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Abstract

We introduce a simple and efficient method for clus-
tering and identifying temporal trends in hyper-linked
document databases. Our method can scale to large
datasets because it exploits the underlying regularity of-
ten found in hyper-linked document databases. Because
of this scalability, we can use our method to study the
temporal trends of individual clusters in a statistically
meaningful manner. As an example of our approach, we
give a summary of the temporal trends found in a scien-
tific literature database with thousands of documents.

1 Introduction

Over the past decade, the World Wide Web has be-
come an increasingly popular medium for publishing
scientific literature. Since many researchers release
preprints on the web, the scientific literature on the web
is often far more timely than a similar snapshot of paper
journals and proceedings, especially when one consid-
ers review and publication delays. As such, the scien-
tific literature on the web may represent one of the more
up-to-date characterizations of the state of a scientific
discipline.

While the web is rich with information about the
progress of science, gathering and making sense of this
data is difficult because publications on the web are
largely unorganized, they are not indexed as many pa-
per publications are, citation and impact counts are not
readily available, and differences in language and termi-
nology make text-based approaches problematic.

In this paper we consider clustering applied to online

scientific literature. Clustering scientific literature is an
important problem because it enables tasks such as es-
timating the amount of activity, growth, and decay in
different scientific areas, identifying the fragmentation
or merging of disciplines, and assisting a user in navi-
gating through a database.

Our approach to clustering uses the citation patterns
of a database to form soft clusters about the most fre-
quently cited papers. The soft clusters, in turn, can be
compared to one another in terms of the papers that they
have in common. Similar soft clusters are merged by
a secondary clustering algorithm. In the end, we find
the collections of documents that are all related to one
another by their citation patterns, with the cluster cen-
troid being the most often cited papers in the cluster
that were centroids in the first phase clustering. By ap-
proaching the problem in this manner, we can rapidly
calculate clusters for datasets with tens of thousands of
documents. Because our dataset is relatively large, we
are able to measure relative growth trends within clus-
ters in a statistically meaningful manner.

This paper is organized into six sections. In Sec-
tion 2, we discuss previous work related to citation anal-
ysis and give reasons why other approaches are inad-
equate for our task. Section 3 describes CiteSeer, the
largest database of full-text scientific literature that is
freely available, which we used for our study. In Sec-
tion 4, we describe our clustering algorithm with an em-
phasis on how the computational complexity of the algo-
rithm is reduced by exploiting the regularity in citation
patterns. Section 5 contains a summary of the results
obtained by running the proposed clustering algorithm
on the CiteSeer database. Finally, Section 6 gives our
conclusions and discusses future work.
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2 Previous Work

Co-citation analysis has been used extensively to map
and analyze scientific disciplines since the introduction
of the first such systematic computerized method by
Small and Griffith [13]. These systems gave insight
into the structure of disciplines and the interrelationships
among them. The data for the study described in [13]
was from the first quarter of the 1972 Science Citation
Index (SCI), published by the Institute for Scientific In-
formation, including citation information for scientific
papers from the physical, biological and medical liter-
ature. Documents that received less than 10 citations
were filtered out, resulting in a total of 1,832 documents.

The co-citation count is a similarity measure between
two documents based on how many other documents cite
the two documents, i.e. in how many reference lists the
two co-occur. In [13], co-citation counts were computed
for each pair of documents, and single linkage clustering
was performed. The study tested and provided support
for two hypotheses: disciplines of science exhibit struc-
ture and such structure can be discovered by employing
co-citation analysis. Co-citation analysis provides ad-
vantages over bibliographic coupling (a measure based
on the number of documents co-referenced by the doc-
uments for which the measure is computed). For exam-
ple, bibliographic coupling cannot identify related docu-
ments based on a given cited article if one of the related
documents was written prior to the date of the cited ar-
ticle (and hence the candidate cited article was unavail-
able for citing no matter how relevant). Co-citation in-
formation becomes richer over time as more papers are
published that cite given documents.

Garfield [2] describes the work behind the creation
of SCI and additional co-citation studies revealing the
structure of scientific disciplines.

