Lessonsn Neurl NetworkTraining: OverfittingMay be Harder thanExpectedProceedingsf the FourteentiNationalConferencen
Artificial Intelligence AAAI-97, AAAI PressMenlo Park, California,pp. 540-545,1997.Copyright AAAL.

Lessonsin Neural Network Training: Overfitting May be Harder than Expected

Steve Lawrencé, C. Lee Giles!, Ah Chung Tsoi?*
I NEC Research4 Independencivay, PrincetonNJ 08540,2 Faculty of Informatics,Uni. of Wollongong,Australia
{lawrence,giles}@research.nj.nec.com, Ah_Chung Tsoi@uow.edu.au

Abstract

For mary reasonsneuralnetworks have becomevery pop-
ular Al machinelearningmodels. Two of the mostimpor-
tant aspectof machinelearningmodelsare how well the
modelgeneralizego unseerdata,and howv well the model
scaleswith problem compleity. Using a controlled task
with known optimal training error, we investigatethe con-
vergenceof the backpropagatiorfBP) algorithm. We find
thattheoptimalsolutionis typically notfound. Furthermore,
we obsenre thatnetworks largerthanmight be expectedcan
resultin lower training andgeneralizatiorerror. This result
is supportecby anotherreal world example. We furtherin-
vestigatethe training behaior by analyzingthe weightsin
trainednetworks (excessdegreesof freedomareseento do
little harmandto aid corvergence) andcontrastingheinter-
polationcharacteristicef multi-layer perceptromeuralnet-
works (MLPs) andpolynomialmodels(overfitting behaior
is very different—the MLP is oftenbiasedowardssmoother
solutions).Finally, we analyzerelevanttheoryoutlining the
reasongor significantpracticaldifferences. Theseresults
bring into questioncommonbeliefs aboutneural network
training regarding convergenceand optimal network size,
suggestlternateguidelinesfor practicaluse(lower fear of
excessdegreesof freedom),andhelp to direct future work
(e.g. methodsfor creationof more parsimonioussolutions,
importanceof the MLP/BP biasandpossiblyworseperfor
manceof “improved” trainingalgorithms).

Intr oduction

Neural networks are one of the most popularAl machine
learningmodels,and much has beenwritten aboutthem.
A commonbelief is that the numberof parametersn the
network shouldbe relatedto the numberof datapointsand
theexpressie power of the network. Theresultsin this pa-
persuggesthatthecharacteristicsf thetrainingalgorithm
shouldalsobe considered.

Generalization and Overfitting

NeuralnetworksandotherAl machindearningmodelsare
proneto “overfitting”. Figurel illustratesthe conceptus-
ing polynomialapproximation.A training datasetvascre-
atedwhich contained21 pointsaccordingto the equation
y = sin(z/3) + v wherev is a uniformly distributedran-
dom variablebetween-0.25 and 0.25. The equationwas
evaluatedat 0,1, 2,...,20. This datasetvasthenusedto
fit polynomialmodelswith ordersbetween2 and20. For

* Copyright 1997,AmericanAssociationfor Atrtificial Intel-
ligence(www.aaai.og). All rightsresered.

order 2, the approximationis poor. For order10, the ap-
proximationis reasonablgood. However, astheorder(and
numberof parametersincreasessignificantoverfittingand
increasinglypoor generalizations evident. At order 20,
the approximatedunction fits the training datavery well,
however the interpolationbetweentraining pointsis very
poor. Overfitting canalsobe a very importantproblemin
MLPs,andmuchwork hasbeendevotedto preventingover
fitting with techniquesuchasmodelselection early stop-
ping, weightdecayandpruning.
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Figure 1. Polynomial interpolation of the function y =

sin(z/3) + v in therangeO to 20 asthe order of the modelis

increasedrom 2 to 20. v is a uniformly distributedrandomvari-

ablebetween-0.25and0.25. Significantoverfitting canbe seen
for orders16 and20.

