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High-order neural networks have been shown to have impressive computational, storage, and learning
capabilities. This performance is because the order or structure of a high-order neural network can be
tailored to the order or structure of a problem. Thus, a neural network designed for a particular class of
problems becomes specialized but also very efficient in solving those problems. Furthermore, a priori
knowledge, such as geometric invariances, can be encoded in high-order networks. Because this knowledge
does not have to be learned, these networks are very efficient in solving problems that utilize this knowledge.

1. Introduction

A key facility of neural networks is their ability to
recognize invariances, or to extract essential parame-
ters from complex high-dimensional data. The pro-
cess of recognizing invariants requires the construc-
tion of complex mappings, which utilize internal
representations, from a higher dimensional input
space to a lower dimensional output space. The inter-
nal representations of these mappings capture high-
order correlations which embody the invariant rela-
tionships between the input data stream and the
output.

Typically, an internal representation is constructed
from a group of first-order units via a learning rule
such as backpropagation. First-order units are units
which are linear in the sense that they can capture only
first-order correlations. They can be represented by

YA() = S [ W(ij)X0i)]

where x = {x(j)} is an input vector (bold type indicates
vectors), W(ij) is a set of adaptive parameters
(weights), N is the number of elements in the input
vector x, and S is an unspecified sigmoid function.

We suggest that the use of building blocks which are
able to capture high-order correlations is a very effi-
cient method for building high-order representations.
In many cases, greatly enhanced performance in learn-
ing, generalization, and knowledge (symbol) represen-
tation can be achieved by crafting networks to reflect
the high-order correlational structure of the environ-
ment in which they are designed to operate. Our
research in this area has focused on high-order units
which can be represented by the equations
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yi(X) = S[Wo(i) + E W1(ij)X(j)

+ E E W2(ijk)x(j)x(k) + . .. 1,
j k

where the higher-order weights capture higher-order
correlations. A unit which includes terms up to and
including degree k will be called a kth order unit.

We have investigated various topics with high-order
networks: learning and generalization, implementa-
tion of invariances, associative memory, temporal se-
quences, and computational feasibility of high-order
approaches.1-5 This paper is an introduction to the
forenamed work and that work should be consulted for
additional details and explanations.

11. Background

Early in the history of neural network research it was
known that nonlinearly separable subsets of pattern
space can be dichotomized by nonlinear discriminate
functions.6 Attempts to adaptively generate useful
discriminate functions led to the study of threshold
logic units (TLUs). The most famous TLU is the
perceptron,7 which in its original form was constructed
from randomly generated functions of arbitrarily high
order. Minsky and Papert8 studied TLUs of all or-
ders, and came to the conclusions that high-order
TLUs were impractical due to the combinatorial ex-
plosion of high-order terms, and that first-order TLUs
were too limited to be of much interest. Minsky and
Papert also showed that single feed-forward slabs of
first-order TLUs can implement only linearly separa-
ble mappings. Since most problems of interest are not
linearly separable, this is a very serious limitation.
One alternative is to cascade slabs of first-order TLUs.
The units embedded in the cascade (hidden units) can
then combine the outputs of previous units and gener-
ate nonlinear maps. However, training in cascades is
very difficult7 because there is no simple way to pro-
vide the hidden units with a training signal. Multislab
learning rules require thousands of iterations to con-
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verge, and sometimes do not converge at all, due to the
local minimum problem.

These problems can be overcome by using single
slabs of high-order TLUs. The high-order terms are
equivalent to previously specified hidden units, so that
a single high-order slab can now take the place of many
slabs of first-order units. Since there are no hidden
units to be trained, the extremely fast and reliable
single-slab learning rules can be used.

