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Abstract

Push-based data delivery requires knowledge of user inter-
ests for making scheduling, bandwidth allocation, and rout-
ing decisions. Such information is maintained as user pro-
files. We propose a new incremental algorithm for con-
structing user profiles based on monitoring and user feed-
back. In contrast to earlier approaches, which typically rep-
resent profiles as a single weighted interest vector, we repre-
sent user profiles as multiple interest vectors, whose number,
size, and elements change adaptively based on user access
behavior. This flexible approach allows the profile to more
accurately represent complex user interests. Although there
has been significant research on user profiles, our approach
is unique in that it can be tuned to trade off profile complex-
ity and quality. This feature, together with its incremental
nature, makes our method suitable for use in large-scale in-
formation filtering applications such as push-based WWW
page dissemination. We evaluate the method by experi-
mentally investigating its ability to categorize WWW pages
taken from Yahoo! categories. Our results show that the
method can provide high filtering effectiveness with modest
profile sizes and can effectively adapt to changes in users’
interests.

1. Introduction
Publish/subscribe models and other forms of push-based

data delivery have been gaining popularity as ways to re-
lieve Internet users of the burden of having to continuously
hunt for new information. These techniques deliver data
items to users according to a prearranged plan, so that they
do not have to make specific requests for items of interest.

In order to effectively target the right information to the
right people, push-based systems rely upon user profiles that
indicate the general information types (but not necessarily
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the specific data items) that a user is interested in receiv-
ing. For users, profiles are a means of passively retrieving
relevant information. A user can submit a profile to a push-
based system once, and then continuously receive items that
are relevant to him or her in a timely fashion. From a sys-
tems point of view, profiles fulfill a role similar to that of
queries in database or information retrieval systems; in fact,
profiles are a form of continuously executing query.

1.1. Profile quality
The quality of user profiles is a key to making a push-

based system work. From the user’s point of view, there are
two potential problems. One is the precision problem: If a
large proportion of the items that the system sends to a user
are irrelevant, then the system becomes more of an annoy-
ance than a help. Conversely, if the system fails to provide
the user with enough relevant information, then the bene-
fit of push-based delivery is largely lost, because the user
will still have to actively hunt for information. This latter
problem is known as the recall problem. Both problems can
translate to unhappy users, which can ultimately render the
system worthless.

One contributing factor to profile quality is the language
used to describe the profiles. For unstructured or semi-
structured items such as web pages, it is notoriously diffi-
cult to formulate boolean (or relational) queries that return
result sets of manageable size. Such queries typically suf-
fer from the problems of either returning too many results,
or returning no results at all. Furthermore, the difficulty of
formulating effective queries grows with the size of the data
set [23].

For text-based data items, profiles based on natural lan-
guage techniques from Information Retrieval (IR) have been
shown to be reasonably effective at representing user infor-
mation needs. Even assuming a good profile representa-
tion, however, it is still quite likely that a user’s profile will
not provide adequate precision or recall with existing ap-
proaches. There are three main reasons for this. The first is
that existing approaches represent user interests in terms of
a single profile vector or multiple independent profile vec-



tors (e.g, SIFT [27], MyExcite [10]). Single vectors, as we
will demonstrate, are insufficient for adequately modeling
interests. Using multiple independent vectors, on the other
hand, results in redundant storage and processing of over-
lapping subscriptions, and overly broad specifications of in-
formation needs. Second, existing systems typically require
users to explicitly specify their profiles, often as a set of key-
words or categories. It is difficult for a user to exactly and
correctly specify their information needs to such a system.
Third, state-of-the-art large-scale information filtering sys-
tems are typically built on the assumption that users change
their interests only infrequently (e.g,. [19, 27, 10]). If the
profile does not keep up with the user’s information needs,
then precision and recall problems will quickly arise.

1.2. Basic approach and contributions

In this paper, we present a novel approach for repre-
senting, learning, and maintaining user profiles. The al-
gorithm is intended to support targeted dissemination of
loosely structured documents such as web pages to large
numbers of users. As such, it works well in an incremental
fashion, where web pages are presented to users individually
or in small batches.

A key feature that distinguishesour approach from previ-
ous work on user profile construction is that it uses a multi-
modal representation of user profiles; i.e., a profile is repre-
sented as a collection of (inter-related) clusters of user inter-
ests rather than as a single entity. The algorithm automati-
cally and dynamically adjusts the content and the number of
clusters used to represent a profile. Our algorithm is based
on relevance feedback [20, 22]: Users provide feedback to
the system about the data items that they have been sent (typ-
ically a binary indication of whether or not the item was con-
sidered useful). The system then uses this feedback to adjust
the user’s profile. This technique frees the user from the bur-
den of explicitly specifying the profile, and manually iden-
tifying and making profile changes, yielding higher quality
profiles [11]. Our algorithm is incremental; it receives user
feedback one at-a-time and modifies the user profile accord-
ingly. This incremental nature also allows the algorithm to
adapt profiles to cope with changes in user interests over
time.

Our approach to user profile construction utilizes a
single-pass, non-hierarchical clustering algorithm (see [12]
for a nice overview of clustering algorithms for information
retrieval). Clustering-based approaches have gained a lot of
attention lately and have been used in a variety of applica-
tions such as data mining (e.g., [28, 13]) and searching the
WWW (e.g., [17]). These approaches typically rely on ex-
pensive batch processing techniques that require all data to
be stored and available, which is clearly impractical in our
target environment and application.

