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Rule extraction from black box models is critical in domains that require
model validation before implementation, as can be the case in credit scor-
ing and medical diagnosis. Though already a challenging problem in
statistical learning in general, the difficulty is even greater when highly
nonlinear, recursive models, such as recurrent neural networks (RNNs),
are fit to data. Here, we study the extraction of rules from second-order
RNNs trained to recognize the Tomita grammars. We show that produc-
tion rules can be stably extracted from trained RNNs and that in certain
cases, the rules outperform the trained RNNs.

1 Introduction

Recurrent neural networks (RNNs) have been increasingly adopted for a
variety of tasks involving time-varying data, among them, sentiment analy-
sis, machine translation, and image captioning. Despite the impressive per-
formance on these tasks, RNNs are also well known to be black box models,
which makes explaining or interpreting the knowledge they have acquired
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difficult or almost impossible. This black box nature is largely due to the
fact that RNNs, like any other neural architecture (e.g., convolutional neu-
ral networks), although designed to capture structural information from
the data (Du, Zhang, Wu, Moura, & Kar, 2017), store learned knowledge
in their weights, and it is difficult to inspect, analyze, and verify (Omlin &
Giles, 2000).

Given RNN’s rising popularity in processing time-varying data, we in-
vestigate whether and how we might extract knowledge in symbolic form
from RNN models that have been trained on symbolic data—in this case, a
collection of regular grammars. Surprisingly, this is an old problem treated
by Minsky (1967). If the information processing procedure of the RNN can
be treated as representing knowledge in symbolic form, where a set of rules
that govern transitions between symbolic representations are learned, then
we can begin to view the RNN as an automated reasoning process that
can be easier to understand. Indeed, prior work (Borges, d’Avila Garcez,
& Lamb, 2011) has proposed to extract symbolic knowledge from nonlinear
autoregressive models with an exogenous (NARX) recurrent model (Lin,
Horne, Tiño, & Giles, 1996). For sentiment analysis tasks, recent work (Mur-
doch & Szlam, 2017) has demonstrated that an RNN is capable of identify-
ing consistently important patterns of words. These words can be viewed
as symbolic knowledge, and the patterns of these words represent the
rules for determining the sentiment. In other work (Dhingra, Yang, Co-
hen, & Salakhutdinov, 2017), information about long-term dependencies is
also represented in the form of symbolic knowledge to improve the abil-
ity of RNNs to handle long-term text data. Also, prior work (Giles et al.,
1992; Watrous & Kuhn, 1992; Omlin & Giles, 1996b; Casey, 1996; Jacobsson,
2005) has shown that it is possible to extract deterministic finite automata
(DFA) from RNN models trained to perform grammatical inference and that
grammatical rules can be stably encoded and represented in second-order
RNNs (Omlin & Giles, 1996a). In these studies, the vector space of an RNN’s
hidden layer is first partitioned into finite parts, each treated as the state,
of a certain DFA. Then transition rules between these states are extracted.
This letter follows the paradigm of DFA extraction laid out in previous
research.

While it has been shown that it is possible to extract DFA from RNNs,
it has been argued (Kolen, 1994) that DFA extraction is sensitive to the ini-
tial conditions of the hidden layer of RNN. In other words, by viewing an
RNN as a nonlinear dynamical system, the value of its hidden layer may
exhibit exponential divergence for nearby initial state vectors. As a result,
any attempts at partitioning the hidden space may result in forcing the
extracted state to split into multiple trajectories independent of the future
input sequence. This results in an extracted rule that appears as a nonde-
terministic state transition, even though the underlying dynamical system
is completely deterministic (Kolen, 1994).
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In this letter, we greatly expand on previous work in rule extraction from
second-order RNNs (Giles et al., 1992) by studying DFA extraction through
comprehensive experiments. The main questions that we hope to answer
are:

