiveness was obtained using al the judgments at once
(i.e, in batch mode).

3. The multi-modal approach

We developed Multi-Moda (MM), a new approach for
automatically constructing and maintaining user profiles
based on user feedback. MM represents user profilesas aset
of vectors, the number, size, and elements of which change
adaptively. Specificaly, MM represents a user profile P as
aset of profile vectors p1, ps, ..., p, Where
P = ((tiuwh)a (tiQ, wiQ), ceny (tim, wim)), 1= 1, 2, ey N
The number of profile vectors, n, and the size of a profile
vector, m, change over time based on the feedback pattern
obtained from user. Individually, each profile vector repre-
sents only a portion of a user’s information needs, eg., a
relevant concept. Collectively, however, the profile vectors
model the user comprehensively.

3.1. Overview
In order to simplify the presentation, we first describe the
fundamentals of MM by describing a procedure for incre-
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Figure 1: Incorporating a document vector into a
profile vector

mentally clustering document vectors. The basicideaisto
maintain clusters of document vectors, where each cluster
is stored as a single representative vector. The first docu-
ment vector is assigned asthefirst cluster. When anew doc-
ument is processed, its similarity with all the existing clus-
tersis calculated. If the similarity of the closest cluster is
greater than athreshold (specified by 6), then the document
vector isincorporated into that cluster and the cluster repre-
sentativeisrepositioned (theinfluence of the new document
iscontrolled by aparameter, A). Otherwise, if thesimilarity
is smaller than §, the document vector is used to initiate a
new cluster.

MM builds upon this basic incrementa clustering ago-
rithm with structures and operations specifically designed
for multi-modal profile construction in a filtering environ-
ment. In MM, each relevant document vector can either cre-
ate a new profile vector or be incorporated into an existing
profile vector. Non-relevant document vectors, on the other
hand, cannot create their own clusters as a profil e represents
only the relevant concepts. However, they can be incorpo-
rated into other profile vectors. Two similar profile vectors
may be merged into a single one in order to avoid redun-
dancy and decresse profile size. A profile vector may aso
be deleted (i.e., removed from the profile) if MM deems it
to be no longer representing a concept relevant to the user.
Thisdeletion operation allowsfor fast adaptationwhen there
isashiftin user interests.

Notation Description

d document

V4 vector representation of d

fa indication of user feedback for d (¢ {—1,1})
P user profile

i profile vector

1) threshold value (€ [0.0, 1.0])

A adaptability value (€ [0.0, 1.0])

Table 1: Basic Notation
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Figure 2: Creating a new profile vector from a
document vector

In the rest of this section, we describe MM in detail
(see [8] for a pseudocode of MM, and refer to Table 1 for
notation).

3.2. Consgtructing the profile

When a new relevance judgment, f;, for a document,
d, is received, MM first identifies the profile vector that is
most similar to vg. This profile vector, if it exists, becomes
the active profile vector, p,., of the profile (with respect to
vg). The document vector will have dl its further interac-
tions with p,.;. The relevance of the profile to the docu-
ment is computed asthe similarity between p,.: and v, (i .€.,
coSiN&(pqce, vq)). If thissimilarity valueislarger than acer-
tain threshold, 6, then the effect of the feedback isreflected
to the profile by incorporating v4 into p,.:. The incorpo-
ration of vy into p,.: is accomplished by moving p.: lin-
early according to parameter A. If f; ispositive, then p,.; is
moved towards v,; otherwise, p,.; ismoved away from v.
Formally,

pact:(l_A)Xpact‘i‘/\dexvd

An example of incorporating a new document vector into a
profile vector is shown in Figure 1. If a document vector
falls within the shaded similarity circle for a profile vector,
thenitisdeemed similar enough and iseligiblefor incorpo-
ration in that profile vector. In this example, the document
vector v, falsinside the circle of p;, and p; becomes the
active profile vector with respect to v4. It is possible that
thedocument vector fallsinsidemultiplesuch circles. How-
ever, there can only be a single active vector at any time,
namely the one most similar to the document vector.? The
document vector v, isthen incorporated into p; by pushing

LFor illustration purposes, we show the vectorsin a hypothetical 2-D
vector space. Note that this illustration shows relevance as the Euclidean
distance among vectors, which is not the way relevanceis defined in MM.
Regardless of the relevance measure, however, the underlying principles
remain the same.