More recent research involving high-order correla-
tions includes optical implementations,9"10 high-order
conjunctive connections," sigma-pi units,12 associa-
tive memories,4 59 18 and a high-order extension of the
Boltzmann machine.'3

Il1. High-Order Neural Networks

A high-order neuron can be defined as a high-order
threshold logic unit (HOTLU) which includes terms
contributed by various high-order weights. Usually,
but not necessarily, the output of a HOTLU is (1,0) or
(+l,-i). A high-order neural network slab is defined
as a collection of high-order logic units (HOTLUs). A
simple HOTLU slab can be described by

Yi = S[net(i)]= S[TO(i) + T1(i) + T2(i) + T3(i) + * * * + Tk(i)I,(1)

where yi is the output of the ith high-order neuron unit,
and S is a sigmoid function. T,(i) is the nth order term
for the ith unit, and k is the order of the unit. The
zeroth-order term is an adjustable threshold, denoted
by Wo(i). The nth order term is a linear weighted sum
over nth order products of inputs, examples of which
are

Tl(i) = 3 Wl(ij)x(j), T2(i) = 3 3 W 2 (ij,k)x(j)x(k), (2)

i j k

where x(7) is the jth input to the ith high-order neuron,
and Wn(ij, ... ) is an adjustable weight which cap-
tures the nth order correlation between an nth order
product of inputs and the output of the unit. Several
slabs can be cascaded to produce multislab networks
by feeding the output of one slab to another slab as
input. (The sigma-pi'2 neural networks are multilevel
networks which can have high-order terms at each
level. As such, most of the neural networks described
here can be considered as a special case of the sigma-pi
units. A learning algorithm for these networks is gen-
eralized back-propagation. However, the sigma-pi
units as originally formulated did not have invariant
weight terms, though it is quite simple to incorporate
such invariances in these units.)

The learning process involves implementing a speci-
fied mapping in a neural network by means of an
iterative adaptation of the weights based on a particu-
lar learning rule and the network's response to a train-
ing set. The mapping to be learned is represented by a
set of examples consisting of a possible input vector
paired with a desired output. The training set is a
subset of the set of all possible examples of the map-
ping. The implementation of the learning process
involves sequentially presenting to the network exam-

ples of the mapping, taken from the training set, as
input-output pairs. Following each presentation, the
weights of the network are adjusted so that they cap-
ture the correlational structure of the mapping. A
typical single-slab learning rule is the perceptron rule,
which for the second-order update rule can be ex-
pressed as

W 2(ij,k) = W 2(ijk) + [t(i) - y(i)]x(j)x(k). (3)

Here t(i) is the target output and y(i) is the actual
output of the ith unit for input vector x. Similar
learning rules exist for the other Wi terms. If the
network yields the correct output for each example
input in the training set, we say that the network has
converged, or learned the training set. If, after learn-
ing the training set, the network gives the correct out-
put on a set of examples in the training set that it has
not yet seen, we say that the network has generalized
properly.

Another learning rule which we have investigated is
the outer product rule, sometimes referred to as the
Hebbian learning rule. In this form of learning, the
correlation matrix is formed in one shot via the equa-
tions:

Np
W 2(ij,k) = 3 [yS(i) - y(i)I[xs(J) - x(j)I[xs(k) - x(k)],

s=1

y(i) = ys(i)]/Nps x(J) = [a xs(i)]/Np,

where Np denotes the number of patterns in the train-
ing set. The training set is denoted by I(xs,ys)ls e
(1,Np)}, and y and x are the averages of ys and xs over
the training set. In cases in which x is nearly zero
[which often is the case when (+1,-i) input encoding
is used], simplicity may be gained in the above equa-
tions at the expense of a small reduction in perfor-
mance by setting the x and y terms to zero. This
illustrates the reduction in computation often
achieved with the proper choice of data representa-
tion. (Unless otherwise specified, all training patterns
discussed in this paper are represented by +1's in a -1
background.) Analogous equations hold for other or-
ders.

IV. Learning the EXCLUSIVE-OR

Learning the EXCLUSIVE-OR (see below) has been
the classic difficult problem for first-order units be-
cause it is the simplest nonlinearity separable prob-
lem. Training a hidden unit to perform this function
requires thousands of iterations of the fastest learning
rules.

EXCLUSIVE-OR

x(1) x(2) t(x)
1 1 1
1 -1 -1

-1 1 -1
-1 -1 1

An alternative method is to use a fixed hidden unit.
An equivalent approach is to train a second-order unit
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to solve this problem. The training set consists of the
EXCLUSIVE-OR values given above. Consider a sec-
ond-order unit of the form:

y(x) = sgn[W 1 (1)x(1) + Wl(2)x(2) + W2 x(l)x(2)], (4)

with the learning rules:
WV(i) = W(i) + [t(x) - y(x)]x(i),

W = W2 + [t(x) - y(x)Jx(1)x(2).