McCain [8] uses authors rather than documents as a
unit of study, selecting a set of 58 authors from the field
of population genetics which are analyzed using clus-
tering with a correlation matrix derived from co-citation
counts, and multidimensional scaling to visualize the re-
sults. Both Ward’s clustering [14] and complete linkage
hierarchical clustering methods were used. The study
noted a problem where authors with more recent pub-
lications are discriminated against because the filtering
phase excludes all documents having citation counts be-
low a fixed threshold, irrespective of how long it has
been since the document was published and available for
citation.

Chen and Carr [1] used ACM publication data to an-
alyze the structure of hypertext literature, filtering out
authors that were cited less than five times during the
period of 1987 – 1998, resulting in 367 authors. An au-
thor co-citation matrix was constructed and converted

into a correlation matrix. Principal Component Analy-
sis (PCA) was used to extract factors to be plotted for
three sub-periods separately and for the entire period.
Visualization methods employed the use of colors that
identify the age of corresponding papers thus allowing
identification of emerging research directions. The au-
thors analyzed were ranked according to their loadings
to the factors produced by PCA (factors accounting for
most of the variance were considered).

Raghupathi and Nerur [10] analyzed 155 authors in
the field of artificial intelligence with data extracted
from the Science Citation Index for the period of 1980
– 1995. They used a similar technique to [1], finding 14
factors that were labelled manually.

Pitkow and Pirolli [9] used the method of [13] applied
towards sets of hypertext documents on the World Wide
Web, transferring the concept of scientific publication
citations to hypertext links on the web. 5,582 HTML
and 15,139 non-HTML documents were considered and
clustered using complete linkage hierarchical clustering
at different citation frequency thresholds (one, three, five
and ten).

In comparison with these studies, the method we
introduce here facilitates the analysis of much larger
datasets (the dataset we analyze has close to an order of
magnitude more documents than the largest dataset from
these studies), and addresses the issue of discriminating
against newer publications.

3 CiteSeer Data

We use the database of scientific literature created
by CiteSeer [5, 6], which is available at http://
csindex.com/. CiteSeer is currently the largest free
full-text index of scientific literature in the world, index-
ing over 250,000 articles focusing on computer science.
The CiteSeer software is available at no cost for non-
commercial use.

CiteSeer indexes articles found on the publicly index-
able web, on the homepages of researchers or on insti-
tutional technical report archives, and thus our analysis
relates to the body of computer science literature that is
available online, which is likely to differ from all com-
puter science literature.

CiteSeer differs from many online scientific literature
archives in that it performs Autonomous Citation Index-
ing (ACI), autonomously extracting and matching refer-
ences in bibliographies. As a result, CiteSeer contains an
implicit graph where papers are represented by vertices
and directed edges represent citations between papers.
In this way, relationships between papers can be identi-
fied independently of the textual content of the papers.

For the results reported in this paper we started with
150,000 documents from CiteSeer and then narrowed
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the dataset to highly cited papers and papers that were
co-cited with highly cited ones. The final dataset ana-
lyzed includes 31,428 papers in total.

Because we view the CiteSeer database as a graph,
the task of clustering is closely related to the graph par-
titioning and k-centroids problems, both of which are
NP -hard in the most general case. Given the size of the
dataset, and the difficulty of graph clustering, it is essen-
tial to use an efficient method such as the approach that
we discuss in the next section.

4 Efficient Graph Clustering

In the general case, graph clustering is a time con-
suming process because of the temptation to perform the
clustering in a way that requires similarities to be calcu-
lated for all vertices in a graph. The citations in scientific
literature are, however, far from random and very non-
uniform. As such, we make the reasonable assumption
that scientific disciplines form about influential papers,
and that citations to key papers are indicative of the com-
munity in which a paper should be naturally classified.
Thus, our approach is to reduce the dimensionality of
the problem by first identifying key papers that are cited
above some threshold.