2|n case of two or more vectors having the same similarity, oneof them
can be selected randomly.



p1 closer tov,. Notethat thesizeof theprofile(i.e., thenum-
ber of profile vectors) does not change as aresult of an in-
corporation operation.

Ontheother hand, if thesimilarity between v, and py.¢ IS
smaller than é (i.e., vq fallsoutsideof al similarity circles),
then vy isinserted into P as a new profile vector, and the
size of the profileincreases by one. This case isillustrated
inFigure 2.

If P isempty when the feedback isreceived, MM checks
thesign of f;. If f isnegative, then the feedback is sim-
ply ignored (because the profile represents only therel evant
concepts); otherwise, v, isinserted into P as anew profile
vector.

3.3. Adjusting the profile size

When a new document vector is incorporated into py..,
the position of p,.: inthe vector space changes. If two pro-
file vectors come close (enough) to each other in the vector
space, they represent similar (if not the same) concept(s).
Therefore, a single vector may potentialy be sufficient to
represent the concept(s) that are represented by the two vec-
tors. The merge operation alows MM to avoid multiple
profile vectors redundantly representing similar concepts,
thereby allowing a more compact representation.

The merge operation checks whether amerge ispossible
between p,.; and the other profile vectors. The profile vec-
tor closest to p,.:, p., isidentified and if the similarity be-
tween p,.; and p,. islarger than 6, p,.; and p. are merged.
The merge of the two vectors is performed in a way simi-
lar to that of incorporating a document vector to pyet; pact
is pushed towards p. linearly, and p. is removed from the
profile. Recall that the parameter A defines how much p,.:
moves in the case of incorporating a document vector into
pact- IN the merge case, however, the ratio of the strength
(see Section 3.4) of p,. to the sum of the strengthsof p,.; and
p. isusedinstead of A. Notethat MM usesthe same similar-
ity threshold, which defines thearea of the similarity circles,
for al profile vectors (including the ones that are created as
aresult of amerge operation).

We need to consider only the vector pairscontaining pg.:
for merging. Thisis because the only profile vector that can
move to a new position (after any single feedback step) is
paet @nd the inter-vector distances for the other vectors do
not change. After the merge, however, the similarity be-
tween the combined vector and another profile vector may
be larger than 4, requiring another merge. We do not con-
sider this situation and choose to allow only a single merge
operation in asingleiteration for efficiency reasons. Other
merge operations, if any, are accomplished lazily in future
iterations.

3.4. Deleting the profile vectors
In addition to the merge operation described above, MM
uses a deletion operation that aso reduces the profile size.

However, the primary reason for using the deletion opera-
tionisto effectively adapt to shifting interest patterns. Con-
sider a profile vector that represents concepts that the user
is not interested in anymore. In addition to the fact that the
vector is stored redundantly, the existence of the vector is
morelikely to degrade the overall modeling effectiveness of
the profile than to improve it. MM identifies such vectors
and removes them from the profile.

MM utilizes negative feedbacks as indications of possi-
bleinterest changes. If adocument whosevector representa
tionissimilar to an existing profile vector has received neg-
ative feedback from the user, then MM records this event.
If such an event occurs sufficient times for the same profile
vector, then MM removes that vector from the profile.

In order to implement thisoperation, MM maintainssim-
ple statistics about the feedbacks for the documents that
wereincorporated into each profilevector. Each profilevec-
torisgivenastrength value (1.0in our case) when the vector
iscreated. Thisvaueisupdated each time a document vec-
tor isincorporated into the profile vector. The basicideais
asfollows: If the feedback for the document vector is posi-
tive, then the strength of the profile vector isincreased; oth-
erwise, thestrength isdecreased. Strength modificationsare
performed using asimpleexponential decay functionwhere
apositiveconstant, ¢, controlsthe decay rate. If the strength
of a profile vector drops below a certain deletion threshold
value, then the vector is removed from the profile. When
two profilevectorsare merged, theresulting vector obtainsa
strength value that is equal to the sum of the strengths of the
merged vectors. The details of the deletion operation, along
withillustrative examples, can befoundin [8].