Here, t(x) is the correct output for input x = (bx 2).
The signum function becomes sgn[xl, which is defined
as +1 when x > 0 and -1 when x < 0. The second-
order term is equivalent to a handcrafted hidden unit,
so that the single second-order unit takes the place of a
two-layer cascade. Since there is no correlation be-
tween x1 or x2 and the desired output t(x), the W(i)
terms average to zero in the learning process. Howev-
er, since x(1)x(2) is perfectly correlated with t(x), W2 is
incremented positively at each step of the learning
procedure, so that the training process converges in
one iteration to the solution W,(i) = 0 and W2 > 0.
One iteration is defined as training of the network over
all members of the training set. This high-order unit
will learn an arbitrary binary map in one iteration of
the above learning rule.

V. Implementation of Invariances

In high-order networks it is possible to handcraft the
units such that their output is invariant under the
action of an arbitrary finite group of transformations
on the input space.2 A unit is invariant under the
action of a transformation group G = {g}iff:

y(gx) = y(x) for allg s G. (5)

This invariance is imposed by averaging the weight
matrices over the group, thus eliminating the unit's
ability to detect correlations which are incompatible
with the imposed group invariance. In particular, we
can handcraft a G-invariant unit from the HOTLU
described by Eq. (1). This handcrafted unit is de-
scribed by the equation

y(x) = S net(gx)] (6)

where the sum is over all members of the group G and
the net operator is defined as in Eq. (1). To see that
this unit is invariant under the group G, note that for
h E G, we have

y(hx) = S [ net(ghx) = [3 net(g'x)l = y(x), (7)
geG J [G J

where we have made the substitution g' = gh. The
second step follows from the fact that a sum over g =
g'h-1 is equivalent to a sum over g', since multiplying
all terms in a sum over a group by a member of the same
group simply results in a permutation of the terms in
the sum. In some important cases, this averaging
process allows a collapse of the weight matrix when
redundant terms are eliminated, analogous to the re-
duction in dimension which occurs in the transforma-
tion from absolute to relative coordinates.

As an example of the power of using the group invari-
ance operators, we will use the sign-change group as an
alternative solution to the EXCLUSIVE-OR problem.
The EXCLUSIVE-OR is invariant under the action of
the sign-change group, members of which are denoted
by Si,i e {1,2}}:

SoMxM)} = X(j), S1lx(j)) = -X(1).

Averaging the sign-change group over the second-
order unit of Eq. (4) yields the simplification

y(x) = S WI(j)[x(j) - x(j)] + Wjx(1)x(2) + x(I)x(2)]}

= S2W 2 x(1)x(2)j.

The problem is essentially solved; all that remains is to
determine the sign of W2.

Let us now illustrate the implementation of transla-
tion invariance in a more intuitive fashion. Suppose
we are given a second-order unit described by the
equation

y(x) = SA[3 W2(Jk)x()x(k) +

We wish to determine what constraints must be placed
on the W matrix in order to ensure that the unit's
output y is invariant under the transformation group
T. Define T = {g(m)} such thatg(m)x(k) = x(m + k).
If we apply this group operator to the previous equa-
tion, the result is

y[x = y[g(m)x] for all g(m) T.

Expanding the right-hand side of this equation yields

y[g(m)xJ = S Z W2(ijk)X(j + m)x(k + m)+...

= [I W2(ij - m,k - m)x(j)x(k) + ..

where in the last step we have assumed either that
periodic boundary conditions are appropriate or that
edge effects are negligible. A comparison of the above
equations reveals that the constraint that must be
placed on W2 to ensure translation invariance is

W2 (j,k) = W2( - m,k - m) (translation invariance constraint).

To understand this condition, let us note that W2 is a
function of a pattern composed of two points located at
j and k. This constraint stipulates that W2 have the
same value when evaluated at any pattern (j - m,k -
m) which is a translated version of the original pattern
(j,h). In other words, to ensure translation invariance,
W2 must depend only on the equivalence class of pat-
terns under translation; then the weight function
W2(j,k) will not distinguish between any shifted pat-
tern in the input space. Such patterns are described
as translation-equivalent. This constraint can be gen-
eralized to implement any invariance under an arbi-
trary transformation group.