1. What conditions will affect DFA extraction, and how sensitive is DFA
extraction with respect to these conditions?

2. How well will the extracted DFA perform in comparison with the
RNN trained models from which they are extracted?

With respect to the first question, we aim at uncovering the relationship
between different conditions—for instance, the influence of the initial con-
dition of the RNN’s hidden layer and the configuration of adopted cluster-
ing algorithm on DFA extraction. Through our empirical study, we address
the concerns of Kolen (1994) by showing that DFA extraction is very in-
sensitive to the initial conditions of the hidden layer. Moreover, in answer-
ing the second question, we find that in most cases, the extracted DFA can
recognize a set of strings generated by a certain regular grammar as accu-
rately as the trained RNN models from which the DFA were extracted. In-
terestingly, in certain cases, we observe that extracted DFA even outperform
their source RNNs in term of recognition accuracy when processing long se-
quences. This result is surprising given the difficulty in training RNNs on
long sequences, largely due to the vanishing gradient problem (Pascanu,
Mikolov, & Bengio, 2013), of which a great deal of research has been dedi-
cated to solving (Hochreiter & Schmidhuber, 1997; Cho, Van Merriënboer,
Bahdanau, & Bengio, 2014; Weston, Chopra, & Bordes, 2014; Sukhbaatar,
Szlam, Weston, & Fergus, 2015; Dhingra et al., 2017). Extracting rules from
RNNs also sheds light on an alternative to improve the processing of long
pattern sequences.

Here, our emphasis is on examining the consistency of DFA extraction.
More specifically, we first train and test RNN models on data sets gener-
ated by the seven Tomita grammars (Tomita, 1982). The RNN models we
use have a second-order architecture (Giles et al., 1992). Then we collect the
values of hidden-layer units of RNN models obtained during the testing
phase and cluster these values. Here we use k-means due to its simplicity
and efficiency. We believe other clustering methods could provide similar
results. These clustered states and the symbolic inputs are used to form the
initial DFA, which may contain equivalent states. Finally, we use a mini-
mization algorithm to minimize the number of states and finalize the min-
imal DFA.

In summary, this work makes the following contributions:

• We conduct a careful experimental study of the factors that influence
DFA extraction. Our results show that despite these factors, DFA can
be stably extracted from second-order RNNs. In particular, we find
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strong evidence that by adopting a simple clustering method, DFA
can be reliably extracted even when the target RNN is trained using
only short sequences.

• We explore the impact of network capacity and training time on the
RNN’s ability to handle long sequences and find that these factors
play key roles. With respect to DFA extraction, however, these factors
exhibit only a limited impact. This shows that extracting DFArequires
less effort compared to the training of a powerful RNN.

• We investigate a realistic case where incorrect DFA are extracted
from low-capacity second-order RNNs and demonstrate that in some
cases, these DFA can still outperform the source RNNs when process-
ing long sequences. This sheds light on a possible path to improving
an RNN’s ability in handling long sequences: exploiting the DFA’s
natural ability to handle infinitely long sequences (which is a chal-
lenge for any RNN).

2 Background

Recurrent neural networks process sequential data by encoding informa-
tion into the continuous hidden space in an implicit, holistic manner (El-
man, 1990). In order to extract rules from this continuous hidden space, it is
commonly assumed that the continuous space is approximated by a finite
set of states (Jacobsson, 2005). The rule is then referred to as the transitions
among the discrete states. A common choice for representation of the ex-
tracted rules is a DFA. In the following, we first provide a brief introduc-
tion of DFA, followed by an introduction to the target grammars studied.
Finally, we present a particular type of RNN—a second-order RNN—which
is mainly used in this work.

2.1 Deterministic Finite Automata. Afinite state machine M recognizes
and generates certain grammar G, which can be described by a five-tuple
{A, S, s0, F, P}. Here, A is the input alphabet (a finite, nonempty set of sym-
bols), and S is a finite, nonempty set of states. s0 ∈ S and F ∈ S represent
the initial state (an element of S) and the set of final states (a subset of
S, F can be empty). P denotes a set of production rules (transition func-
tion P : S × A → S). Every grammar G also recognizes and generates a cor-
responding language L(G), a set of strings of the symbols from alphabet
A. The simplest automata and its associated grammar are DFA and regu-
lar grammars, according to the Chomsky hierarchy of phrase structured
grammars (Chomsky, 1956). It is important to realize that DFA actually cov-
ers a wide range of languages, that is, all languages whose string length
and alphabet size are bounded can be recognized and generated by finite
state automata (Giles et al., 1992). Also, when replacing the deterministic
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Table 1: Description of Seven Tomita Grammars.

G Description

1 1∗
2 (10)∗
3 An odd number of consecutive 1s is always followed by an even number of

consecutive 0s
4 Any string not containing 000 as a substring
5 Even number of 0s and even number of 1s (Giles, Sun, Chen, Lee, & Chen, 1989)
6 The difference between the number of 0s and the number of 1s is a multiple of 3
7 0∗1∗0∗1∗

transition with stochastic transition, a DFA can be converted as a proba-
bilistic automata or hidden Markov model, which enables grammatical in-
ference as learning on graphical models (Du, Ma, Wu, Kar, & Moura, 2016).
We refer readers to a more detailed introduction of regular languages and fi-
nite state machines in Hopcroft, Motwania, and Ullman, (2013) and Carroll
and Long (1989) and use their notation.