3.5. Discussion

There are two important parameters that control the way
MM behaves and thus have to be set properly. One of them
is the threshold parameter, 6 € [0.0,1.0], which is mainly
used to decide whether anew document vector should bein-
corporated into an existing profile vector or should creste a
new profile vector. This parameter can be used to control
the number of profilevectors. If 6 issetto 1.0, then al (dis-
tinct) relevant documents will form their own profile vec-
tors, achieving a very fine granularity user model, but ex-
ploding the profile size. At the other extreme, if 6 is set to
0.0, al vectorswill beincorporated into asingle profile vec-
tor and the number of profile vectorswill always be one. In
this case, the overhead of profile management is extremely
low, however the effectiveness of the profileis limited. In
this paper, we are interested in intermediate vaues which
will providean optimal effectiveness/efficiency tradeoff for
agiven application.

Theother important parameter isthe adaptability param-
eter, A € [0.0, 1.0]. Asmentioned before, A controlstherate
at which the active profile vector ismoved when incorporat-
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ing a new document vector into the existing profile. In other
words, A decides how fast the user profile adaptsitsel f based
on feedback. If A isset to 1.0, active profile vectors will be
replaced by document vectors at each feedback, resultingin
maximum adaptation (i.e., memorylessmode). If A isset to
0.0, on the other hand, active vectors will not change with
feedback, and virtually no adaptation will take place.

4. Experimental environment

In this section, we describe our experimenta environ-
ment and methodology for evaluating the MM agorithm.
More details can be found in[8].

4.1. Document collection

Due to the absence of WWW-oriented filtering work-
loadsin standard suites such as TREC, we devised a bench-
mark using categories of web pages obtained from Ya
hoo! [25]. More specifically, we used web pages referenced
from the top two levels of the Yahoo! category hierarchy
(whichisformed by human editors). We chose ten top-level
Yahoo! categoriesand ten sub-categories(i.e., second-level
categories) for each selected top-level category. In the re-
mainder of this paper, we denote a top-level category i by
C;, and a second-level category j categorized under C; by
Ci;, wherei,j € [0,1,...,9]. We picked 900 pages uni-
formly distributed over all categoriesand converted them to
their vector representations using the process illustrated in
Figure 3. For each document vector we keep only the 100
highest-weighted terms. Asin any learning study, we used
a subset of the documents as the training set, which is used
for learning purposes, and the remaining documents as the
test set.

4.2. User simulation

Filtering systems devel operstypically rely upon thetech-
nique of user simulationin order to understand and quantify
the effectiveness of their solutions(e.g., [2, 15]). We smu-
late the behavior of atypical user by assuming that the user
isinterested in a subset of our Yahoo! categories and gives
feedback correspondingly. Specifically, a smulated user is
assigned asynthetic profile (SP) consisting of asubset of the
categories. The simulated user gives positive feedback to a
document only if that document is classified under a cate-
gory that appears in her synthetic profile; al the other doc-
uments are given negative feedback. Moreformally,

fd:{ +1 if caty € P

—1 otherwise

where cat is the category to which document d belongs.
In our experiments, the synthetic profile is defined com-
pletely either by top-level categories or by second-level
categories; i.e, ether SP C  {Cy, C4,...,Cs}, or SP C
{Coo, 001, ceny 099}.

4.3. Methodology and performance metrics

We chose to base our eval uation methodol ogy on the one
used inthe routing track of the TREC benchmark suite[24].
The ideais to have the system score and then rank-order a
collection of documents based on their likelihood of rele-
vance to a particular profile. The experiments are executed
asfollows. Each run startsby randomly sel ecting categories
to form a synthetic user profile of desired complexity. The
user profileisinitialized to be empty. We then present the
documents in our training set to the system along with the
corresponding feedback values obtained from the synthetic
profileasdefinedin Section 4.2. After trainingiscompleted,
the profile algorithmis disabled (i.e., the profiles generated
are frozen) and the system is evaluated by having the profile
it generated score and rank-order aset of test documentsthat
it has not yet seen, based on their likelihood of relevance.