One problem with using the raw citation count as a
measure of importance is that the older a paper is, the
heavier the bias for the paper simply because there has
been more opportunity for the paper to have been cited.
We account for this fact by using a normalized citation
count for each paper, where the normalization factor is
equal to the number of papers in our database that have
been published since the paper under consideration has
been published. We also note that our database is more
up-to-date than traditional databases of scientific liter-
ature since it includes conference papers and technical
reports that may have only been made available on the
web very recently. In this way, new influential papers
can be upwardly adjusted while older papers with fewer
citations over time are downwardly adjusted.

The next step of our algorithm is to create a soft clus-
ter around each influential paper (where an “influential
paper” is a paper that has a normalized citation count
in excess of the threshold). Other papers are assigned
to the soft cluster if they are co-cited along with the in-
fluential paper. Intuitively, the soft clusters contain any
paper that any author deemed related to the seed paper.

After creating the soft clusters, we then calculate a
similarity measure between the clusters. The similarity
measure we use between two soft clusters, A and B, is

jA \ Bj

jAj+ jBj � jA \ Bj
:

Thus, in set terminology, the similarity is defined by the

number of elements in common divided by the number
of disjoint elements.

Once a similarity matrix is calculated with respect
to the soft clusters, a traditional clustering algorithm is
used on the reduced dataset to cluster the papers into an
even smaller set. Readers may wish to consult Table 1
which contains the complete algorithm.

For our experiments, we used a threshold of 100 ci-
tations to decide if a paper should serve as a soft cluster
centroid. This value was chosen ad hoc and we found
that other values gave similar results. This choice pro-
duced 475 soft cluster centroids. Once the soft clusters
were chosen, we then assigned all other papers in the
dataset to one or more soft clusters, as shown in lines
12–15 of our algorithm. Thus, the citation graph is re-
duced from a 150,000 squared adjacency matrix to a 475
by 150,000 soft cluster matrix. We further reduce the
problem by calculating the similarity measure between
all soft clusters, which results in a 475 by 475 symmetric
matrix.

At this point, the 475 by 475 matrix essentially
contains similarity information of the research threads
around the most influential papers in the dataset. We
argue that this form of dimensionality reduction retains
much of the information of how the most influential pa-
pers relate to one another and, as a result, contains most
of the information for how scientific disciplines are or-
ganized. Moreover, the similarity measure implicitly
contains information about rarely cited papers, since any
paper that co-cites two influential papers will make the
corresponding soft clusters have a higher degree of sim-
ilarity.

Regarding the final step of the algorithm, any stan-
dard clustering algorithm can be used. We chose Ward’s
hierarchical clustering [14, 3] as it seems, based on den-
drogram inspection, to better represent clusters for this
data set, and does not exhibit the problem of singletons
as much as single linkage does.

Ward’s clustering is an agglomerative hierarchical
clustering technique that tends to locate compact and
spherical clusters. It is one of the variance minimiza-
tion techniques, such as k-means [7]. While k-means
requires the desired number of clusters to be specified in
advance, Ward’s technique allows the posterior choice
of the desired level of cluster generality. A “success-
ful” cut-off-level to cut the hierarchy can be chosen by
visually inspecting the hierarchy dendrogram.

We propose a new way to naturally decide the cut
level for the hierarchy; the cut-off level is determined by
examining the “heights of merges” plot (see [3]) where
we can see that the merge levels grow very slowly until
a certain point where the levels start growing very fast,
which indicates a good point to cut. For our experiments
the cut at this point produced 15 clusters. One of these
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1 procedure EFFICIENT-GRAPH-CLUSTER(graph: G = (V; E))
2 f Find most highly cited papers normalized by publications for year . g
3 C  fg
4 for all fv 2 V g do
5 norm number of papers published after v
6 norm-cite(v) jf(u; v) 2 Egj=norm
7 if norm-cite(v) > threshold then
8 C  C [ fvg
9 end if

10 end for
11
12 f Assign papers to soft cluster if they are co�cited . g
13 for all fv 2 Cg do
14 Sv  fx : 9y (y; x) 2 E ^ (y; v) 2 Eg
15 end for
16
17 f Calculate similarity measure for all pairs c 2 C . g
18 for all fx 2 Cg do
19 for all fy 2 Cg do
20 Mxy  jSx \ Syj=(jSxj+ jSyj � jSx \ Syj)
21 end for
22 end for
23
24 f Cluster reduced similarity matrix . g
25 CLUSTER(M )
26 end procedure

Table 1. The Efficient Graph Clustering Algorithm.

clusters was large and appears to contain a combination
of topics, while the remaining clusters appear to cover
well-defined topics.