Theory

The selectionof amodelsizewhich maximizesgeneraliza-
tion is animportanttopic. Thereareseveraltheoriesfor de-
terminingthe optimal network sizee.g. the NIC (Network
InformationCriterion)whichis a generalizatiorof the AIC
(Akaike InformationCriterion) (Akaike 1973)widely used
in statisticaiinferencethegeneralizedinal predictionerror
(GPE)asproposediy (Moody 1992),andthe VC dimen-
sion (Vapnik 1995)— which is a measureof the expressie
power of a network. NIC relieson a single well-defined
minimumto thefitting functionandcanbeunreliablewhen
thereareseverallocal minima(Ripley 1995). Thereis very
little publishedcomputationaéxperienceof theNIC, or the
GPE. Their evaluationis prohibitively expensve for large
networks. VC boundshave beencalculatedor variousnet-
work types. Early VC-dimensionwork handlesonly the
caseof discreteoutputs. For the caseof real valuedout-
puts,a more generalnotion of a “dimension” is required.



Sucha “pseudo-dimensiontanbe definedby considering
alossfunctionwhichmeasurethe deviation of predictions
from thetargetvalues.VC boundsarelik ely to betoo con-

senativebecausé¢hey provide generalizatiomuaranteesi-

multaneouslyor arny probabilitydistribution andary train-

ing algorithm. Thecomputatiorof VC bounddfor practical
networksis difficult.

Student-TeacherTask

To investigateempiricalperformanceve will useastudent-
teachetask(Craneetal. 1995)sothatweknow theoptimal
solutionandcancarefully controlthe problem. The taskis
asfollows:

1. An MLP with m; inputnodes;m; hiddennodesandm, out-
put nodes(the “teacher’network, denotedby m; : mp : my)
is initialized with uniform randomweightsin the range— K
to K exceptfor the bias weightswhich are within the range
(—0.1,0.1).

2. N, trainingdatapointsand Ve, testpointsarecreatedby se-
lecting Gaussiamandominputswith zeromeanand unit vari-
anceandpropagatinghemthroughthe network to find the cor
respondingutputs. V. is 5,000.

3. Thetrainingdatasetis usedto train nev MLPs (“student”net-
works),with thefollowing architecturem; : m}, : m,, where
m}, is variedfrom my, to M, where M >> my. Theinitial
weightsof thesenew networks aresetrandomlyusingthe pro-
ceduresuggestedn (Haykin 1994)(i.e. they arenot equalto
the weightsin the network usedto createthe dataset).Theo-
retically, if m}, > my, asit is throughoutthis paper thenthe
optimaltrainingseterroris zero(for the casewherenonoiseis
addedo thedata).

Simulation Results

This sectioninvestigateshetrainingandgeneralizatiorbe-
havior of the networksfor the student-teacheaskwith the
teachemetwork sizefixed but the studentnetwork sizein-

creasing.For all casesthe datawascreatedwith ateacher
network architecture20 : 10 : 1 (where20, 10,and1 were
choserto represena typical network wherethe numberof

inputsis greaterthanthe numberof hiddennodesandthe
specificvalueswerechosersuchthatthetotal trainingtime

of the simulationswasreasonable)andthe randomweight
maximumvalue, K, was1. The studentnhetworks hadthe
following architecture:20 : m}, : 1, wherem), wasvaried
from 10to 50. Theoretically the optimaltraining seterror
for all networkstesteds zero,asmj, > mj. However,none
of thenetworkstrainedhereobtainedthe optimalerror (us-
ing backpropagatio(BP) (RumelhartHinton, & Williams

1986)for 5 x 10° updates).

Eachconfigurationof the MLP was testedwith ten sim-
ulations, eachwith a different starting condition (random
weights). No method of controlling generalizationwas
used(otherthana maximumnumberof updates)n order

!Alternative optimizationtechniquege.g. conjugategradient)
canimprove corvergencein mary cases. However, thesetech-
niguesoften lose their adwantagewith larger problemsand may
sometimese detrimentalbecausehe training algorithmbiasin
BP maybebeneficial seelaterin the paper

to demonstrat¢his case(notbecauseave adwocatetheprac-
tice). All networks were trainedfor an identical number
of stochasticupdates(5 x 10°). It is expectedthat over

fitting could occur Theinitial learningrate was 0.5 and
wasreducedinearly to zeroduring training. We usedthe
standardMLP. Batchupdatewasalsoinvestigated- corver

gencewasfoundto be very poorevenwhentrainingtimes
were extendedby an order of magnitude. The quadratic
costfunctionwasused.