The main effectiveness metric used in the experiments
is a variant of non-interpolated average precision (niap),
which isarank-based metric used in TREC. Thismetricin-
tegrates precision and recall values into a single effective-
ness measure. Given a ranking of documents in their pre-
dicted likelihood of relevance, niap is defined as follows:
Starting from the highest ranked document, the actua rel-
evant documents are counted. If the ith relevant document
has rank r;, then

nwap = T

where 7" is total number of relevant documents in the test
collection. For example, assumethat there arethree rel evant
documentsin the test collection and the filtering system as-
signstheranks 2, 4, and 6 to these documents, then

C1/242/443/6
= e

In other words, niap computes the mean of the precision
values at each relevant document’s position in the ranked

0.5.

niap

3|tisalso possibleto start theexperimentswith initialized profiles. Such
an approachis morerealistic in areal-world implementation asit could re-
ducethetraining time significantly, but would introduce an additional vari-
able into the study, namely, the quality of theinitial profile.



list. With the example system, which operates a an niap
of 0.5, (on average) half of the documentsit deems relevant
arein fact relevant to the user, while the other half are not.
Higher niap valuesimply better use of system resourcesand
higher user satisfaction. In the remainder of the paper, we
usetheterm precision to mean niap, unless otherwise spec-
ified.

In addition to precision figures, we also measure the size
of a user profile in terms of the number of vectors consti-
tuting the profile. This metric is important because it dic-
tatesthe storage requirementsfor profile management. Such
requirements can become a serious concern in alarge-scale
filtering environment. Aswith document vectors, we repre-
sent each profile vector with (at most) 100 term and weight
pairs. The storage benefits for profile vectors, however, are
far more important than for document vectors as the lat-
ter are typicaly only retained for a short duration, while
profile vectors are stored and maintained for long periods
of time. Profile size al'so has implications on filtering effi-
ciency; larger numbers of profile vectors typically indicate
higher filtering times. The filtering cost, however, is not
linearly proportional to the number of vectors since well-
known indexing techniques are applicable.

5. Perfor mance experiments

5.1. Algorithms studied

In this section, we present the results of our experiments
using MM for profiling WWW page interests. We also
present resultsfor two other algorithms, namely (purely) In-
cremental Rocchio (RI) and Group Rocchio (RG). RG is
theincremental relevance feedback a gorithmstudied by Al-
lan[2] (see Section 2.2), which usesagroup of judged docu-
ments for updating the profile using rel evance feedback. RI
isaspecia case of RG wherethegroup sizeisset to 1. We
adopted the Rocchio based formula used by Allan and cal-
culated the weights of the terms forming the profile vector
for Rl and RG as

1
w(t)it1 = w(t); + 2wy g — JWLNR
wherew(t); and w(t);4+1 arethecurrent and theupdated (af-
ter feedback) weights of term ¢ in the profile, and w; r and
wy v aretheweightsof ¢ in relevant and non-relevant doc-
uments, respectively, as defined using theformul asgiven by
Allan:

where bel, g isgivenby: bel; g = 0.44 0.6 - t fbel, 4 - idfy
with

tfia
bel, 4 = ’
tfbel; 4 tfia+0.5+ 1.5 leng/avglen
. N+05
i = 1oa () oy 41

where leng isthe length of document d, and avglen isthe
average length of documentsin the collection.* We use this
weight cal culation method for all of thelearning a gorithms
studied here.

In order to determine appropriate training times, we in-
vestigated the learning rate of MM and observed that its ef-
fectiveness increases rapidly, and levels off somewhat after
seeing about 200 documents, but continuesto increase. Af-
ter training with 400-500 documents, however, we observed
no significant increase in effectiveness. The Rl and RG ap-
proaches stabilize dightly faster. Unless otherwise stated,
all theresultspresented here are taken after trainingwith 500
documents.

In al the experiments we present, we fix A at 0.2. We
conducted numerous preliminary experiments using various
settings of our experimental parameters. We observed that
A, if st intherange[0.1,0.3] had good performance for d-
most al cases, and found little difference in terms of the
precision values obtained for different settings of A in this
range. In al the experiments, the decay constant, ¢, isset to
0.5, and the deletion threshold is set to 1.0.