The main contributions of this paper can be summarized

as follows: First, we propose a new self-adaptive profiling
approach that represents user interests as a dynamic set of
inter-related profile vectors. We demonstrate that our ap-
proach can be parameterized to adjust its tendency to gen-
erate more or less complicated profiles. This flexibility en-
ables our approach to trade off effectiveness and efficiency,
which, in turn, enables it to be tuned based on the require-
ments/characteristics of the target environment. Although
there has been significant research on user profiles (see Sec-
tion 6), our approach is unique in that it enables such a qual-
ity vs. efficiency tradeoff. Second, we describe how to effi-
ciently implement this approach by extending an incremen-
tal clustering algorithm with structures and operators specif-
ically designed for filtering environments. Third, we eval-
uate our approach by using a detailed experimental frame-
work based on WWW pages obtained from the Yahoo! topic
hierarchy [25], analyzing the effectiveness, efficiency, and
adaptability issues involved and comparing it to other al-
gorithms that are representatives of the existing related ap-
proaches.

The remainder of the paper is organized as follows: In
Section 2, we give an overview of the main issues related to
user profile construction for push-based data delivery, focus-
ing on relevance feedback. In Section 3, we describe our ap-
proach for profile constructionand maintenance. We discuss
the experimental environment and workloads used to test the
ability of the algorithm to recognize relevant web pages in
Section 4, and present the results of experiments based on
Yahoo! categories in Section 5. We discuss previous related
work in Section 6, and present our conclusions in Section 7.

2. Background
Effective profile management requires techniques for

representing data items and profiles, assessing the relevance
of the profiles to data items, and updating the profiles based
on user feedback. In this section, we briefly discuss these
issues in the context of a push-based data dissemination en-
vironment.

2.1. The vector space model
Unlike databases, in which all correct systems must pro-

vide the same answer to a given query on a given database,
information filtering systems can differ widely in the qual-
ity of filtering they provide. As such, comparing filtering
approaches requires more than simply measuring the effi-
ciency of the system. Rather, the effectiveness of the fil-
tering is a primary metric for comparing such systems. Ef-
fectiveness is typically measured using recall and precision.
Recall is the ratio of the number of relevant documents re-
turned to the user to the total number of relevant documents
that exist in the collection. Precision is the percentage of
the documents returned to the user that are actually relevant.
These two metrics are somewhat contradictory. For exam-



ple, to achieve perfect recall, a system could simply return
all the documents in the collection. Such an approach, how-
ever, would have terrible precision.

Our algorithm is based on the Vector Space Model
(VSM) [21]. In the VSM, text-based documents are repre-
sented as vectors in a high-dimensional vector space where
the value of dimensions are based on the words occurring
in the documents. Documents describing similar topics are
likely to be close to each other, as they possibly include com-
mon words. A profile can also be represented as a vector (or
a collection of vectors), which can be derived from the previ-
ously judged document vectors. In general, a profile vector
should have a position close to those of relevant document
vectors (in the vector space). If a new document is close
to the profile, then it will also be close to other documents
which are known to be relevant; thus, it will also be likely
to be relevant.

In the VSM, each document is represented as a vector of
term and weight pairs. If there are n distinct terms in a doc-
ument d, then d will be represented by a vector

V = ((t1; w1); (t2; w2); :::; (tn; wn))

In general, a term is a word that exists in the document, and
its weight, a non-negative value, is a measure of the relative
importance of the term in the document. The standard pro-
cess for computing the vector representation of a document
includes stop-list removal and stemming [12]. The weight of
a term is commonly calculated by its tf�idf (term frequency-
inverse document frequency) value:

wt;d = tft;d � log2(N=dft);

where wt;d is the weight of term t in document d, tft;d is
the frequency of term t in document d (i.e., term frequency),
dft is the number of documents that contain term t (i.e., doc-
ument frequency), and N is the total number of documents
in the collection. Length normalization is used to cope with
documents of differing lengths. This is accomplished by
computing the length of the vector and dividing the weights
of its terms by this value.

The angle between two vectors has been exploited as an
effective measure of content similarity, and many systems
use the cosine similarity measure to compute the similarity
among document and profile representations [12]. The co-
sine similarity between two vectors, v1 and v2, is based on
the inner (dot) product of v1 and v2, and can be formulated
as:

cosine(v1; v2) =
v1 � v2
jv1jjv2j

=

P
twt;v1 �wt;v2qP

tw
2
t;v1

�
qP

tw
2
t;v2

2.2. Relevance feedback
Relevance feedback is an effective information retrieval

technique that can be used to form query vectors based on

document contents [21]. The main idea is to use the docu-
ments that have already been evaluated by the user, empha-
sizing the terms that occur in relevant ones while deempha-
sizing those occurring in non-relevant ones in future formu-
lations of the same query. More formally,

Qi+1 = �Qi + �
X
d2R

vd � 

X

d2NR

vd;

where Qi is the initial query vector, Qi+1 is the modified
query vector, vd is a vector representation of document d,
�; �, and 
 are the feedback parameters to be set, and R
and NR represent the sets of relevant and non-relevant doc-
uments respectively. Several relevance feedback schemes
have been proposed, which mainly differ in the way they
set the parameters �; �, and 
. Among those, Rocchio rel-
evance feedback [20] is a well-known, effective scheme
which instantiates the feedback parameters as� = 1, � = 2,
and 
 = 0:5.