The titles of the papers in each of 15 clusters are
stemmed and the highest frequency words are used to
characterize the clusters. Stop words are excluded.

5 Regression Analysis and Experimental
Results

After clustering is complete, we perform linear re-
gression analysis on the frequency for each year of pub-
lication for the papers in each cluster, in order to analyze
the rate of growth for each cluster.

Most of the 15 clusters obtained have small p-values
for the regression fits, which indicate that the general
trend of the clusters is not flat over time. (The p-value
represents the probability that the slope coefficient of a
fitted model is equal to zero, i.e., when there is no trend
in a corresponding cluster relative to the growth of all
of the dataset). Table 2 summarizes the sizes, regression
results and aggregate indegree (number of citations) in-
formation for the clusters, while Figures 1 and 2 show
the actual regression fits.

Clusters 10, 11, 12, and 14 have relatively large p-

values due to the data points lying almost parallel to the
x-axis, i.e. we can conclude that the slope coefficient is
zero and there is no trend relative to the entire collection
of the documents. The linearity assumption of linear re-
gression is largely violated in clusters 1 and 2 due to the
clusters’ small sizes, but the trends can be still identified
by visualizing the graphs.

Figure 3 shows an MDS (multidimensional scaling)
plot of the clusters along with the most frequent terms in
each cluster. MDS [4] creates a visualization that aims
to display points in a lower dimensional space so that
the proximity of points in the resulting space reflect as
closely as possible the proximity of points in the original
space.

Table 3 shows the top cited papers that were centroids
in the first clustering phase.

Regression analysis was run with the normalized fre-
quencies of the years. The normalization factor was
computed based on all 150,000 documents, therefore the
growth and decline coefficients are indicative of growth
and decline relative to the whole data set, and not only
to the papers that were chosen to participate in the ex-
periment (the papers chosen are those that were co-cited
at least once with the 475 most cited (adjusted) papers;
there are 31,428 such papers). As a result, most of the
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# Size avAdjIn avAbsIn RegSlope (10�6) Interc (10�6) p-value
1 17 47.5 5.2 10.1 - 25.48 0.021
2 43 120.8 38.1 4.92 0.84 0.055
3 277 42.7 16.8 2.11 9.84 0.006
4 309 34.1 11.3 3.62 2.14 0.000
5 1079 46.9 18.7 2.36 9.32 0.002
6 268 121.5 24.8 2.27 8.40 0.000
7 374 58.1 18.1 4.70 - 1.20 0.001
8 1323 38.1 15.7 0.90 14.0 0.042
9 1954 29.3 15.0 - 4.52 46.7 0.001
10 2810 29.4 11.4 0.28 18.5 0.131
11 2631 32.3 13.5 - 0.30 22.8 0.393
12 2968 42.5 12.7 - 0.24 21.8 0.153
13 5693 36.0 13.0 - 1.29 27.8 0.001
14 18841 26.8 9.7 - 0.61 24.6 0.087
15 5181 23.5 11.3 - 3.04 36.1 0.000

Table 2. Cluster summaries. avAdjIn is the average adjusted indegree of the cluster (average
number of citations to papers in the cluster), avAbsIn is the average absolute indegree of the
cluster, RegSlope is the coefficient of the Year in the linear regression model, and Interc is the
intercept in the linear regression model.

clusters show relative growth, and just 2 clusters exhibit
significant declines—clusters 9 and 15.

The decline of cluster 9 confirms previous prototype
analysis based on another clustering technique; this clus-
ter’s theme is “languages, compilers, garbage collec-
tion”.

The most rapidly growing cluster is cluster 7 (among
significant fits). Cluster 7 contains 374 articles, and rep-
resents the themes of “machine learning, text classifica-
tion, and web semistructured data querying.” Clusters
3 and 10 (cluster 7’s closest neighbors) also pertain to
machine learning but lack the web orientation.