Experiments for all of the algorithms begin with an ini-
tially empty profile. Thetraining set isthen presented to the
system, followed by the test set, during which the experi-
mental resultsare obtained. The results presented inthefol-
lowing graphs are the average of at least four runswith (dif-
ferent) user interest categories randomly chosen according
to the specification of the workload under study.

5.2. Top-leve filtering effectiveness

We begin by investigating the filtering effectiveness of
the three profile learning techniques using interest cate-
gories drawn from the top-level Yahoo! categories. Fig-
ure 4 shows the precision results for three different inter-
est ranges, covering 10%, 20%, and 30% of the documents
(i.e., one, two, and three top-level categories out of the10in
the database). For each interest range, the precision results
are shown for (from left to right) incremental Rocchio (RI),
group Rocchio (RG) with agroup size of 10 documents, and
MM. As can be seen from thefigure, the results are consis-
tent across al three interest sizes: MM providesthe highest
precision, followed by RG, followed by RI.

4We computed the values for the collection-based parameters (e.g.,
avglen, dfy) by statistical analysis of the document collection. In areal
filtering setting, however, thisinformation must be collected incrementally
over time.
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Figure 4: Precision values, top-level categories
(6 = 0.15,RG Group Size= 10)

Comparing the two Rocchio implementations, theresults
show that (as mentioned in Section 2.2), the effectiveness of
relevance feedback increaseswiththegroup size. Infact, we
also ran these experiments using a batch version of Rocchio,
in which all 500 training documents were presented to the
algorithm at once. This approach, which represents a (non-
incremental) best case for Rocchio, had precision values of
roughly 3-4% more (in absolute terms) than RG in thethree
cases studied here. Thus, our fully incrementa algorithm,
which is presented with only a single document at a time,
significantly outperforms even the batch Rocchio approach.

Comparing theresultsfor thethreeinterest rangesin Fig-
ure 4, it can be seen that the benefit of MM over the oth-
ers grows as the number of categories in the profileisin-
creased. This behavior demonstrates afundamental benefit
of themulti-modal approach. Asmore categories are added,
the number of profile vectors maintained by MM can bein-
creased, allowing the profile to automatically adjust in or-
der to model theincreasingly disparate interests of the user.
In contrast, since the Rocchio agorithms maintain only a
single profile vector, the documents from the different cat-
egoriesmust be lumped together, resultingin aless accurate
model of the user’s interests.®

5.3. Profile complexity

We also compared the algorithms using categories from
the second-level. This workload is likely to generate more
complex profilesas the relevant documents are chosen from
a wider, more disparate group of topics. The results are
shown in Figure 5. Qualitatively, the results are similar to
what was seen in the previous experiment with top-level cat-
egories. MM is the best, followed by RG, followed by RI.
All of the approaches have dightly lower precision here. In

SInfact, thereisaslight improvementin precisionfor Rl and RG ascat-
egories are added. This improvement can be attributed to the increase in
the percentage of relevant documentsin the test set, which raises the prob-
ability of apagebeingidentified asrelevant by the single-vector-per-profile
approaches.

niap
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Figure5: Precision values, second-level categories
(6 = 0.15,RG Group Size= 10)

terms of the percentage decrease in precision compared to
corresponding top-level case, MM suffers the least of the
three algorithms, while RG has the highest relative drop.
Again, the flexibility of MM allowsit to adapt to the more
complex workload. In this case, MM maintains a small
number of additional vectors (i.e., three or four) for each of
theworkload sizes compared to the corresponding workload
sizein thetop-level case.

5.4. Threshold effects

The importance of maintaining multiple vectors is
demonstrated in Figure 6, which shows the precision
obtained by MM for the top-level categories using 10%,
20%, and 30% interest ranges, as the threshold parameter
§ isincreased. Recdl that 4 determines the tendency for
MM to create new vectors. When § = 0.0, asingle vector
is maintained, and MM performs similarly to RI. As é is
increased, MM becomes more likely to create additional
vectors. At an extreme value of § = 1.0 (not shown), MM
maintains a separate vector for each relevant document
presented to it. This case is similar to the nearest relevant
neighbor (NRN) method, which was studied in [11].