Another way of expressing the invariance constraint
derived in the previous paragraph becomes clear if we
note that the set of translation equivalence classes of
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two point patterns is given by the relative coordinate
dj = j - k. In other words, every possible value of dj

corresponds to a single equivalence class and vice
versa. We now note that this condition is equivalent
to constraining W2 such that it depends only on the
relative coordinate dj and not on the absolute coordi-
nates j and h (which would distinguish between differ-
ent patterns belonging to the same equivalence class).
This leads to the condition on W2 that

W 2(j,k) - W2 (dj) (translation invariance solution).

Thus, the implementation of translation invariance
in Eq. (1) is equivalent to redefining the correlation
matrices such that they depend only on relative posi-
tion dj and not absolute position j. The first- and
second-order invariant terms are

Tl(i) = W 1(i) 3 x(), T2 (i) =3 W2 (ildj) 3 x(j)x(7 + dj). (8)

j dj j

The expression for T, is not very interesting. A sum
over the input is, of course, translation-invariant. The
expression for T2 should not be surprising. Optical
processing has long known and used the translation-
invariant properties of the autocorrelation. What is
different here is that arbitrary scale factors W, and W2

are being learned by the neural network and W2
weights the autocorrelation. Optical implementa-
tions of this approach are discussed in Ref. 10.

An error-correcting perceptron learning rule for the
second-order term can be written as

W 2 (idj) = W 2 (i,dj) + [t(i) - y(i)] x(j)x(j + dj). (9)

An invariant outer product or Hebbian rule can also be
easily formulated. A single unit may have both invari-
ant and noninvariant terms. Many other invariances
(including rotation and scale) can be implemented in
this manner. Simulations indicate that prior imple-
mentation of known invariances can be a very powerful
step in the adaptation of a network to a problem envi-
ronment.

We have implemented translation-invariant net-
works for both pattern recognition2 3 and associative
memory4 5 applications. The associative network's at-
tractors are localized patterns of activity which are
independent of their absolute position on the neural
slab. We conjecture that the implementation of in-
variances may be an important step in the construction
of neural network symbol processors.

VI. Competitive Learning

Competitive learning algorithms, discussed in Ref.
14, have the advantage that they are capable of classi-
fying input patterns without requiring a training signal
t(i) as in the supervised learning rules discussed above.
The drawback of most of these algorithms is that there
is no way to tell a priori if the classification categories
generated by the network will be useful or interesting.
In this section we discuss a method, based on group
theory, for handcrafting classification categories for
high-order competitive learning networks.

Since a group G-invariant HOTLU yields a response
that is dependent only on the equivalence class of the
input pattern, such a unit will naturally function as a
pattern classifier, with its classification categories de-
termined by the group G. Geometrical feature detec-
tors can be constructed in this way, provided we can
define the features as invariants of transformation
groups. Constructing an architecture in which each
unit of the network responds to a distinct feature in-
volves creating competition between the feature detec-
tors, together with training rules which prevent one
unit from capturing many features. Rules of this sort
are discussed in Ref. 14. Here we discuss an applica-
tion in which different units naturally capture distinct
categories.

Consider the problem of constructing a HOTLU
that will discriminate between horizontal and vertical
lines. Since these two pattern classes belong to differ-
ent equivalence classes under the translation group, a
translation-invariant HOTLU will yield one output for
all horizontal lines and another output for all vertical
lines. The probability that the outputs will be the
same is effectively zero given enough precision in the
training. However, ambiguous patterns such as diago-
nal lines will cause either of the outputs to respond.
The classifier network consists of two competing sec-
ond-order units with linear threshold functions, de-
scribed by the equations

(10)Yi(X) = 3 W2(i,di) 3 x(j)x(j + dj),

d i

where the subscript i = tJiy} represents position in a
2-D pattern. The tensor W2 is initialized randomly
and normalized, so that

dj
W2(i,dj) = 1 for i E (1,2). (11)

Both units are fed the same binary input pattern x,
where x e 1+1,-i), displayed on an N X N grid. The
input pattern set consists of a set of horizontal and
vertical lines presented in random order. The output
of the system, z, is arbitrarily defined to be 1 if Y1 > Y2
and 2 if Y2 > Yl. The casey, = Y2, which never occurred
in our simulations, would result in an error condition
and renormalization of the weights.