The second most rapidly growing field is represented
by cluster 4; it includes papers mostly on wavelet es-
timators. The size of the cluster is 309 and the word
“wavelet” appears in 173 of the titles.

We also noted that clusters of larger sizes often show
trends (i.e. have slope sufficiently far from zero), e.g.
clusters 9 and 15; however large clusters do tend to grow
closer to the rate of the entire dataset in general. (Note
the “cluster” of clusters in the upper left corner of the
MDS plot, they all have growth rates close to that of the
entire dataset, their themes are “neural networks, web
querying, and association rule mining.”)

On a more abstract level, we note that the MDS plot
clearly separates software and hardware communities,
with clusters 14, 9, and 6 serving as liaisons: 14 - due
to the large size of the cluster, 9 - “languages, compilers
and garbage collection”, and 6 - “distributed networks,
protocols, corba, middleware”. The “cluster” of clusters
1, 4, and 2 are more mathematical than the rest.

Cluster 15 is very close by similarity metrics to clus-
ter 5 with the latter exhibiting significant relative growth.
This is an interesting finding that deserves further inves-
tigation — the clusters have a high similarity between
them (clusters are soft) with one clearly declining and
another clearly growing (relative to the entire dataset).
At a first glance both clusters appear to cover the topic
of network computing. The clusters have 250 papers in
common (the sizes of the clusters are 1,079 and 5,184
respectively). To see what accounts for such a big dif-
ference in growth rates, we chose the 50 most frequent
words from the titles of the papers of each cluster (with
stop words removed), and we intersected these two sets
and analyzed their overlap and disjoint members (Table
4).

While sharing the common topic of networking and
parallel computing (the size of the intersection is 28
terms), there is clear difference in the orientation of
the two clusters - the growing cluster (number 5) is
heavily oriented toward web computing (with frequent
terms such as www, mobile, proxy), whereas the declin-
ing cluster (number 15) represents research in parallel
computing concerning more “local” issues such as ma-
chine clusters, multiprocessors, languages (compiling),
and multithreading.

6 Summary and Future Work

We have introduced a method for clustering and
identifying temporal trends in scientific literature. The
method allows for the identification and description of
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Figure 1. Regression fits for clusters 1–8.
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Figure 2. Regression fits for clusters 9–15.
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# Titles of most cited (time adjusted) papers
1 Multistep Approximation Algorithms: Improved Convergence Rates through Postconditioning with Smoothing Kernels

Numerical Solution of Variational Problems by Radial Basis Functions
On Smoothing for Multilevel Approximation with Radial Basis Functions

2 Rewriting Aggregate Queries Using Views
Rewriting of Regular Expressions and Regular Path Queries
Tableau Techniques For Querying Information Sources Through Global Schemas

3 MINERVA: A Second-Generation Museum Tour-Guide Robot
Map Learning and High-Speed Navigation in RHINO
The Interactive Museum Tour-Guide Robot

4 Wavelet-Based Statistical Signal Processing Using Hidden Markov Models
Nonlinear wavelet shrinkage with Bayes rules and Bayes factors
Wavelet threshold estimators for data with correlated noise

5 Generating Representative Web Workloads for Network and Server Performance Evaluation
Self-Similarity in World Wide Web Traffic Evidence and Possible Causes
Maintaining Strong Cache Consistency in the World-Wide Web

6 Software Architectures for Reducing Priority Inversion and Non-determinism in Real-time Object Request Brokers
The Design and Performance of a Real-Time CORBA Scheduling Service
Techniques for Optimizing CORBA Middleware for Distributed Embedded Systems

7 An Evaluation of Statistical Approaches to Text Categorization
Learning Information Extraction Rules for Semi-structured and Free Text
Text Classification from Labeled and Unlabeled Documents using EM

8 Mining Association Rules between Sets of Items in Large Databases
ROCK: A Robust Clustering Algorithm for Categorical Attributes
Implementing Data Cubes Efficiently

9 Dependent Types in Practical Programming
Type-Safe Linking and Modular Assembly Language
Pizza into Java: Translating theory into practice