Keeping vectors for al relevant documents, however, is
not practical for an information filtering environment as the
number of documents presented to such a system grows
monotonically over the life of the system. Fortunately, as
isindicated in Figure 6, such a high setting for 6 is not nec-
essary. Beyond a vaue of approximately 0.15 (the default
value used in these experiments), the precision obtained by
the algorithm beginsto level out. In fact, with high thresh-
olds, MM will be susceptible to over-fitting [ 18], which can
negatively impact effectiveness. Over-fitting is particularly
a problem in noisy environments such as the WWW. A fi-
nal argument for not retaining vectors for all documents is
adaptability. As discussed in Section 5.5, a key benefit of
MM isitsability to adjust to changesin user’sinterests. An
approach that maintains vectors for all (or most) relevant
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documents ever seen would adapt much more slowly.
Figure 7 showsthe number of vectors maintained by MM
for each of thethreeworkloadsas § isincreased. Noticethat,
for agiven threshold, MM keeps more vectors as the num-
ber of relevant categories is increased; that is, as the per-
centage of relevant documents increases, more vectors are
needed to represent the concepts exemplified by those docu-
ments. Taken together, Figures6 and 7 demonstrate how the
6 parameter alowsthe MM & gorithm to be tuned to trade
off precision for profile size. MM is capable of spanning
the range of algorithms from single-vectored Rocchio, to a
vector-per-document approach such as NRN. Unlike either
of those extreme algorithms, however, it alows for middle-
ground solutions that provide good precision while main-
taining moderate storage requirements and good adaptabil-

ity.

5.5. Interest changes

As stated in the introduction, an important requirement
for an incremental profile generation algorithm is that it
must be able to recognize and adapt to changesin users' in-
terests. In thissection, we evaluate the aternative learning
techniquesin thislight. We examine four types of changes:
partial and complete changes in the categories of interest,
addition of a new category to a profile, and deletion of an
existing category from aprofile. Asbefore, we compare the
MM, RI, and RG agorithms. In addition, we aso measure
aversionof MM, called MM-No Decay (MMND), inwhich
the decay function (i.e., the deletion operation) is disabled.
Recall that the Rocchio techniques have an implicit type of
decay inwhich theold vector isaugmented with information
about new documents (see Section 2.2).

Whilewe studied many different scenarios, due to space
considerations, we only show results from a single, repre-
sentative case here. For al experiments shown, MM was
run using the default valuesof 6 = 0.15and A = 0.2. In
order to make afair comparison in terms of the storage used
by RG and MM, RG was run with a group size of 100 doc-
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uments.® All of the results shown in this section were ob-
tained using the 20% top-leve category workload (i.e., rel-
evant documents are chosen from two top-level categories).
To see how quickly the learning techniques adapt, we ini-
tialy trained them using 200 documents. At that point, the
synthetic profile is changed instantaneously, and we mea
sure how quickly the precision values obtained by the var-
ious techniques recover. In each of the graphs that follow,
we plot the precision as documents are presented to the sys-
tem.

Shifting interests. In these experiments, we study the
adaptability of the techniques when the number of cate-
goriesin which the user is interested remains constant, but
the particular categories are changed. We show two cases.
Figure 8 shows the effectiveness of the learning techniques
in the case where one of the categories of interest ischanged
(after the 200th document has been seen) whilethe other re-
mainsfixed. That is, beforethe shift: SP = {C;, C;}; while
after the shift SP = {CZ', Ck}

In thiscase, asbefore, MM (aswell asMMND) initialy
achieves higher precision than the Rocchio techniques. Af-
ter the shift, however, MM and RG recover (i.e., regain the
precision that they had at the shift point) fastest, followed
by MMND and RI. In fact, MM recovers dightly earlier
than RG here, but only because RG waitsto collect an entire
group before changing the profile. Recdll that larger groups
improve the effectiveness for Rocchio in the static case. In
thedynamic case, however, larger groupsresultinlonger pe-
riods of lower effectiveness, which could have an impact on
user satisfaction in an information filtering environment. RI
adjusts reasonably well here, but its effectiveness remains
well below that of the MM approaches throughout the en-
tire document sequence.