2.2 Tomita Grammars. We select a set of seven relatively simple gram-
mars, which are originally suggested by Tomita (1982) and widely stud-
ied (Pollack, 1991; Omlin & Giles, 1996b; Watrous & Kuhn, 1992) and use
them for an empirical study for extracting rules from RNN. We hypothe-
size (and note from the work of others) that these simple, regular grammars
should be learnable. More specifically, the DFA associated with these gram-
mars has between three and six states. These grammars all have A = {0, 1},
and generate an infinite language over {0, 1}∗. Here we denote a finite set of
strings I from regular language L(G). Positive examples of the input strings
are denoted as I+ and negative examples as I−. We provide a description of
positive examples accepted by all seven grammars in Table 1.

The associated DFA for these grammars are shown in the first column
in Figure 5. Some of these DFA contain a so-called garbage state, that is, a
nonfinal state in which all transition paths lead back to itself. In order to
correctly learn this state, RNN must learn not only with positive strings I+
generated by the grammar but also negative strings I− that are rejected by
this grammar.

Despite the fact that the Tomita grammars are relatively simple, we se-
lect these grammars because they cover regular languages that have dif-
ferent complexity and difficulty (Wang et al., 2018). They also appear to be
a standard for much work on learning grammars. For example, grammars
1, 2, and 7 in Table 1 represent the class of regular languages that define a
string set that has extremely unbalanced positive and negative strings. This
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implies that the averaged difference between positive strings and negative
strings can be very large. This could represent real-world cases where pos-
itive samples are significantly outnumbered by negative ones. In contrast,
grammars 5 and 6 define the class of regular languages that have equal or
a relatively balanced number of positive and negative strings. This implies
that the difference between positive and negative strings in these grammars
is much smaller than the case of grammars 1, 2, and 7. Finally, grammars 3
and 4 represent the class of regular languages for which the difference be-
tween positive and negative strings is somewhere between (1) grammars 1,
2, and 7 and (2) grammars 5 and 6. With either case discussed, the source
RNNs are forced to recognize the various levels of difference between pos-
itive and negative samples. In addition, it is also important to note that
we have ground-truth DFAs for Tomita grammars. This enables our study
to determine the impact of different factors on the success rate of extract-
ing correct DFAs (introduced in section 4), since they can be compared to
the ground-truth DFAs. With more complex or real-world data sets, this
may not be case. For those data sets, uncertainties will be introduced into
the evaluation (e.g., what the ground-truth DFAs are or if there even exist
ground-truth DFAs that define the data?). This uncertainty can affect any
conclusion of whether a DFA extraction can be stably performed.

2.3 Second-Order Recurrent Neural Networks. Here, we use an RNN
constructed with second-order interactions between hidden states and in-
put symbols. More specifically, this second-order RNN has a hidden layer
H containing N recurrent hidden neurons hi and L input neurons il . The
second-order interaction is represented as wi jkht

ji
t
k, where wi jk is an N ×

N × L real-valued matrix, which modifies a product of the hidden hj and
input ik neurons. t denotes the tth discrete time slot. This quadratic form
directly represents the state transition diagrams of a state process: {input,
state} ⇒ {next state}. More formally, the state transition is defined by

Ht+1
i = g

⎛
⎝∑

j,k

Wi jkHt
jI

t
k

⎞
⎠ , (2.1)

where g is a sigmoid discriminant function. Each input string is encoded
by one-hot-encoding, and the neural network is constructed with one in-
put neuron for each character in the alphabet of the relevant language. By
using one-hot-encoding, we ensure that only one input neuron is activated
per discrete time step t. Note that when building a second-order RNN, as
long as L is small compared to N, the complexity of the network only grows
as O(N2). Such RNNs have been proved to stably encode finite state ma-
chines (Omlin & Giles, 1996a) and thus can represent in theory all regular
grammars.
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To train the second-order RNN, we use the following loss function C fol-
lowing Giles et al. (1992),

C = 1
2

(y − HT
0 )2, (2.2)

where C is defined by selecting a special “response” neuron h0, which is
compared to the target label y. For positive strings, y = 1.0, and y = 0.0 for
negative strings. hT

0 indicates the value of h0 at time T after seeing the final
input symbol. We adopt RMSprop (Tieleman & Hinton, 2012) as the training
algorithm.