Traditional relevance feedback assumes that the docu-
ment collection is fixed and that all the documents relevant
to the query are available at the time of query reformulation.
This is referred to as a batch relevance feedback approach.
Batch approaches are not suitable for an information filter-
ing environment, where there is a continual stream of docu-
ments and a relatively fixed query (or profile). Thus, an in-
cremental approach is needed. Purely incremental feedback
can update a query (or profile) for each individual document
judgment that is received by the system. It is also possi-
ble to combine such judgments into groups and incorporate
each group using a single update. Allan [2] studied the effect
of group size on the effectiveness of incremental relevance
feedback (in a non-filtering environment). He showed that
effectiveness increases with group size, and that the highest
effectiveness was obtained using all the judgments at once
(i.e., in batch mode).

3. The multi-modal approach
We developed Multi-Modal (MM), a new approach for

automatically constructing and maintaining user profiles
based on user feedback. MM represents user profiles as a set
of vectors, the number, size, and elements of which change
adaptively. Specifically, MM represents a user profile P as
a set of profile vectors p1; p2; :::; pn where
pi = ((ti1 ; wi1); (ti2 ; wi2); :::; (tim; wim)); i = 1; 2; :::; n.
The number of profile vectors, n, and the size of a profile
vector, m, change over time based on the feedback pattern
obtained from user. Individually, each profile vector repre-
sents only a portion of a user’s information needs, e.g., a
relevant concept. Collectively, however, the profile vectors
model the user comprehensively.

3.1. Overview
In order to simplify the presentation, we first describe the

fundamentals of MM by describing a procedure for incre-
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Figure 1: Incorporating a document vector into a
profile vector
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Figure 2: Creating a new profile vector from a
document vector

mentally clustering document vectors. The basic idea is to
maintain clusters of document vectors, where each cluster
is stored as a single representative vector. The first docu-
ment vector is assigned as the first cluster. When a new doc-
ument is processed, its similarity with all the existing clus-
ters is calculated. If the similarity of the closest cluster is
greater than a threshold (specified by �), then the document
vector is incorporated into that cluster and the cluster repre-
sentative is repositioned (the influence of the new document
is controlled by a parameter, �). Otherwise, if the similarity
is smaller than �, the document vector is used to initiate a
new cluster.

MM builds upon this basic incremental clustering algo-
rithm with structures and operations specifically designed
for multi-modal profile construction in a filtering environ-
ment. In MM, each relevant document vector can either cre-
ate a new profile vector or be incorporated into an existing
profile vector. Non-relevant document vectors, on the other
hand, cannot create their own clusters as a profile represents
only the relevant concepts. However, they can be incorpo-
rated into other profile vectors. Two similar profile vectors
may be merged into a single one in order to avoid redun-
dancy and decrease profile size. A profile vector may also
be deleted (i.e., removed from the profile) if MM deems it
to be no longer representing a concept relevant to the user.
This deletion operation allows for fast adaptation when there
is a shift in user interests.

Notation Description
d document
vd vector representation of d
fd indication of user feedback for d (2 f�1; 1g)
P user profile
pi profile vector
� threshold value (2 [0:0; 1:0])
� adaptability value (2 [0:0; 1:0])

Table 1: Basic Notation

In the rest of this section, we describe MM in detail
(see [8] for a pseudocode of MM, and refer to Table 1 for
notation).

3.2. Constructing the profile

When a new relevance judgment, fd, for a document,
d, is received, MM first identifies the profile vector that is
most similar to vd. This profile vector, if it exists, becomes
the active profile vector, pact, of the profile (with respect to
vd). The document vector will have all its further interac-
tions with pact. The relevance of the profile to the docu-
ment is computed as the similarity between pact and vd (i.e.,
cosine(pact; vd)). If this similarity value is larger than a cer-
tain threshold, �, then the effect of the feedback is reflected
to the profile by incorporating vd into pact. The incorpo-
ration of vd into pact is accomplished by moving pact lin-
early according to parameter �. If fd is positive, then pact is
moved towards vd; otherwise, pact is moved away from vd.
Formally,

pact = (1� �) � pact + � � fd � vd

An example of incorporating a new document vector into a
profile vector is shown in Figure 1.1 If a document vector
falls within the shaded similarity circle for a profile vector,
then it is deemed similar enough and is eligible for incorpo-
ration in that profile vector. In this example, the document
vector vd falls inside the circle of p1, and p1 becomes the
active profile vector with respect to vd. It is possible that
the document vector falls inside multiple such circles. How-
ever, there can only be a single active vector at any time,
namely the one most similar to the document vector.2 The
document vector vd is then incorporated into p1 by pushing

1For illustration purposes, we show the vectors in a hypothetical 2-D
vector space. Note that this illustration shows relevance as the Euclidean
distance among vectors, which is not the way relevance is defined in MM.
Regardless of the relevance measure, however, the underlying principles
remain the same.

2In case of two or more vectors having the same similarity, one of them
can be selected randomly.



p1 closer to vd. Note that the size of the profile (i.e., the num-
ber of profile vectors) does not change as a result of an in-
corporation operation.

On the other hand, if the similarity between vd and pact is
smaller than � (i.e., vd falls outside of all similarity circles),
then vd is inserted into P as a new profile vector, and the
size of the profile increases by one. This case is illustrated
in Figure 2.

If P is empty when the feedback is received, MM checks
the sign of fd. If fd is negative, then the feedback is sim-
ply ignored (because the profile represents only the relevant
concepts); otherwise, vd is inserted into P as a new profile
vector.