Simulations performed over randomly generated
presentations of the training set indicate that this
system (with few iterations over the training set) al-
ways yields a 1 for any horizontal lines and a 2 for any
vertical lines (or vice versa). The initial weights were
randomly chosen and the training set consisted of six
horizontal and vertical lines presented over a 6 X 6
grid. The two units can now be sensitized to their
respective pattern classes by updating the weights at
each input pattern presentation via the learning rule.
For each input pattern presentation, the unit whose
output y(i) is a maximum updates its weights with the
learning rule:

W'2[z(x),dji = W2[z(x),djl + AL 3 x(j)x(j + di),
I.

(12)

where AL (set arbitrarily at 0.5) controls the rate of
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learning. The unit whose output y(i) is a minimum
does not change its weights. The weights are also
renormalized at each step, so that Eq. (1) remains valid
for W2. The problem of one unit capturing both cate-
gories, which did not arise in this example, can be dealt
with in general by allowing the losing HOTLU to learn
also with a reduced AL value.

The learning process endows the system with the
capacity to generalize and sort arbitrary patterns ac-
cording to their degree of horizontalness or vertical-
ness. The translation invariance gives the net the
capability to discriminate only between different pat-
tern classes independent of the pattern position. The
capacity of generalization, involving the clustering of
equivalence pattern classes arises in this case from the
learning process. We speculate that this generaliza-
tion capacity could also have been implemented, how-
ever, by the imposition of a higher level invariance
constraint.'1 Although in this example we considered
only two-category classification, the architectures dis-
cussed can be readily expanded to classify N categories
with N output units.

It is useful to compare the capabilities of this high-
order translation-invariant neural net with the layered
first-order network in Ref. 12. The high-order com-
petitive network learned the problem with orders of
magnitude reduction in iterations and did not require
any additional special teaching patterns. Further-
more, Rumelhart, Hinton and Williams required a fac-
tor of 2 increase in the number of input and hidden
units.

VII. TC Problem

The TC problem involves distinguishing between a
shifted and rotated T and C. If the T and C are
represented as patterns embedded in a 3 X 3 square
array (as shown below), it is not difficult to see that one
must simultaneously inspect 3 squares in the array to
discriminate between these letters:

XXX xxx
X x
x XXX.

Thus, the TC problem as defined here is a third-order
problem.8 The training patterns consist of single let-
ters inscribed in 3 X 3 squares, each of which occurs in
an arbitrary position and orientation in a larger (10 X
10) spatial array. These training patterns are ran-
domly presented to the HOTLU. The correct classifi-
cation can be obtained with training over only a few
iterations of the training set using a pair of translation-
and rotation-invariant competitive HOTLUs as dis-
cussed above. Here we will examine another approach
which only learns the rotated letters by supervised
perceptron-like learning. The shifted patterns are not
learned in individual shifted positions, but from one
arbitrary position due to the encoded translation-in-
variant network. In this case the solution requires a
single third-order translation-invariant HOTLU with
short-range interconnects (a 3 X 3 window). Dynam-
ics are governed by the equation

yi(x) = sgn[, Zf W 3(i,dj1 ,dj2 )
dI l Od

E XUj)XU + dl)XU + dj2) , (13a)

with the weight update rule
W 3 (i,dj1 ,dj2 ) = W3 (idj 1 ,dj2 ) + [t(i) - y(i)

+ 3 xs(J)x(j + djil)xs(j + dj2). (13b)