3 DFA Extraction

We introduce our approach to DFA extraction, which largely builds on the
research conducted in the 1990s (Casey, 1996; Frasconi, Gori, Maggini, &
Soda, 1996; Giles et al., 1991, 1992; Omlin & Giles, 1966b; Watrous & Kuhn,
1992; Zeng, Goodman, & Smyth, 1993). Note, however, that there has been
recent work (Li & Príncipe, 2016). We start by briefly introducing the main
ideas behind DFA extraction as well as existing research. We then examine
and identity key factors that affect the quality of each step of the extraction
process.

3.1 The DFA Extraction Paradigm. Many methods have been devel-
oped to extract knowledge in the form of rules from trained RNNs (Giles
et al., 1991, 1992; Omlin & Giles, 1996b; Zeng et al., 1993; Frasconi et al., 1996;
Gori et al., 1998). Most of this work can be viewed as roughly following one
general DFA extraction process:

1. Collect the hidden activations of RNN when processing every string
at every time step. Cluster these hidden activations into different
states.

2. Use the clustered states and the alphabet-labeled arcs that connect
these states to construct a transition diagram.

3. Reduce the diagram to a minimal representation of state transitions.

Previous research effort has largely focused on improving the first two
steps. This is largely due to the fact that for the third step, there already
exists a well-established minimization algorithm (Hopcroft et al., 2013) for
obtaining the minimal representation of DFA.

For the first step, an equipartition-based approach (Giles et al., 1992)
was proposed to cluster the hidden space by quantizing the value of a hid-
den unit to a specified number of bins. For example, if we apply a binary
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quantization1 to the vector {0.6, 0.4, 0.2}, we would obtain the encoding
{1, 0, 0}. One drawback to this form of quantization is that as the number
of hidden units increases, the number of clusters grows exponentially. This
computational complexity issue is alleviated if one uses clustering meth-
ods that are less sensitive to the dimensionality of data samples, such as
k-means (Zeng et al., 1993; Frasconi et al., 1996; Gori et al., 1998), hierarchi-
cal clustering (Sanfeliu & Alquezar, 1994), and self-organizing maps (Tiňo
& Šajda, 1995).

In order to construct state transitions for the second step, either breadth-
first search (BFS) approaches (Giles et al., 1992) or sampling-based ap-
proaches (Tiňo & Šajda, 1995) are used. The BFS approach can construct a
transition table relatively consistently but incur high computation cost, es-
pecially when the size of alphabet increases exponentially. Compared with a
BFS approach, a sampling approach is computationally efficient. However,
it introduces inconsistency to the construction of a transition table. (For a
more detailed exposition of these two classes of methods, see Jacobsson,
2005.)

3.2 Factors That Affect DFA Extraction. The efficacy of the different
methods used for the first two steps of the process described relies on the
following hypothesis: The state space of a well trained RNN should already
be fairly well separated, with distinct regions or clusters that represent cor-
responding states in some DFA. This hypothesis, if true, would greatly ease
the process of DFA extraction. In particular, less effort would be required in
the first two steps of DFA extraction if the underlying RNN was constructed
to have a well-separated state space.

With this in mind, we specify the following key factors that affect DFA
extraction that also affect representational ability of an RNN:

• Model capacity. An RNN with greater capacity (larger size of hidden
layer) is more likely to better represent a DFA.

• Training time. A sufficient number of iterations are required in order
to ensure convergence (to some local optima).

• Initial conditions of the hidden state. As argued previously (Kolen,
1994), the initial conditions may have a significant impact on DFA
extraction. In this work, we explore this impact by training several
RNN models with random initial hidden activations on all gram-
mars, and then examining the extracted DFA from all trained RNN
models.

• Choice of state-clustering method. The choice of clustering algorithm
is very important, including its hyperparameter configuration. For

1
Using a threshold value of 0.5, any value greater than 0.5 is assigned to bin 1, whereas

other values less than or equal to this threshold are assigned to 0.
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example, if k-means or a gaussian mixture model is adopted, a criti-
cal hyperparameter is the predefined number of clusters.

One could argue that other factors, such as choice of a parameter update
rule (e.g., ADAM, RMSProp) and learning rate, may also influence how
well an RNN learns about certain grammar. However, in our experiments,
we observe that these latter conditions actually have little and nearly no in-
fluence on the final results. Thus, we focus on the factors described in the
list of key factors.

3.3 The DFA Extraction Process. Here, we use an approach similar to
that of Zeng et al. (1993) to extract DFA from second-order RNNs. To be
more specific, we first train second-order RNNs to classify strings generated
by each of the seven Tomita grammars (Tomita, 1982). A desirable outcome
of the hypothesis described in the previous section is that when the hidden
space is well separated, many well-established clustering methods should
generate similar results. This allows us to choose our clustering approach
based on computational complexity. As a result, we adopt the k-means clus-
tering approach due to its simplicity and efficiency. We must now turn to
choosing an appropriate value of K.