3.3. Adjusting the profile size
When a new document vector is incorporated into pact,

the position of pact in the vector space changes. If two pro-
file vectors come close (enough) to each other in the vector
space, they represent similar (if not the same) concept(s).
Therefore, a single vector may potentially be sufficient to
represent the concept(s) that are represented by the two vec-
tors. The merge operation allows MM to avoid multiple
profile vectors redundantly representing similar concepts,
thereby allowing a more compact representation.

The merge operation checks whether a merge is possible
between pact and the other profile vectors. The profile vec-
tor closest to pact, pc, is identified and if the similarity be-
tween pact and pc is larger than �, pact and pc are merged.
The merge of the two vectors is performed in a way simi-
lar to that of incorporating a document vector to pact; pact
is pushed towards pc linearly, and pc is removed from the
profile. Recall that the parameter � defines how much pact
moves in the case of incorporating a document vector into
pact. In the merge case, however, the ratio of the strength
(see Section 3.4) of pc to the sum of the strengths of pact and
pc is used instead of �. Note that MM uses the same similar-
ity threshold, which defines the area of the similarity circles,
for all profile vectors (including the ones that are created as
a result of a merge operation).

We need to consider only the vector pairs containing pact
for merging. This is because the only profile vector that can
move to a new position (after any single feedback step) is
pact and the inter-vector distances for the other vectors do
not change. After the merge, however, the similarity be-
tween the combined vector and another profile vector may
be larger than �, requiring another merge. We do not con-
sider this situation and choose to allow only a single merge
operation in a single iteration for efficiency reasons. Other
merge operations, if any, are accomplished lazily in future
iterations.

3.4. Deleting the profile vectors
In addition to the merge operation described above, MM

uses a deletion operation that also reduces the profile size.

However, the primary reason for using the deletion opera-
tion is to effectively adapt to shifting interest patterns. Con-
sider a profile vector that represents concepts that the user
is not interested in anymore. In addition to the fact that the
vector is stored redundantly, the existence of the vector is
more likely to degrade the overall modeling effectiveness of
the profile than to improve it. MM identifies such vectors
and removes them from the profile.

MM utilizes negative feedbacks as indications of possi-
ble interest changes. If a document whose vector representa-
tion is similar to an existing profile vector has received neg-
ative feedback from the user, then MM records this event.
If such an event occurs sufficient times for the same profile
vector, then MM removes that vector from the profile.

In order to implement this operation, MM maintains sim-
ple statistics about the feedbacks for the documents that
were incorporated into each profile vector. Each profile vec-
tor is given a strength value (1.0 in our case) when the vector
is created. This value is updated each time a document vec-
tor is incorporated into the profile vector. The basic idea is
as follows: If the feedback for the document vector is posi-
tive, then the strength of the profile vector is increased; oth-
erwise, the strength is decreased. Strength modifications are
performed using a simple exponential decay function where
a positive constant, c, controls the decay rate. If the strength
of a profile vector drops below a certain deletion threshold
value, then the vector is removed from the profile. When
two profile vectors are merged, the resulting vector obtains a
strength value that is equal to the sum of the strengths of the
merged vectors. The details of the deletion operation, along
with illustrative examples, can be found in [8].

3.5. Discussion

There are two important parameters that control the way
MM behaves and thus have to be set properly. One of them
is the threshold parameter, � 2 [0:0; 1:0], which is mainly
used to decide whether a new document vector should be in-
corporated into an existing profile vector or should create a
new profile vector. This parameter can be used to control
the number of profile vectors. If � is set to 1.0, then all (dis-
tinct) relevant documents will form their own profile vec-
tors, achieving a very fine granularity user model, but ex-
ploding the profile size. At the other extreme, if � is set to
0.0, all vectors will be incorporated into a single profile vec-
tor and the number of profile vectors will always be one. In
this case, the overhead of profile management is extremely
low, however the effectiveness of the profile is limited. In
this paper, we are interested in intermediate values which
will provide an optimal effectiveness/efficiency tradeoff for
a given application.

The other important parameter is the adaptabilityparam-
eter, � 2 [0:0; 1:0]. As mentioned before, � controls the rate
at which the active profile vector is moved when incorporat-
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Figure 3: Converting web pages to document vectors

ing a new document vector into the existing profile. In other
words, � decides how fast the user profile adapts itself based
on feedback. If � is set to 1.0, active profile vectors will be
replaced by document vectors at each feedback, resulting in
maximum adaptation (i.e., memoryless mode). If � is set to
0.0, on the other hand, active vectors will not change with
feedback, and virtually no adaptation will take place.

4. Experimental environment
In this section, we describe our experimental environ-

ment and methodology for evaluating the MM algorithm.
More details can be found in [8].

4.1. Document collection
Due to the absence of WWW-oriented filtering work-

loads in standard suites such as TREC, we devised a bench-
mark using categories of web pages obtained from Ya-
hoo! [25]. More specifically, we used web pages referenced
from the top two levels of the Yahoo! category hierarchy
(which is formed by human editors). We chose ten top-level
Yahoo! categories and ten sub-categories (i.e., second-level
categories) for each selected top-level category. In the re-
mainder of this paper, we denote a top-level category i by
Ci, and a second-level category j categorized under Ci by
Cij, where i; j 2 [0; 1; :::;9]. We picked 900 pages uni-
formly distributed over all categories and converted them to
their vector representations using the process illustrated in
Figure 3. For each document vector we keep only the 100
highest-weighted terms. As in any learning study, we used
a subset of the documents as the training set, which is used
for learning purposes, and the remaining documents as the
test set.