Consideringthat networks with morethan 10 hiddenunits

containmoredegreesof freedomthanis necessaryor zero
error, a reasonablexpectationwould be for the perfor

manceto be worse, on average,asthe numberof hidden
unitsis increased Figure 2 shows the training andtestset
errorasthe numberof hiddenunitsin the studentnetwork

is variedfrom 10to 50. Theresultsarepresentedisingboth

box-whiskersplots’ andthe usualmeanplusandminusone
standardieviation plots. We performedheexperimentsus-

ing threedifferentvaluesfor Ny,., the numberof training

points (200, 2,000and20,000). On average the bestgen-
eralizationerror correspondg$o networks with more than

10 hiddenunits (30, 40, and40 respectiely for Ny, = 200,

2,000,and 20,000% 4. The numberof parametersn the

networksis greaterthan 200, even for the caseof 10 hid-

denunits (the numbersof parametergism;, is variedfrom

10to50are(221,441,661,881,1101). It is of interestto

obsene the effect of noiseon this problem. Figure 2 also
shaws the resultsfor the caseof 200 training pointswhen

Gaussiamoiseis addedto the input datawith a standard
deviation equalto 1% of the standardieviation of theinput

data.A similartrendis obsened.

2The distribution of resultsis often not Gaussianand alter
natve meansof presentingesultsotherthanthe meanand stan-
darddeviation canbemoreinformative (Giles& Lawrencel997).
Box-whiskers plots (Tukey 1977) shaw the interquartilerange
(IQR) with a box andthe medianas a bar acrossthe box. The
whiskers extend from the endsof the box to the minimum and
maximumyvalues. The medianandthe IQR are simple statistics
which arenotassensitve to outliersasthe meanandthe standard
deviation. The medianis thevaluein the middlewhenarranging
the distribution in orderfrom the smallestto the largestvalue. If
the datais divided into two equalgroupsaboutthe median,then
the IQR is the differencebetweenthe mediansof thesegroups.
ThelQR containss0% of the points.

SCaruanaresentea tutorial at NIPS 93 (Caruanal 993)with
generalizatiorresultson a variety of problemsasthe size of the
networkswasvariedfrom “too small” to “too large”. “Too small”
and “too large” are relatedto the numberof parametersn the
model (without consideratiorof the distribution of the data,the
error surface, etc.). Caruanareportedthat large networks rarely
do worse than small networks on the problemshe investigated.
Theresultsin this paperpartially correlatewith that obseration.
Caruanasuggestethat“backpropignoresexcesgparameters”.

“This trendvariesaccordingo theteachenetwork size(num-
ber of inputs, hiddennodesandoutputs),the natureof the tamget
function, etc. For example, the optimal size networks perform
bestfor certaintasks,andin othercaseghe adwantageof larger
networkscanbe evengreater
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Figure2. Theerrorfor networkswith atopology20:mj,:1 using200 (with andwithout noise)and2,000training points. For 20,000points
(not shawvn) the resultsweresimilar to the 2,000pointscase.The graphson the left arethe training errorsandthe graphson theright are
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Theseresultsshouldnot be takento indicatethatoversized
networksshouldalwaysbeused.However, they doindicate
thatoversizednetworks maygeneralizevell. Additionally,

theresultsindicatethatif trainingis moresuccessfuin the
larger networks, thenit is possiblefor the larger networks
to alsogeneralizebetterthanthe smallernetworks. A few

obsenations:

1. It remainsdesirableto find solutionswith the smallest
numberof parameters.

2. A similar resultwould notbe expectedf a globally opti-
mal solutionwasfoundin the smallnetworks, i.e. if the
10 hiddenunit networksweretrainedto zeroerrorthenit
would be expectedthatany networkswith extra degrees
of freedomwould resultin worseperformance.