After clustering the hidden space, we follow the approach taken in
Schellhammer, Diederich, Towsey, and Brugman (1998) to construct the
transition diagram. Specifically, we construct the diagram by counting the
number of transitions that have occurred between a state and its subsequent
states (given a certain input). For example, given a state Sk and input symbol
i, we calculate the number of transitions to all states {S} from Sk, including
any self-loops. After obtaining the transition counts, we keep only the most
frequent transitions between {S} and {S + 1} given input i and discard the
other less frequent ones in the transition diagram.

It is important to note that K should not be set too small. In an extreme
case, when the value of K is set to be even smaller than the minimal number
of states of the ground-truth DFA, the extraction never provides the correct
DFA. Additionally, when K is small, the hidden activations that should have
formed different clusters (which represent different states) may be forced
to be included in a single cluster, hence generating poor clustering. We il-
lustrate this effect by demonstrating in Figure 1 the clustering obtained by
selecting different K’s. More specifically, we evaluate the clustering using a
silhouette coefficient to measure how well the resulting clusters are sepa-
rated. As shown in Figure 1, when K is smaller than 6, the clustering is much
less desirable and varies significantly than when K is larger. This poorly
clustered hidden space will more likely cause inconsistent transitions be-
tween states given the same input. For example, assuming there are two
cluster S1 and S2, given the same input symbol i, they transit to S3 and S4,
respectively. When K is small, it is possible that S1 and S2 are merged as
one cluster Ŝ1. As a result, Ŝ1 will inconsistently visit S3 and S4 with the
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Figure 1: Influence of K on clustering results for all grammars.

same input i. This falsely indicates that the transition learned is more likely
to be nondeterministic, while the real case is that the RNN generates St+1

based on St and i deterministically. This effect can be mitigated when K
is increased beyond a certain value. However, this does not indicate that
K can be set arbitrarily large. Larger K brings only limited improvement
in the clustering results, while imposing more computation on both the
clustering algorithm and the minimization algorithm, which we introduce
next.

With the constructed transition diagram, we have extracted a DFA that
might contain many redundant states. Using the previously described min-
imization algorithm (Hopcroft et al., 2013), we can then reduce the derived
DFA to its minimal representation. Note that this minimization algorithm
does not change the performance of the DFA; the unminimized DFA has the
same time complexity as the minimized DFA. Note that the DFA extraction
method already introduced may be applied to any RNN, regardless of the
order or manner in which its hidden layers are calculated.

4 Experiments

In this section, we empirically study the process of DFA extraction through
comprehensive experiments.

4.1 Description of Data. To train and test the RNN models, we followed
the approach introduced in Giles et al. (1992) and generated string sets.
To be specific, we drew strings from an oracle generating random 0 and
1 strings and the grammar specified in Table 1. The end of each string is set
to the symbol 2, which represents the “stop” symbol (or end token, as in lan-
guage modeling). For the strings drawn from a grammar, we took them as
positive samples, while those from that random oracle we took as negative



2578 Q. Wang et al.

samples. Note that we verified each string from the random oracle and en-
sured they are not in the string set represented by that corresponding gram-
mar before treating them as negative samples. It should be noted that each
grammar in our experiments represents one set of strings with unbounded
size. As such, we restricted the length of the strings used with an upper
bound equal to 15 for all grammars. In addition, we also specify a lower
bound on the string lengths to avoid training RNNs with empty strings. In
order to use as many strings as possible to build the data sets, the lower
bound should be set to be sufficiently small. In our experiments, we set
the lower bound equal to 3 for all the grammars. We split the strings gen-
erated within the specified range of length for each grammar to build the
training set Dtrain and testing set Dtest ; then we trained and tested the RNNs
accordingly.

In order to further the trained RNNs and extracted DFA on longer
strings, we build another testing set, Dtest(200), comprising strings of length
200 for all grammars. Note that the complete set of strings with length 200
numbers around 1060. A test set of this size is too expensive and not even
necessary for evaluating RNNs or DFA. Therefore, we construct the testing
set by randomly sampling 100,000 strings for all grammars. In addition, to
preserve the actual balance of positive to negative samples, we sample such
that we preserve their original proportions as measured from the original,
complete set of length 200 strings. For example, for grammar 5, we sample
positive and negative strings with the same ratio of 0.5.