10 Improved Boosting Algorithms Using Confidence-rated Predictions
Pattern Recognition and Neural Networks
A decision-theoretic generalization of on-line learning and an application to boosting

11 The Lorel Query Language for Semistructured Data
Querying Semi-Structured Data
Querying the World Wide Web

12 RAP: An End-to-end Rate-based Congestion Control Mechanism for Realtime Streams in the Internet
A Reliable Multicast Framework for Light-weight Sessions and Application Level Framing
RSVP: A New Resource ReSerVation Protocol

13 The Architectural Design of Globe: A Wide-Area Distributed System
ANTS: A Toolkit for Building and Dynamically Deploying Network Protocols
A Survey of Active Network Research

14 Tables Of Linear Congruential Generators Of Different Sizes And Good Lattice Structure
Geometric Range Searching and Its Relatives
A Method for Obtaining Digital Signatures and Public-Key Cryptosystems

15 High Performance Fortran Language Specification
MPI: A Message-Passing Interface Standard
Active Messages: a Mechanism for Integrated Communication and Computation

Table 3. The most cited papers in each final cluster that were centroids in the first phase
clustering.

clusters in a database of scientific literature, and pro-
vides an indication of the rate of growth of different re-
search areas. We have applied the method to a database
of 150,000 computer science papers from the CiteSeer
database.

The results of the proposed algorithm provide an
overview of the CiteSeer database consisting of 15 clus-
ters. These clusters were produced as the final phase
with initial clustering performed around the 475 most
highly cited papers, using normalized citation counts in
order to avoid discriminating against newer influential
papers. We have argued that scientific advancements

evolve around influential papers and that a scientific dis-
cipline can be characterized by a collection of such in-
fluential papers together with the papers that they are
co-cited with. The number of clusters chosen in practice
would depend on the goals of a study. Several topics at
a lower generalization level may be part of one larger
cluster produced by the analysis. If a higher granularity
is preferred a larger number of clusters should be cho-
sen. Multidimensional scaling plots were used to pro-
duce the mapping of the disciplines, which were labeled
with the most frequently occurring terms in the titles of
member papers.

0-7695-0659-3/00 $10.00 � 2000 IEEE 



Intersection 5 and 15 5 and not 15 15 and not 5
adapt

algorithm
analysi
applic

architectur
cach

commun
comput
consist

data
design

distribut
dynam
effici

environ
memori
model

network
object
oper

parallel
perform
protocol
scalabl
schedul
share

support
system

tcp
improv
inform
replic

widearea
www
disk

multicast
resourc
world
wide

file
mobil
manag
control
prefetch

proxi
traffic

internet
servic
server
web

gener
techniqu
interfac
runtim

workstat
virtual

approach
messag
cluster
machin
simul

multithread
processor

high
softwar
optim
evalu

languag
implement

compil
multiprocessor

program

Table 4. High frequency words (stemmed) in combinations of clusters 5 and 15.

Our graph clustering algorithm scales extremely well
by exploiting the underlying regularity of the citation
database. If scientific disciplines truly coalesce around
key papers, then our method of reducing the dimension-
ality of the problem should retain most of the important
information in the citation database.

Nevertheless, it may be possible for our approach to
fail to accurately characterize a hyper-linked database if
the database does not naturally have clusters that tended
around the most cited papers. For example, one could
easily construct degenerate pathological cases in which
citations are largely random and uniformly distributed.
In such a case, our algorithm would be dominated by
spurious graph vertices that happened to have a high in-
degree due to statistical fluctuation.

We also note that our approach partially fails in that
it forms one large cluster of items that appears to cover
several topics. This artifact may be a side effect of the
different policies that authors use for composing a bibli-
ography.

Future work will explore alternate clustering ap-
proaches for handling the large disconnected cluster and
pursue alternate similarity metrics for soft cluster sim-
ilarity and for seeding the initial soft clusters. There
are many ways of computing similarity between re-
search articles including the citation based methods like
co-citation and bibliographic coupling, and word-based
methods such as computing TF-IDF scores [12, 11]. We
are also planning to use a collection of refereed articles
classified by humans to further test our approach.
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