3. Thedistribution of theresultsis important.For example,
obsene in figure 2 that the advantageof the larger net-
works for 2,000training pointsis decreasedvhen con-
sideringthe minimumerrorratherthanthe meanerror.

4. The numberof trials is important. If sufiiciently mary
trials are performedthenit shouldbe possibleto find a
near optimal solutionin the optimal size networks (in
thelimit of aninfinite numberof randomstartingpoints,
finding a global optimumis guaranteedvith appropriate
initialization). Any advantage€rom usinglargersizenet-
workswould be expectedo disappear

5. Note that there hasdeliberatelybeenno control of the
generalizatiorcapability of the networks (e.g. usinga
validation setor weight decay),otherthana maximum
numberof updates.Thereare mary solutionswhich fit
the training datawell thatwill not generalizewell. Yet,
contraryto what might be expected the resultsindicate

thatit is possiblefor oversizechetworksto provide better
generalization. Successie pruning and retraining of a
largernetwork may arrive at a network with similar size
to the smallernetworks herebut with improvedtraining
andgeneralizatiorerror.

NotethatBP did notfind the optimalsolutionin ary of the
casegresentedhere. Also of interestis how the solution
found scaleswith problemcompleity. The parameterk’
can be controlledto investigatethis. As K is increased,
the function mappinggenerallybecomeanore “complex”
andless“smooth”. Experimentswith increasingK shov
that the solutionfound becomegrogressiely worsewith
respecto theoptimalerrorof zeroasK is increasedAnal-
ysis of the operationof BP (not givenhere)supportshese
results.

Degreesof Freedom Rulesbasednthe degreesof free-
dom in the model have been proposedfor selectingthe
topology of an MLP, e.g. “The numberof parametes in
the networkshouldbe (significantly)lessthanthe number
of examples” or “Each parameterin an MLP can com-
fortably store 1.5 bits of information. A networkwith more
thanthis will tendto memorizehedata” . Theserulesaim
to preventoverfitting, but they areunreliableasthe optimal
numberof parameterss likely to dependon otherfactors,
e.g.thequality of thesolutionfound, thedistribution of the
datapoints,theamountof noise,ary biasin thetrainingal-
gorithm,andthenatureof thefunctionbeingapproximated.
Specificrules,suchasthosementionedabove, arenotcom-
monly believed to be accurate. However, the stipulation
thatthe numberof parametersnustbe lessthanthe num-



berof exampleds typically believedto betruefor common
datasetsTheresultshereindicatethatthisis notalwaysthe
case.
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Figure 3. Facerecognitionexample: the bestgeneralizingnet-
work has364 timesmore parametershantraining points (18210
parameters).

FaceRecognitionExample This sectionpresentsesults
onrealdata. Figure 3 shows the resultsof training an

MLP to classify10 peoplefrom imagesof theirfaces. The

training setcontainss imagesper person for a total of 50

training pattern§. The testsetcontaineda differentsetof

5 imagesper person. A small window was steppedover

theimagesandtheimagesamplesat eachpointwerequan-
tized using a two dimensionalself-olganizingmap. The

outputsof the self-oiganizingmapfor eachimagesample
wereusedastheinputsto the MLP. In eachcase the net-

worksweretrainedfor 25,000updates.The networksused
containmary more parameterghanthe numberof train-

ing points (for hiddenlayer sizesof (6, 8, 10, 12, 14) the

numberof weightsis (7810,10410,13010,15610,18210))
yet the besttraining error andthe bestgeneralizatiorerror

correspondso the largestmodel. Note that a) generaliza-
tion hasnotbeencontrolledusing,for example avalidation

setor weight decay andb) overfitting would be expected
with sufficiently large networks and sufficiently “success-
ful” training.

When simulatedon serial machines,larger networks re-
quirelongertrainingtimesfor the samenumberof updates.
Hence,it is of interestto comparewhat happensvhenthe
smallernetworks aretrainedfor longerthanthelargernet-
works. For this and otherproblemswe have investigated,
trainingfor equaltimeratherthanequalnumberof updates
doesnot significantlyaffect theresultsor conclusions.