4.2 The Influence of Model Capacity. In the following experiment, we
first measure the influence of model capacity: the size N of the hidden layer
of RNN models on learning the target DFA. Specifically, we measure the
training time needed for RNNs with different hidden layer sizes to reach
perfect accuracy on the testing set Dtest for all grammars. It is clear from
Figure 2a that it takes less training for an RNN with a larger capacity N to
converge. This is what we would expect; in general, an RNN with a larger
capacity can better fit the data.

Next, we evaluate how stably correct DFA can be extracted from the
trained RNN models. Here we argue that DFA extraction should be more
stable from an RNN model for which the hidden state space is well sep-
arated. Intuitively, a well-separated space means that with a well-trained
second-order RNN, hidden activations obtained after processing a set of
strings have already aggregated into different regions that are separated
from each other in the hidden node space. In this case, it would be more
flexible to select a different K to cluster this space. Assuming the ground-
truth value of K is M, as when K is larger than M, K-means can already iden-
tify M large clusters that contain the majority of the hidden activations. For
the other M − K clusters, they identify only outliers. This is also verified in
Figure 1. Specifically, when K is sufficiently large, the silhouette coefficient
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Figure 2: The influence of model capacity on DFA extraction for grammar 3.

changes slightly as K increases. This is because the small clusters formed
by outliers contribute only trivially to the calculated silhouette coefficient.
These small clusters will later be recognized as a redundant state and are
eliminated by the minimization algorithm. As such, we believe that a more
flexible choice of K indicates that the hidden space has already been well
separated. To examine this flexibility, we vary K within a certain range to
check the accuracy of the extracted DFAs. When more correct DFAs can
be extracted from a model, we then determine the choice of K as being
more flexible, thus indicating that this model has its hidden space better
separated.

From the above discussion for models with a different number of hidden
neurons, we compare the classification accuracy on Dtest of the extracted
DFA when increasing K from 6 to 15 on grammar 3. Similar results for the
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Table 2: Influence of Training Time on DFA Extraction and RNN Performance.

Grammar Classification Errors Reached under Different Training Epochs

G3 Epoch 10 20 30 40 50 60 70
RNN(Dtest ) 0.99 0.99 0.99 1.0 1.0 1.0 1.0
RNN(Dtest(200)) 9.1e-2 0.55 0.51 0.81 1.0 0.96 0.86
DFA 1.0 1.0 1.0 1.0 1.0 1.0 1.0

G4 Epoch 10 20 30 40 50 60 70
RNN(Dtest ) 0.98 0.99 0.99 1.0 1.0 1.0 1.0
RNN(Dtest(200)) 3.3e-3 3.6e-3 4.4e-3 9.7e-3 4.1e-3 8.9e-3 7.8e-3
DFA 1.4e-3 1.2e-3 2.4e-3 1.0 1.0 1.0 1.0

G5 Epoch 600 650 700 750 800 850 900
RNN(Dtest ) 0.63 0.29 0.46 0.44 1.0 1.0 1.0
RNN(Dtest(200)) 0.63 0.3 0.46 0.45 1.0 1.0 1.0
DFA 0.67 0.67 0.67 0.67 1.0 1.0 1.0

other grammars are provided in the appendix. As shown in Figure 2b, mod-
els with more than 10 hidden neurons allow more flexible choices for K. For
instance, when N > 20, the correct DFA can be reliably extracted in most
cases of K from 3 to 16. On the contrary, for models with fewer hidden neu-
rons, the range of K that produces correct DFAs is more limited. For in-
stance, when N = 5, the extraction fails for all K within the same range. In
addition, when N is larger than 25, successful extraction is observed only
when K is larger than 8. These results also indicate that DFA extraction is
more likely to succeed when K is set to larger values. This observation is
consistent with the results reported in Zeng et al. (1993).

The above experimental results indicate that RNNs with larger capac-
ity are more likely to automatically form a reasonably well-separated state
space. As a result, the extraction of DFA is less sensitive to the hidden state
clustering step of the process.

4.3 The Influence of Training Time. In this section, we evaluate the
classification performance of both trained RNNs and extracted DFA when
processing longer strings. More specifically, we measure the classification
errors made by both RNNs and DFA on the test set Dtest(200), as shown in
Table 2. For example, with respect to grammar 3, we train seven RNNs
with different training epochs (increasing from 10 to 70). Seven DFA are
then extracted; the testing performance of each as a function of epoch is
displayed in Table 2. Due to the space restriction, here we show only the
results obtained for grammars 3, 4, and 5. The results for other grammars
are provided in the appendix.