4.2. User simulation
Filteringsystems developers typically rely upon the tech-

nique of user simulation in order to understand and quantify
the effectiveness of their solutions (e.g., [2, 15]). We simu-
late the behavior of a typical user by assuming that the user
is interested in a subset of our Yahoo! categories and gives
feedback correspondingly. Specifically, a simulated user is
assigned a synthetic profile (SP) consisting of a subset of the
categories. The simulated user gives positive feedback to a
document only if that document is classified under a cate-
gory that appears in her synthetic profile; all the other doc-
uments are given negative feedback. More formally,

fd =

�
+1 if catd 2 SP
�1 otherwise

where catd is the category to which document d belongs.
In our experiments, the synthetic profile is defined com-
pletely either by top-level categories or by second-level
categories; i.e., either SP � fC0; C1; :::; C9g, or SP �
fC00; C01; :::; C99g.

4.3. Methodology and performance metrics
We chose to base our evaluation methodology on the one

used in the routing track of the TREC benchmark suite [24].
The idea is to have the system score and then rank-order a
collection of documents based on their likelihood of rele-
vance to a particular profile. The experiments are executed
as follows. Each run starts by randomly selecting categories
to form a synthetic user profile of desired complexity. The
user profile is initialized to be empty.3 We then present the
documents in our training set to the system along with the
corresponding feedback values obtained from the synthetic
profile as defined in Section 4.2. After training is completed,
the profile algorithm is disabled (i.e., the profiles generated
are frozen) and the system is evaluated by having the profile
it generated score and rank-order a set of test documents that
it has not yet seen, based on their likelihood of relevance.

The main effectiveness metric used in the experiments
is a variant of non-interpolated average precision (niap),
which is a rank-based metric used in TREC. This metric in-
tegrates precision and recall values into a single effective-
ness measure. Given a ranking of documents in their pre-
dicted likelihood of relevance, niap is defined as follows:
Starting from the highest ranked document, the actual rel-
evant documents are counted. If the ith relevant document
has rank ri, then

niap =

P
i
ri

T

where T is total number of relevant documents in the test
collection. For example, assume that there are three relevant
documents in the test collection and the filtering system as-
signs the ranks 2, 4, and 6 to these documents, then

niap =
1=2 + 2=4 + 3=6

3
= 0:5:

In other words, niap computes the mean of the precision
values at each relevant document’s position in the ranked

3It is also possible to start the experimentswith initialized profiles. Such
an approach is more realistic in a real-world implementation as it could re-
duce the training time significantly, but would introduce an additional vari-
able into the study, namely, the quality of the initial profile.



list. With the example system, which operates at an niap
of 0.5, (on average) half of the documents it deems relevant
are in fact relevant to the user, while the other half are not.
Higherniap values imply better use of system resources and
higher user satisfaction. In the remainder of the paper, we
use the term precision to mean niap, unless otherwise spec-
ified.

In addition to precision figures, we also measure the size
of a user profile in terms of the number of vectors consti-
tuting the profile. This metric is important because it dic-
tates the storage requirements for profile management. Such
requirements can become a serious concern in a large-scale
filtering environment. As with document vectors, we repre-
sent each profile vector with (at most) 100 term and weight
pairs. The storage benefits for profile vectors, however, are
far more important than for document vectors as the lat-
ter are typically only retained for a short duration, while
profile vectors are stored and maintained for long periods
of time. Profile size also has implications on filtering effi-
ciency; larger numbers of profile vectors typically indicate
higher filtering times. The filtering cost, however, is not
linearly proportional to the number of vectors since well-
known indexing techniques are applicable.

5. Performance experiments

5.1. Algorithms studied

In this section, we present the results of our experiments
using MM for profiling WWW page interests. We also
present results for two other algorithms, namely (purely) In-
cremental Rocchio (RI) and Group Rocchio (RG). RG is
the incremental relevance feedback algorithm studied by Al-
lan [2] (see Section 2.2), which uses a group of judged docu-
ments for updating the profile using relevance feedback. RI
is a special case of RG where the group size is set to 1. We
adopted the Rocchio based formula used by Allan and cal-
culated the weights of the terms forming the profile vector
for RI and RG as

w(t)i+1 = w(t)i + 2wt;R �
1

2
wt;NR

wherew(t)i and w(t)i+1 are the current and the updated (af-
ter feedback) weights of term t in the profile, and wt;R and
wt;NR are the weights of t in relevant and non-relevant doc-
uments, respectively, as defined using the formulas given by
Allan:

wt;R =
1

jRj

X
d2R

belt;d

wt;NR =
1

jNRj

X
d2NR

belt;d

where belt;d is given by: belt;d = 0:4 + 0:6 � tfbelt;d � idft
with

tfbelt;d =
tft;d

tft;d + 0:5 + 1:5 � lend=avglen

idft = log(
N + 0:5

dft
)=log(N + 1)

where lend is the length of document d, and avglen is the
average length of documents in the collection.4 We use this
weight calculation method for all of the learning algorithms
studied here.

In order to determine appropriate training times, we in-
vestigated the learning rate of MM and observed that its ef-
fectiveness increases rapidly, and levels off somewhat after
seeing about 200 documents, but continues to increase. Af-
ter training with 400-500 documents, however, we observed
no significant increase in effectiveness. The RI and RG ap-
proaches stabilize slightly faster. Unless otherwise stated,
all the results presented here are taken after trainingwith 500
documents.