SThisis notproposechsa practicalfacerecognitiontechnique.

5Thedatabaseseds theORL databasevhich containsasetof
facesakenbetweempril 1992andApril 1994attheOlivetti Re-
searchLaboratoryin Cambridgeandis availablefrom http://-
www.cam-orl.co.uk/facedatabase.html. TherearelO dif-
ferentimagesof 40 distinct subjectsin the database.Thereare
variationsin facial expressionandfacial details. All theimages
aretaken againsta dark homogeneoubackgroundvith the sub-
jectsin anup-right,frontal position,with tolerancdor sometilting
androtationof up to about20 degrees.Thereis somevariationin
scaleof up to about10%. The imagesaregreyscale(256 levels)
with aresolutionof 92x112.

Polynomial and MLP Inter polation

Figure 4 shows the resultsof usingan MLP to approxi-
matethe sametraining setasusedearlierin the polynomial
approximationexample. As for the polynomial case,the
smallesinetwork with onehiddenunit (4 weightsincluding
biasweights),did not approximatehe datawell. With two
hiddenunits (7 weights),the approximationis reasonably
good.In contrasto the polynomialcasenowever, networks
with 10 hiddenunits (31 weights)and50 hiddenunits (151
weights)alsoresultedin reasonablygoodapproximations.
Hence for this particular(very simple)example,MLP net-
works trainedwith backpropagationio not leadto a large
degreeof overfitting, evenwith morethan7 timesasmary
parameters@s datapoints. It is certainlytrue that overfit-
ting canbe a seriousproblemwith MLPs. However, this
examplehighlightsthe possibility that MLPs trainedwith
backpropagatiomay be biasedtowardssmootherapprox-
imations. We list a numberof possibilitieswhich canlead
to suchabias:

1. TraininganMLP is NP-completén generabndit is well
known that practicaltraining algorithmsusedfor MLPs
oftenresultsin sub-optimalsolutions(e.g. dueto local
minima)®. Often,aresultof attaininga sub-optimakolu-
tionis thatnotall of thenetwork resourcegreefficiently
used.Experimentswith a controlledtaskhave indicated
thatthesub-optimakolutionsoftenhave smallerweights
onaverage(Lawrence Giles,& Ts0i1996).An intuitive
explanationfor thisis thatweightstypically startoutrea-
sonablysmall (for goodreason) andmay gettrappedn
local minimabeforereachingargevalues.

2. MLPs are universal approximators(Hornik, Stinch-
combe, & White 1989). However, the universal
approximationresult requires an infinite number of
hiddennodes. For a given numberof hiddennodesa
network may be incapableof representinghe required
function and instead implement a simpler function
which approximatesherequiredfunction.

3. Weightdecay(Krogh & Hertz 1992)or weightelimina-
tion (Weigend,Rumelhart& Hubermanl991)areoften
usedn MLP trainingandaimto minimizeacostfunction
which penalizedargeweights. Thesetechniquegendto
resultin networkswith smallerweights.

4. A commonlyrecommendetkechniquewith MLP classi-
ficationis to setthetrainingtargetsawayfrom thebounds
of the activationfunction (e.g. (-0.8,0.8) insteadof (-1,
1) for thetanh activationfunction) (Haykin 1994).

MLP networks are, of course,not always this resistanto

"Trainingdetailswereasfollows. A singlehiddenlayer MLP,
backpropagatior,00,000stochasti¢rainingupdatesandalearn-
ing rateschedulewith aninitial learningrateof 0.5 wereused.