As expected, as the training time increases, RNNs tend to make more
accurate classifications. In particular, for grammars 3, 4, and 5, the trained
RNNs reach 100% accuracy on Dtest . We observe that the correct DFA can
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sometimes be extracted even when the RNN has not yet fully reached 100%
accuracy (10th to 30th epoch for grammar 3). This indicates that the hid-
den state space learned in the early stages of training (before the RNN is
fully trained) can still be sufficient for a clustering method to recognize each
individual state. This observation implies that less effort is needed to ex-
tract the correct DFA from an “imperfect” RNN than in training a “perfect”
RNN.

Two other interesting observations can be made with respect to grammar
5. First, it takes much longer to train an RNN to achieve perfect classifica-
tion performance and extract the correct DFA from it. Second, the correct
DFA can be successfully extracted only when the source RNN quits making
any mistakes on the test sets. The difficulty behind training on grammar 5
might be explained through examination of the “differences” between the
positive and negative strings generated by the grammar. More specifically,
by flipping 1 bit of a string from 0 to 1 or vice versa, any positive (neg-
ative) string can be converted to a negative (positive) string. In order to
learn the small differences, an RNN needs significantly more training time.
The second observation may be explained by noting that before reaching
800 epochs, RNNs make a nearly constant number of errors. This clearly
indicates that the RNN is stuck at a certain local minimum (also verified
in Figure 3a). While the training of RNN is trapped in this minimum, the
state space does not start to form the correct partition. However, after 800
epochs, the model escapes this minimum and finally converges to a better
one, resulting in a state space that is separated correctly.

4.4 The Influence of Initial States and Clustering Configuration. In
the following experiments, we examine if a DFA can be stably extracted un-
der random initial conditions. Specifically, for each grammar, we randomly
assign an initial value to the hidden activations, H0

0:N at t0 time step, within
the interval of [0.0, 1.0]. We repeat this random initialization 10 times (train-
ing 10 different RNNs) for each grammar. Furthermore, we vary the value of
K for the k-means clustering algorithm, measuring the classification perfor-
mance of each extracted DFA and counting the number of times the correct
DFA is extracted (only DFAs achieving 100% accuracy are regarded as cor-
rect). Through this procedure, we hope to uncover the relationship between
the initial condition of the RNN’s hidden layer as well as the clustering al-
gorithm’s metaparameter K and DFA extraction.

As previously discussed, training an RNN properly is critical for suc-
cessful DFA extraction. In Figure 3a, we show the mean and variance of the
training loss obtained when training each RNN 10 times with random ini-
tialization of hidden activation for all grammars. It is clear from Figure 3a
that except for grammars 5 and 6, RNNs trained on other grammars rapidly
converge. For grammars 5 and 6, RNNs need much more training time
while having much larger variance of training loss. Recall from the discus-
sion in section 4.3 that this is a clearer indication that the training of these
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Figure 3: Influence of random initialized hidden activations and clustering con-
figuration on training RNN and extracting DFA.

RNNs is trapped by different local optima with different initial activation.
However, when given sufficient training, all RNNs trained on all grammars
converge on the training set and reach 100% accuracy on Dtest . In addition,
once these RNNs converge to small training loss, the variance reduces to al-
most 0. This indicates that with sufficient training and reasonable capacity,
RNN training is relatively insensitive to the hidden layer’s initialization.

Given the RNNs trained as described, we then vary K as we extract DFA
from these models. Similarly, we report the mean and variance of the clas-
sification accuracy obtained on Dtest from all extracted DFA in Figure 3b.
For each grammar, under each random initialization of the model’s hidden
layer, we run the extraction process 13 times, varying K in the range from 3
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Figure 4: Histograms of the classification performance of extracted DFA on all
grammars.

to 15. In total, we conduct 130 rounds of DFA extraction from the 10 trained
RNNs for each grammar.

As shown in Figure 3b, when K is set to small values (below 8), except
for grammars 1 and 2, the extracted DFA on other grammars have not only
poor classification accuracy but also relatively large variance. In this case, it
is difficult to determine whether random initialization of hidden activation
or K has a stronger impact on the extraction. When K is set to a sufficiently
large value, however, the variance is significantly reduced while the classi-
fication accuracy is greatly improved. This indicates that a sufficiently large
K can offset the impact of initial states.