The djl and dj2 sums are limited to the 3 X 3 window.
In general, for an m X m window, this architecture will
require less than m 2 k-2 adaptive weights, where k is the
order of the HOTLU. For initial random weights
values, the training procedure converges to a correct
set of weights in one to ten iterations. Note that all
known methods of solving this problem involving
training hidden units in cascades require more units
and adaptive weights, and utilize learning rules which
usually take at least thousands of iterations to con-
verge. (An alternate approach to the TC problem is to
put translation-invariant 2cd order weights in the in-
put layer of a single hidden layer feed-forward net-
work. The output layer weights are 1st order. Gener-
alized back propagation solves this problem with an
order of magnitude reduction in learning time com-
pared to the learning time taken for the same network
with only 1st order weights.19)

V1I1. Generalization in Neural Networks

An inductive inference problem, as characterized by
Angluin and Smith,'5 consists of five components:

(1) a rule to be inferred, generally characterized by a
set of examples;

(2) a hypothesis space, that is, a space of descrip-
tions such that any admissible rule can be described by
a point in the space;

(3) a training set, or a sequence of examples that
constitute admissible presentations of the rule;

(4) an inference method; and
(5) the criterion for a successful inference.
Roughly speaking, the generalization problem can

be stated as given a sequence of examples of the rule,
use the inference method to search through the hy-
pothesis space until a point is reached which satisfied
the criterion for successful induction.

The neural network generalization problem (as de-
fined here) is a special case of the problem outlined
above. An admissible rule in this case is a mapping
from a set of possible network input patterns to a set of
possible network output patterns. The hypothesis
space of a neural network is defined by the architecture
of the network; a point in hypothesis space is charac-
terized by a specific set of weights (or a point in weight
space). The training set consists of some subset of the
set of all input patterns for which the rule is defined
(together with the associated outputs). The inference
method is a learning rule which modifies the weights of
the network, generally in response to feedback infor-
mation on how well the network performed on a given
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Fig. 1. Generalization capability vs percentage size of training set

for the two-three clump discrimination problem using a second-

order neural network. The string length is Nx = 9. The upper
curve (circles) is for a second-order net with a second-order transla-

tion-invariantterm. The lower curve (squares) is for a second-order

neural network, no invariance.

example of the rule. The test of generalization con-
sists in training the network until it performs perfectly
on the training set, and then measuring its perfor-
mance on a set of examples that were not included in
the training set.

IX. Generalization and the Contiguity Problem

We have examined several types of contiguity prob-
lems; here we discuss one which we call the two-three
clump problem. Further details and simulations are
presented in Ref. 1. The performance of backpropa-
gation on this problem has been analyzed extensively
by other researchers.'6 In the two-three clump prob-
lem, the training set consists only of patterns which
have either two or three clumps, contiguous strings of
ones separated by non-ones (however for simulations,
+1's and -1's were used). The target output of the
unit is defined to be +1 for two-clump patterns and -1
for three-clump patterns:

two-clumps three-clumps
011001100 110011011

All versions of the contiguity problem are at least
second-order problems (see Ref. 8). Thus, learning
these problems with a neural net will require either a
cascade of first-order units or at least a second-order
unit. A first-order perceptron is capable of learning
the two-three clump problem with slightly more than
50% accuracy. 16 Backpropagation seems to generalize
very poorly on this problem, and requires thousands of
presentations in order to learn the training set.'6

We studied the two-three clump problem using a
second-order unit with terms To, T1, and T2, and the
training procedure described earlier [Eqs. (1) and (2)].
After initializing the weights with random values, the
unit was trained on a fraction of the data set with the
range of the second-order interactions R2 = 4 (i.e., the
range of the sum of dj over W2 never exceeded 4) and
the input pattern length Nx = 9. For Nx = 9, the
number of all possible inputs is 512. After training, we
made use of an iterative weight thresholding procedure
to reduce the noise in the final weight values. Follow-
ing the thresholding, the generalization capacity of the
unit was tested by counting the number of errors that

the unit made on the set of examples that were not
included in the training set. In Fig. 1 we have plotted
generalization capacity vs training set size for this
problem. The upper curve is the result with transla-
tion invariance imposed on the second-order weight
W2, and the lower curve is the result without transla-
tion invariance imposed. Without invariance, the
unit generalizes nearly perfectly for training sets as
small as l/8 of all possible inputs, but drops sharply to
85% accuracy for '/o of all possible inputs. Average
convergence times ranged from three presentations of
the training set for /2 of all possible inputs to ten
presentations for 'ho of all possible inputs. With in-
variance, the unit generalizes nearly perfectly for
training sets as small as '/o of all possible patterns, but
drops sharply to 85% accuracy for training sets with '/20

of the possible patterns. The average convergence
time was about three presentations for all cases with
invariance. Because the net must effectively simulate
a parallel edge counter to solve this problem, it appears
that translation invariance does not play an important
role when the training set is large.