8Theresultsin this papershav thatBP trainingoftenresultsin
sub-optimalsolutions. Commonly thesesolutionsarereferredto
aslocal minima, aboutwhich muchhasbeenwritten and proven
(e.g.(Yu 1992)). However, it is not only local minimathatcreate
troublefor BP — othererrorsurfacefeaturesuchas“ravines”and
“plateaus”or “flat spots”’canalsobetroublesomeThe errorsur
facefor two differentproblemsmayhave nolocal minimayetone
may befar moreamenabldo gradientdescenbptimization.



overfitting. For example,whenrepeatinghe above experi-
mentbut only evaluatingtheequationat0,1,2,...,5 (cre-
ating 6 datapoints),overfitting is seenwith only threehid-
dennodes.

10 Hidder;Nodes 50 Hidder;Nodes

Figure4. MLP interpolationof thefunctiony = sin(z/3) + v in
therange0 to 20 asthe numberof hiddennodess increasedrom
1 to 50. v is a uniformly distributed randomvariable between
—0.25 and0.25. A largedegreeof overfitting cannotbeobsered.

Network Sizeand Degreesof Freedom

A simple explanationfor why larger networks can some-
timesprovide improvedtrainingandgeneralizatiorerroris
thatthe extra degreesof freedomcanaid corvergencej.e.
the addition of extra parametersan decreasdhe chance
of becomingstuckin local minima or on “plateaus”, etc.
(Krose& vander Smagt1993). This sectionpresents vi-
sualizatiortechniqudor shaving theweightsin thestudent
networksasthe network sizeis varied. A smallertaskwas
usedto aid visualization:theteachenetwork topologywas
5:5:1andthe studennetworkscontained, 15,and25 hid-
dennodes.1,000trainingpointswereusedand K was?2.

Figuresb showv theweightsin the studentnetworksfor the
casewhen Gaussiamoisewith standarddeviation 5% of
the input standarddeviation was addedto the inputs (we
alsoperformedexperimentswith 0% and 10% which pro-
ducedsimilarresults). Thediagramsareplottedasfollows:
The columns(1 to 6) correspondo the weightsfrom the
hiddennodesto the biasandthe 5 input nodes. The rows
areorganizednto groupsof two with a spacebetweereach
group.Thenumberof groupsis equalto thenumberof hid-
dennodesn the studenmnetwork. For thetwo rowsin each
group,thetop row correspondso the teachemetwork and
the bottom row correspondgo the studentnetwork. The
ideais to comparethe weightsin the teacherand student
networks. A coupleof difficulties arisein this comparison
which areresolhed asfollows. Firstly, thereis no reason
for hiddennodel in the teachemetwork to correspondo
hiddennodel in the studentnetwork, etc. This problemis
resolhed by finding the bestmatchingsetof weightsin the
studennetwork for eachhiddenunitin theteachenetwork,
andmatchingthehiddennodesaccordingly Thesematches

are orderedaccordingto the quality of the match,i.e. the
top two rows shavstheteachenetwork hiddennodewhich

was bestapproximatedby a studenthiddennode. Like-

wise, the worst matchis at the bottom. A secondoroblem
is thattrying to matchthe weightsfrom the hiddennodes
to the input nodesdoesnot take into accountthe output
layer weights, e.g. exactly the samehidden node func-

tion could be computedwith differentweightsif the hid-

dennodesweightsare scaledandthe outputlayer weights
are scaledaccordingly For the caseof only one output
whichis consideredhere thesolutionis simple:thehidden
layerweightsarescaledaccordingto the respectie output
layerweight. Eachindividual weight (scaledby the appro-
priate output weight) is plotted as follows: the squareis

shadedn proportionto themagnitudeof theweight,where
white equals0 andblack equalsthe maximumvaluefor all

weightsin the networks. Negative weightsare indicated
by a white squareinsidethe outerblack squarewhich sur

roundseachweight.

Obsenations: a) the teachemetwork weightsare matched
more closely by the larger networks (considerthe fourth
andfifth bestmatchinggroupsof two rows), b) the extra
weightsin the larger networks contritute to the final ap-
proximationin only aminorway, c) the hiddenunitsin the
larger networks do not appearto be usedredundantlyin
this case- this may berelatedto the artificial natureof the
task, and d) the resultsindicatethat pruning (and option-
ally retraining)the larger networks may performwell. A
conclusionis thatbackpropagatioganresultin the under
utilization of network resources$n certaincaseqi.e. some
parametermaybeineffectiveor only partially effectivedue
to sub-optimakornvergence).
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25 hiddenunitsfor the caseof Gaussiamoisewith standardievi-
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resultsareshavn for two networkswith differentrandomstarting
weights.Theplotting methodis describedn thetext.