Comparing MM and MMND, it can be seen that MM re-

6A group size of 100 requires somewhat more space than MM in this
case, which requiresat most 66 vectors here. At agroup size of 66 the pre-
cision of RG iswithin 2% of the values shown in these experiments.
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Figure 8: Partially changing interests
(6 = 0.15,RG Group Size = 100)

covers much faster than MMND (they have similar preci-
sion at the shift point). With decay, negativefeedback accel-
erates the removal of the vectors representing the concepts
of the dropped category. Without decay, these vectors re-
main in place longer, impacting the precision results. Thus,
decay significantly improvesthe effectiveness of MM when
usersinterests change dynamicaly (which we would expect
to be the normal situation for many applications). Fortu-
nately, thefact that both MM and MMND have similar pre-
cision up to the shift point shows that using decay does not
harm the precision of MM in periods of static interests.

Figure 9 shows the effectiveness of the algorithms for a
more complete shift. In this case, the user’s interests are
completely changed at the shift point. Moreformally, before
theshift: SP = {C;, C;}; and after theshift SP = {C, Ci}.
Whilethiscase islesslikey to happen than the partia shift,
we useit to investigate the behavior of the algorithmsin an
extreme case. Here, al the past relevance judgments are in-
valid; each algorithm has to realize this and forget all those
judgmentsin order to recover.

Comparing Figure 9 to the partial change case shown in
Figure8, it can be seen that the MM approaches take longer
to recover in the more extreme case than they did in the
partial case. MM with decay recoversitsoriginal precision
somewhat more slowly than RG does here, but it isimpor-
tant to note that even before it is fully recovered (i.e., af-
ter the 400th document), its precision is superior to that of
RG. Without decay, however, MMND recovers much more
slowly than in the previous case, and infact, has lower pre-
cision than RG throughout the entire test range shown here.
In thiscase, the vectors existing prior to the shift point pro-
vide no valuableinformation, and thus need to be destroyed
as quickly as possible. Without a decay function, these old
vectors can influence effectiveness for along time. Rl ad-
justsreasonably quickly inthiscase, but itseffectivenessre-
mains below that of MM throughout the entire experiment.

The previous cases represented fairly dramatic shiftsin
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Figure9: Completely changing interests
(6 = 0.15, RG Group Size = 100)

user interests while keeping the number of categoriesin the
interest range constant. Such user behavior is not expected
to belikely in practice, but is useful for demonstrating the
tradeoffs of the different a gorithmsin the absence of effects
caused by changes in the size of the relevant document set.
We now briefly look at the case of more gradually changing
interests.

Adding and deleting interests. Figure 10 shows the case
where a new top-level category is added to an existing set
of interests (originally containing a single category); for ex-
ample, when auser becomesinterestedin anew hobby. That
is, before the shift: SP = {C;}; and after the shift SP =
{C;, C;}. Inthiscase, sincethereisonly an extension of the
user interests, the previous (positive) relevance judgments
remainvalid. For thisreason, thereisno differenceintheef-
fectiveness and recovery time of MM and MMND. Thisre-
sult extends our earlier result that the decay function has no
negative influence during periods of static interestsby vali-
dating that the decay function has no negative impact even
for changing interests as long as existing interests are not
dropped. RI and RG again demonstrate reasonable recov-
ery behavior but overall lower effectiveness. RG dominates
RI except for onesmall region (between the 200th and 300th
documents), during which RG is collecting a group of rele-
vance judgments before applying them to its vector.

Figure 11 showsthe complementary case to the previous
one, in which a user is initialy interested in two top-level
categories and then one of them ismade irrelevant. For ex-
ample, astudent’sinterest in a category for a school project
can drop suddenly after that project is finished, people can
loseinterestin ahot news story after it hasbecometiresome.
More formally, before the shift: SP = {C;, C;}; and after
the shift SP = {C;}. Inthis case, the results confirm what
we have seen before. In the presence of dropped interests,
the decay function of MM speeds recovery. The precision
of RG recovers quickly, but remains below (or in one case,
equa to) that of MM with decay.
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(6 = 0.15,RG Group Size = 100)

The results presented in this section revesl ed that, across
all the scenarios shown, MM providesthe highest effective-
ness; it has higher precision for static situations, but also re-
coversfast enoughto preserveitsadvantage whenthe user’s
interests change.