In all the experiments we present, we fix � at 0.2. We
conducted numerous preliminary experiments using various
settings of our experimental parameters. We observed that
�, if set in the range [0.1,0.3] had good performance for al-
most all cases, and found little difference in terms of the
precision values obtained for different settings of � in this
range. In all the experiments, the decay constant, c, is set to
0.5, and the deletion threshold is set to 1.0.

Experiments for all of the algorithms begin with an ini-
tially empty profile. The training set is then presented to the
system, followed by the test set, during which the experi-
mental results are obtained. The results presented in the fol-
lowing graphs are the average of at least four runs with (dif-
ferent) user interest categories randomly chosen according
to the specification of the workload under study.

5.2. Top-level filtering effectiveness
We begin by investigating the filtering effectiveness of

the three profile learning techniques using interest cate-
gories drawn from the top-level Yahoo! categories. Fig-
ure 4 shows the precision results for three different inter-
est ranges, covering 10%, 20%, and 30% of the documents
(i.e., one, two, and three top-level categories out of the 10 in
the database). For each interest range, the precision results
are shown for (from left to right) incremental Rocchio (RI),
group Rocchio (RG) with a group size of 10 documents, and
MM. As can be seen from the figure, the results are consis-
tent across all three interest sizes: MM provides the highest
precision, followed by RG, followed by RI.

4We computed the values for the collection-based parameters (e.g.,
avglen, dft) by statistical analysis of the document collection. In a real
filtering setting, however, this information must be collected incrementally
over time.
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Comparing the two Rocchio implementations, the results
show that (as mentioned in Section 2.2), the effectiveness of
relevance feedback increases with the group size. In fact, we
also ran these experiments using a batch version of Rocchio,
in which all 500 training documents were presented to the
algorithm at once. This approach, which represents a (non-
incremental) best case for Rocchio, had precision values of
roughly 3-4% more (in absolute terms) than RG in the three
cases studied here. Thus, our fully incremental algorithm,
which is presented with only a single document at a time,
significantly outperforms even the batch Rocchio approach.

Comparing the results for the three interest ranges in Fig-
ure 4, it can be seen that the benefit of MM over the oth-
ers grows as the number of categories in the profile is in-
creased. This behavior demonstrates a fundamental benefit
of the multi-modal approach. As more categories are added,
the number of profile vectors maintained by MM can be in-
creased, allowing the profile to automatically adjust in or-
der to model the increasingly disparate interests of the user.
In contrast, since the Rocchio algorithms maintain only a
single profile vector, the documents from the different cat-
egories must be lumped together, resulting in a less accurate
model of the user’s interests.5

5.3. Profile complexity
We also compared the algorithms using categories from

the second-level. This workload is likely to generate more
complex profiles as the relevant documents are chosen from
a wider, more disparate group of topics. The results are
shown in Figure 5. Qualitatively, the results are similar to
what was seen in the previous experiment with top-level cat-
egories. MM is the best, followed by RG, followed by RI.
All of the approaches have slightly lower precision here. In

5In fact, there is a slight improvement in precision for RI and RG as cat-
egories are added. This improvement can be attributed to the increase in
the percentage of relevant documents in the test set, which raises the prob-
ability of a page being identified as relevant by the single-vector-per-profile
approaches.

terms of the percentage decrease in precision compared to
corresponding top-level case, MM suffers the least of the
three algorithms, while RG has the highest relative drop.
Again, the flexibility of MM allows it to adapt to the more
complex workload. In this case, MM maintains a small
number of additional vectors (i.e., three or four) for each of
the workload sizes compared to the corresponding workload
size in the top-level case.

5.4. Threshold effects

The importance of maintaining multiple vectors is
demonstrated in Figure 6, which shows the precision
obtained by MM for the top-level categories using 10%,
20%, and 30% interest ranges, as the threshold parameter
� is increased. Recall that � determines the tendency for
MM to create new vectors. When � = 0:0, a single vector
is maintained, and MM performs similarly to RI. As � is
increased, MM becomes more likely to create additional
vectors. At an extreme value of � = 1:0 (not shown), MM
maintains a separate vector for each relevant document
presented to it. This case is similar to the nearest relevant
neighbor (NRN) method, which was studied in [11].

Keeping vectors for all relevant documents, however, is
not practical for an information filtering environment as the
number of documents presented to such a system grows
monotonically over the life of the system. Fortunately, as
is indicated in Figure 6, such a high setting for � is not nec-
essary. Beyond a value of approximately 0.15 (the default
value used in these experiments), the precision obtained by
the algorithm begins to level out. In fact, with high thresh-
olds, MM will be susceptible to over-fitting [18], which can
negatively impact effectiveness. Over-fitting is particularly
a problem in noisy environments such as the WWW. A fi-
nal argument for not retaining vectors for all documents is
adaptability. As discussed in Section 5.5, a key benefit of
MM is its ability to adjust to changes in user’s interests. An
approach that maintains vectors for all (or most) relevant
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documents ever seen would adapt much more slowly.
Figure 7 shows the number of vectors maintained by MM

for each of the three workloads as � is increased. Notice that,
for a given threshold, MM keeps more vectors as the num-
ber of relevant categories is increased; that is, as the per-
centage of relevant documents increases, more vectors are
needed to represent the concepts exemplified by those docu-
ments. Taken together, Figures 6 and 7 demonstrate how the
� parameter allows the MM algorithm to be tuned to trade
off precision for profile size. MM is capable of spanning
the range of algorithms from single-vectored Rocchio, to a
vector-per-document approach such as NRN. Unlike either
of those extreme algorithms, however, it allows for middle-
ground solutions that provide good precision while main-
taining moderate storage requirements and good adaptabil-
ity.