An additional feature of this solution was that the
high-order neural network unit explicitly (not implic-
itly as in layered networks'2) generated an algorithmic
solution to the contiguity problem. By closely in-
specting the magnitudes of the weights, an explicit
formula emerges. If one pays attention to the large
magnitude weights and ignores the small magnitude
weights, the resulting network actually generates the
equation for a parallel edge-counter detector. This
should not be surprising since this net has been hand-
crafted to solve this problem. See Ref. 1 for further
details.

X. Generating High-Order Representations

The applicability of the high-order approach de-
pends on the system designer's ability to choose a set of
high-order terms which adequately represents the
problem task domain which is likely to be encountered
by the network. Building a network with all possible
2N combinations of N inputs is clearly unfeasible. We
have investigated several methods of choosing a repre-
sentative set of terms:

(1) Matching the order of the network to the order
of the problem. A single layer of kth order units will
solve a kth order problem (as defined by Minsky and
Papert8). Thus, if the order of the problem is known,
we can specify the order of the unit required to solve
the problem. Although the order of many hard prob-
lems such as speech recognition and visual pattern
recognition is unknown, it can be estimated.

(2) Implementation of invariances. If it is known a
priori that the problem to be implemented possesses a
given set of invariances, those invariances can be pre-
programmed into the network by the methods dis-
cussed earlier, thus eliminating all terms which are
incompatible with the invariances. For example,
speech recognition is invariant under temporal scale
and translation operations.

(3) Correlation calculations. One way to determine
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which terms will be useful is to calculate the correla-
tion matrices [Eq. (4)] for a representative sampling of
the mapping to be generated. The entries in the corre-
lation matrix which are largest in absolute value corre-
spond to terms which are highly correlated with the
output of the map, and thus are most likely to make an
important contribution to the network when the map
is implemented. Other smaller terms can be ignored.

(4) Generating representations adaptively. It is
possible to generate high-order representations by
progressively adapting the network to its problem en-
vironment. There are many adaptation methods
which12 may be applicable to this problem; generalized
backpropagation is an example of such a method which
generates high-order representations in a different
(multilayer) context. Applying gradient descent
methods to the problem of generating high-order rep-
resentations for single-layer architectures is very simi-
lar to the correlation calculation methods discussed
under (3) above. A suggested approach is to use the
capabilities of genetic search algorithms'7 for generat-
ing high-order representations.
Xi. Conclusions

By choosing a set of high-order terms which embod-
ies prior knowledge about the problem domain, we are
able to construct a network which can learn and gener-
alize very efficiently within its designated environ-
ment. By providing the network with the tools it
needs to solve the problems it expects to encounter, we
liberate the network from the difficult task of deciding
which tools it will need and then creating those tools.
This process constitutes a major part of the learning
procedure for networks utilizing backpropagation.
For example, in the contiguity problem, the second-
order terms of the form x(j)x(j + 1) explicitly encode
edge detection information; thus, the network only
needs to learn how to use these edge terms, not gener-
ate the edge detection terms itself. Since a human
uses edges to solve the contiguity problem (at least for
large strings), the network is solving the problem in a
similar fashion.

The drawback of the high-order approach is the
combinatorial explosion of high-order terms inherent
in a single-slab HOTLU. Various methods exist for
dealing with this problem: cascades of high-order
slabs, limitation of order, and reduced interconnec-
tions. In this paper we have discussed another meth-
od, which involves using prior knowledge of the prob-
lem domain to weed out the terms which have a small
likelihood of being useful. This method produces spe-
cialized networks which are very powerful in a limited
domain. We suggest that a general-purpose learning
network might be constructed from a number of spe-
cialized modules designed for specific types of tasks,
combined with more general networks to handle new
and unusual situations.
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