6. Related work

Publish/subscribe protocols have been a subject of in-
creasing interest in the database and data management com-
munities. Recent projects such as the C3 project at Stan-
ford [9], the CQ (continuous queries) project at OGI [16],
the Grand Central project at IBM Almaden [14], and the
DBIS project at Maryland and Brown [4] al contain a user
profile management component. To date, however, these
projects have not emphasized learning-based acquisition
and maintenance of profiles.

There has been significant research on text-based pro-
file construction in information retrieval community (e.g.,
[5, 1, 7, 3]), especidly in the framework of TREC [24].
The main emphasis of TREC, however, has dways been on
the effectiveness of the participating systems, rather than
on their efficiency. Most of the techniques used for these
tasks require batch processing of previously judged docu-
ments, imposing relatively high storage and computation
costs, and thus, making them inappropriate for large-scale
filtering environments. Furthermore, the documentsused in
these benchmarks do not exhibit thewide variability typica
of web pages, making it difficult to extrapolate results from
these benchmarks to performance on the WWW.

The work most closely related to ours is that of Allan,
who studied the utility of relevance feedback for informa
tion filtering environments [2]. He investigated the case
where only afew judged documents are avail able each time,
and showed that highly effective results can be achieved us-
ing relatively few judged documents. He a so addressed the
significant issues of reducing storage requirements and cop-
ing with shiftsin user intereststhat arise in an information
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filtering environment. The main difference of our work is
the introduction of a parametric approach that adaptively
changes the number of vectors used to represent profiles.

Foltz and Dumais used Latent Semantic Indexing (LSI)
to derive areduced dimensiona vector space [11] and con-
structed a profile vector from each document judged asrele-
vant by the user. The relevance of adocument to the profile
isthen computed based on its cosine similarity to the closest
profile vector. Notice that their approach of having a sepa
rate profile vector for each document of interest is a special
case of MM, namdly, when threshold 6§ isset to 1.0. Notice
that it isstraightforwardto generalize the approaches we de-
scribe hereto use an LS| space rather than theregular (key-
word) vector space.

The approach taken by SIFT, which uses the pub-
lish/subscribe model for wide-area information dissemina
tion[27, 26], requiresusersto explicitly submit their profiles
and update those profiles using relevance feedback. Our
approach differs from that of SIFT in its use of a set of
inter-related profile vectors whose contents and cardinality
change based on user feedback, and its ability to construct
profiles completely automatically. The advantages of auto-
matic profile construction were shown experimentally using
human subjectsin [11]. These advantages were further val-
idated by extensive experimentation with INQUERY [6].

7. Conclusions

Push-based data di ssemi nation depends upon knowledge
of user interests for making scheduling, bandwidth aloca
tion, and routing decisions. Such information is maintai ned
as user profiles. We proposed anovel, incremental approach
for constructing user profiles based on monitoring and user
feedback. In our approach, a user profileis represented as
a set of vectors whose size and € ements change adaptively
based on user feedback. We developed a set of workloads
based on the Yahoo! WWW categoriesand used themtoan-
alyze our approach and compared it to approachesthat have



been shown to have good effectiveness in other recent, re-
lated work.

Our experimental results showed that the multi-modal
approach has several advantages. 1) it is capable of pro-
viding significantly higher accuracy than a uni-modal ap-
proach; 2) it automatically and dynamically adjuststhe num-
ber of vectors used to represent a profile based on feedback
thatisprovidedtoitincrementally, allowingthealgorithmto
adapt to changes in user interests over time; 3) even in this
incremental mode, the approach provides more accurate re-
sults than a batch version of the more traditional approach,
which iswidely used today; 4) the multi-modal representa-
tion of profiles combined with itsincremental nature allows
it to betuned to trade off effectiveness and efficiency, which
makes it suitable for use in large-scale information dissem-
ination systems.

Information Dissemination in general, and pub-
lish/subscribe systems in particular are becoming in-
creasingly popular. As these systems scale to larger and
more diverse user populations, efficient techniques for
managing and updating large numbers of user profiles will
become even more important. Also, profiling techniques
must be extended to cope with multi-media and to take
advantage of morestructured datatypesas enabled by XML
and other emerging standards. These issues provide a host
of future research opportunities.
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