5.5. Interest changes
As stated in the introduction, an important requirement

for an incremental profile generation algorithm is that it
must be able to recognize and adapt to changes in users’ in-
terests. In this section, we evaluate the alternative learning
techniques in this light. We examine four types of changes:
partial and complete changes in the categories of interest,
addition of a new category to a profile, and deletion of an
existing category from a profile. As before, we compare the
MM, RI, and RG algorithms. In addition, we also measure
a version of MM, called MM-No Decay (MMND), in which
the decay function (i.e., the deletion operation) is disabled.
Recall that the Rocchio techniques have an implicit type of
decay in which the old vector is augmented with information
about new documents (see Section 2.2).

While we studied many different scenarios, due to space
considerations, we only show results from a single, repre-
sentative case here. For all experiments shown, MM was
run using the default values of � = 0:15 and � = 0:2. In
order to make a fair comparison in terms of the storage used
by RG and MM, RG was run with a group size of 100 doc-

uments.6 All of the results shown in this section were ob-
tained using the 20% top-level category workload (i.e., rel-
evant documents are chosen from two top-level categories).
To see how quickly the learning techniques adapt, we ini-
tially trained them using 200 documents. At that point, the
synthetic profile is changed instantaneously, and we mea-
sure how quickly the precision values obtained by the var-
ious techniques recover. In each of the graphs that follow,
we plot the precision as documents are presented to the sys-
tem.
Shifting interests. In these experiments, we study the
adaptability of the techniques when the number of cate-
gories in which the user is interested remains constant, but
the particular categories are changed. We show two cases.
Figure 8 shows the effectiveness of the learning techniques
in the case where one of the categories of interest is changed
(after the 200th document has been seen) while the other re-
mains fixed. That is, before the shift: SP = fCi; Cjg; while
after the shift SP = fCi; Ckg.

In this case, as before, MM (as well as MMND) initially
achieves higher precision than the Rocchio techniques. Af-
ter the shift, however, MM and RG recover (i.e., regain the
precision that they had at the shift point) fastest, followed
by MMND and RI. In fact, MM recovers slightly earlier
than RG here, but only because RG waits to collect an entire
group before changing the profile. Recall that larger groups
improve the effectiveness for Rocchio in the static case. In
the dynamic case, however, larger groups result in longer pe-
riods of lower effectiveness, which could have an impact on
user satisfaction in an information filtering environment. RI
adjusts reasonably well here, but its effectiveness remains
well below that of the MM approaches throughout the en-
tire document sequence.

Comparing MM and MMND, it can be seen that MM re-

6A group size of 100 requires somewhat more space than MM in this
case, which requires at most 66 vectors here. At a group size of 66 the pre-
cision of RG is within 2% of the values shown in these experiments.
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covers much faster than MMND (they have similar preci-
sion at the shift point). With decay, negative feedback accel-
erates the removal of the vectors representing the concepts
of the dropped category. Without decay, these vectors re-
main in place longer, impacting the precision results. Thus,
decay significantly improves the effectiveness of MM when
users interests change dynamically (which we would expect
to be the normal situation for many applications). Fortu-
nately, the fact that both MM and MMND have similar pre-
cision up to the shift point shows that using decay does not
harm the precision of MM in periods of static interests.

Figure 9 shows the effectiveness of the algorithms for a
more complete shift. In this case, the user’s interests are
completely changed at the shift point. More formally, before
the shift: SP = fCi; Cjg; and after the shift SP = fCk; Clg.
While this case is less likely to happen than the partial shift,
we use it to investigate the behavior of the algorithms in an
extreme case. Here, all the past relevance judgments are in-
valid; each algorithm has to realize this and forget all those
judgments in order to recover.

Comparing Figure 9 to the partial change case shown in
Figure 8, it can be seen that the MM approaches take longer
to recover in the more extreme case than they did in the
partial case. MM with decay recovers its original precision
somewhat more slowly than RG does here, but it is impor-
tant to note that even before it is fully recovered (i.e., af-
ter the 400th document), its precision is superior to that of
RG. Without decay, however, MMND recovers much more
slowly than in the previous case, and in fact, has lower pre-
cision than RG throughout the entire test range shown here.
In this case, the vectors existing prior to the shift point pro-
vide no valuable information, and thus need to be destroyed
as quickly as possible. Without a decay function, these old
vectors can influence effectiveness for a long time. RI ad-
justs reasonably quickly in this case, but its effectiveness re-
mains below that of MM throughout the entire experiment.

The previous cases represented fairly dramatic shifts in

user interests while keeping the number of categories in the
interest range constant. Such user behavior is not expected
to be likely in practice, but is useful for demonstrating the
tradeoffs of the different algorithms in the absence of effects
caused by changes in the size of the relevant document set.
We now briefly look at the case of more gradually changing
interests.