Learning Theory

Theresultsare not in contradictionwith statisticallearn-
ing theory (Vapnik1995)stateghatmachinesvith asmall
VC dimensionarerequiredto avoid overfitting. However,
he alsostatesthat “it is difficult to approximatethe train-
ing data”, i.e. for agivenproblemin MLP approximation,
the goalis to find the appropriatenetwork sizein orderto
minimizethetradeof betweeroverfittingandpoorapprox-
imation. Vapniksuggestshattheuseof a priori knowledge
may be requiredfor smalltrainingerrorandsmallgeneral-
izationerror. For the caseof linearoutputneuronsBarron
1991 hasderived the following boundon the total risk for

an MLP estimator:O (i—i) + 0 (m](;:fi log Ntr), where

Cy is the first absolutemomentof the Fourier magnitude
distribution of thetargetfunction f andis ameasuref the
“complexity” of f. Again, atradeof canbe obsenedbe-
tweenthe accurag of the bestapproximation(which re-
quireslargermy), andthe avoidanceof overfitting (which
requiresa smallermy, /Ny, ratio). Theleft-handterm (the
approximationerror) correspondso the error betweenthe
targetfunctionandthe closestfunctionwhichthe MLP can
implement.For thenoise-freartificial task,theapproxima-
tion erroris zerofor mj, > 10. Basedon this equationijt is
likely thatm}, = 10 would be selectedasthe optimal net-
work size(notethattheresultsreportechereusesigmoidal
ratherthanlinear outputneurons).Why do the theoryand
practicalresultsdiffer? Becausehe domainof applicabil-
ity of the theorydoesnot cover the practicalcaseandthe
assumptionsncorporatedn thetheoryarenot alwaysrea-
sonable Specifically this theorydoesnot take into account
limited trainingtime, differentratesof corvergencefor dif-
ferent f, or sub-optimakolutions.

Recentwork by (Bartlett 1996) correlateswith the results
reportedhere. Bartlett comments:“the VC-boundsseem
loose; neural networks often perform successfullywith

training setsthat are consideably smallerthanthe number
of networkparametes”. Bartlettshows (for classification)
thatthe numberof training samplesonly needgo grow ac-

cordingto A% (ignoring log factors)to avoid overfitting,

whereA is aboundonthetotalweightmagnitudefor aneu-
ronand! is thenumberof layersin thenetwork. Thisresult
and eitheran explicit (weight decayetc.) or implicit bias
towardssmallerweightsleadsto the phenomenonbsened

here,i.e. larger networks may generalizewell and better
generalizationis possiblefrom larger networksif they can
betrainedmoresuccessfullfhanthesmallemetworks(e.g.

reducedlifficulty with local minima). For the taskconsid-
eredin this paper the distribution of weightsaftertraining

moves towardssmallerweightsasthe size of the student
network increases.

Conclusions

It canbe seenthatbackpropagatioffails to find anoptimal
solutionin mary cases.Furthermorenetworks with more
weightsthanmight be expectedcanresultin lowertraining
andgeneralizatiorerrorin certaincasesOverfittingbehar-
ior is significantly differentin MLP and polynomialmod-

els— MLPs trainedwith BP are biasedtowardssmoother
solutions. Giveninfinite time andan appropriatealternate
training algorithm, an optimal solution could be found for
anMLP. However, the examplesin this paperillustratethat
themodeof failureexhibitedby backpropagationanin fact
be beneficialandresultin bettergeneralizatiorover “im-
proved” algorithms,in somuchastheimplicit smoothness
biascreatedy the network structureandtrainingalgorithm
matcheghedesiredtargetfunction. This biasmayaccount
for partof the successvILPs have encountereaver com-
petingmethodsn real-world problems.
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