Adding and deleting interests. Figure 10 shows the case
where a new top-level category is added to an existing set
of interests (originally containing a single category); for ex-
ample, when a user becomes interested in a new hobby. That
is, before the shift: SP = fCig; and after the shift SP =
fCi; Cjg. In this case, since there is only an extension of the
user interests, the previous (positive) relevance judgments
remain valid. For this reason, there is no difference in the ef-
fectiveness and recovery time of MM and MMND. This re-
sult extends our earlier result that the decay function has no
negative influence during periods of static interests by vali-
dating that the decay function has no negative impact even
for changing interests as long as existing interests are not
dropped. RI and RG again demonstrate reasonable recov-
ery behavior but overall lower effectiveness. RG dominates
RI except for one small region (between the 200th and 300th
documents), during which RG is collecting a group of rele-
vance judgments before applying them to its vector.

Figure 11 shows the complementary case to the previous
one, in which a user is initially interested in two top-level
categories and then one of them is made irrelevant. For ex-
ample, a student’s interest in a category for a school project
can drop suddenly after that project is finished, people can
lose interest in a hot news story after it has become tiresome.
More formally, before the shift: SP = fCi; Cjg; and after
the shift SP = fCig. In this case, the results confirm what
we have seen before. In the presence of dropped interests,
the decay function of MM speeds recovery. The precision
of RG recovers quickly, but remains below (or in one case,
equal to) that of MM with decay.
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The results presented in this section revealed that, across
all the scenarios shown, MM provides the highest effective-
ness; it has higher precision for static situations, but also re-
covers fast enough to preserve its advantage when the user’s
interests change.

6. Related work
Publish/subscribe protocols have been a subject of in-

creasing interest in the database and data management com-
munities. Recent projects such as the C3 project at Stan-
ford [9], the CQ (continuous queries) project at OGI [16],
the Grand Central project at IBM Almaden [14], and the
DBIS project at Maryland and Brown [4] all contain a user
profile management component. To date, however, these
projects have not emphasized learning-based acquisition
and maintenance of profiles.

There has been significant research on text-based pro-
file construction in information retrieval community (e.g.,
[5, 1, 7, 3]), especially in the framework of TREC [24].
The main emphasis of TREC, however, has always been on
the effectiveness of the participating systems, rather than
on their efficiency. Most of the techniques used for these
tasks require batch processing of previously judged docu-
ments, imposing relatively high storage and computation
costs, and thus, making them inappropriate for large-scale
filtering environments. Furthermore, the documents used in
these benchmarks do not exhibit the wide variability typical
of web pages, making it difficult to extrapolate results from
these benchmarks to performance on the WWW.

The work most closely related to ours is that of Allan,
who studied the utility of relevance feedback for informa-
tion filtering environments [2]. He investigated the case
where only a few judged documents are available each time,
and showed that highly effective results can be achieved us-
ing relatively few judged documents. He also addressed the
significant issues of reducing storage requirements and cop-
ing with shifts in user interests that arise in an information

filtering environment. The main difference of our work is
the introduction of a parametric approach that adaptively
changes the number of vectors used to represent profiles.

Foltz and Dumais used Latent Semantic Indexing (LSI)
to derive a reduced dimensional vector space [11] and con-
structed a profile vector from each document judged as rele-
vant by the user. The relevance of a document to the profile
is then computed based on its cosine similarity to the closest
profile vector. Notice that their approach of having a sepa-
rate profile vector for each document of interest is a special
case of MM, namely, when threshold � is set to 1.0. Notice
that it is straightforward to generalize the approaches we de-
scribe here to use an LSI space rather than the regular (key-
word) vector space.

The approach taken by SIFT, which uses the pub-
lish/subscribe model for wide-area information dissemina-
tion [27, 26], requires users to explicitly submit their profiles
and update those profiles using relevance feedback. Our
approach differs from that of SIFT in its use of a set of
inter-related profile vectors whose contents and cardinality
change based on user feedback, and its ability to construct
profiles completely automatically. The advantages of auto-
matic profile construction were shown experimentally using
human subjects in [11]. These advantages were further val-
idated by extensive experimentation with INQUERY [6].

7. Conclusions
Push-based data dissemination depends upon knowledge

of user interests for making scheduling, bandwidth alloca-
tion, and routing decisions. Such information is maintained
as user profiles. We proposed a novel, incremental approach
for constructing user profiles based on monitoring and user
feedback. In our approach, a user profile is represented as
a set of vectors whose size and elements change adaptively
based on user feedback. We developed a set of workloads
based on the Yahoo! WWW categories and used them to an-
alyze our approach and compared it to approaches that have



been shown to have good effectiveness in other recent, re-
lated work.

Our experimental results showed that the multi-modal
approach has several advantages: 1) it is capable of pro-
viding significantly higher accuracy than a uni-modal ap-
proach; 2) it automatically and dynamically adjusts the num-
ber of vectors used to represent a profile based on feedback
that is provided to it incrementally, allowing the algorithm to
adapt to changes in user interests over time; 3) even in this
incremental mode, the approach provides more accurate re-
sults than a batch version of the more traditional approach,
which is widely used today; 4) the multi-modal representa-
tion of profiles combined with its incremental nature allows
it to be tuned to trade off effectiveness and efficiency, which
makes it suitable for use in large-scale information dissem-
ination systems.

Information Dissemination in general, and pub-
lish/subscribe systems in particular are becoming in-
creasingly popular. As these systems scale to larger and
more diverse user populations, efficient techniques for
managing and updating large numbers of user profiles will
become even more important. Also, profiling techniques
must be extended to cope with multi-media and to take
advantage of more structured data types as enabled by XML
and other emerging standards. These issues provide a host
of future research opportunities.
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