Besides showing the classification performance obtained by the ex-
tracted DFA, we further measure the success rate of extraction in Figure 4
under different K. More specifically, the success rate of extraction is the per-
centage of DFAs with 100% accuracy among all DFAs extracted for each
grammar under different settings of K and random initializations. Among
all 130 rounds of extraction on each grammar, we observe that the correct
DFA is successfully extracted with highest success rate of 100% (on gram-
mar 1), lowest success rate of 50% (on grammar 3), and averaged success
rate of 75% among all grammars. The reason for the worse extraction results
obtained on grammar 3 can be explained by visualizing the extracted DFA
in Figure 5.

In Figure 5, we see that all extracted DFA can correctly recognize their
associated positive strings, except for that whose length is smaller than the
minimal length we set. Recall that for all grammars, we generate strings
while constraining the minimal string length. The visualization indicates
that the extracted DFA not only accurately represent the target grammar
that generated the string samples but also obey the constraint on length. In
order for the extracted DFA to satisfy the minimal length constraint, extra
states are required, as shown in the right panel of Figure 5. Especially for
grammars 3, 4, and 7, the correct DFAs contain 5, 4, and 5 states, while the
corresponding extracted DFAs have 6, 5, and 7 states, respectively. Recall
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Figure 5: Visualization of ground-truth DFA and extracted DFA for all gram-
mars. Dotted lines indicate input symbol 0, and solid lines indicate input
symbol 1.

that in the previous experiments, the minimal value of K is set to 3 consis-
tently for all grammars. As a result, this setting of K causes many extraction
failures for these grammars. As shown in Figure 3b, when K is below 8, the
averaged classification accuracies of the extracted DFA are relatively lower
in comparison with DFA extracted from other grammars.
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Figure 6: Evaluation of small-capacity RNNs and their associated incorrect
DFA for Tomita grammars 3 and 4.

4.5 Comparison between Low-Capacity RNNs and Extracted DFA.
As discussed in section 4.2, RNNs with larger capacity can learn a DFA bet-
ter. In practice, it is usually not possible to know the appropriate capacity
when constructing an RNN. As a result, it is possible that a smaller RNN can
be well trained on short sequences but generalize poorly when confronted
with long sequences. The previous experiments suggest one solution for ex-
tracting a DFA from a trained RNN model, given that DFA extraction is rela-
tively stable and DFA can maintain the accuracy of recognizing long strings.
In reality, however, it is impractical to assume that the ground-truth DFA
can be obtained to evaluate the extracted ones, which may be incorrect. In
the following experiments, we empirically compare some RNNs and their
“incorrectly” extracted DFA. Here we demonstrate the results on grammars
3 and 4 due to space constraint. These grammars are selected because in the
experiments, we observed that the RNNs trained on these grammars are
more sensitive to model capacity.

We first construct two RNNs with 9 hidden neurons and have them
trained to reach 100% accuracy on data set Dtest . Their associated incorrect
DFAs extracted, shown in Figures 6a and 6b, achieve 93% and 98% accuracy
on Dtest , respectively. We next evaluate these RNNs and their incorrect DFAs
using multiple testing sets with the number of samples fixed at 100,000 and
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string length varying from 20 to 200. The sampling of positive and negative
strings is similar to that described in section 4.1.

RNN test set performance is shown in Figure 6c. We observe that on
these test sets composed of longer strings, RNNs make more classifica-
tion errors. This may due to the fact that as the string length increases,
the ratio of negative strings to positive ones also increases (shown in Fig-
ure 6d). This would mean that an RNN processes more negative strings,
which can be interpreted as “noisy” samples, and as a result would gen-
erate more false-positive errors. For the DFA associated with these RNNs,
fewer and fewer mistakes are made as the number of negative strings in-
creases. This might be the result of the fact that these incorrect DFA gen-
erate their own regular language L3′ and L4′ , respectively, which are quite
similar to the target languages L3 and L4. As a result, many of the nega-
tive strings rejected by the extracted DFA are also rejected by the correct
DFA. As more and more negative strings are sampled, this overlapping be-
havior gradually dominates the testing sets. These results demonstrate that
in certain cases, it is possible to extract DFA that does not fully represent
the target RNN and yet still outperforms the RNN when processing longer
sequences. Given this result, one possible path to improving an RNN’s
ability to handle longer sequences might lie in exploiting this useful DFA
behavior.

5 Conclusion

We conducted a careful experimental study of the extraction of determinis-
tic finite automata from second-order recurrent neural networks. We iden-
tified the factors that influence the reliability of the extraction process and
were able to show that despite these factors, the automata can still be sta-
bly extracted even when the neural model is trained using only short se-
quences. Our experiments also show that while model capacity does indeed
strongly damage the neural network’s ability to handle longer sequences,
this hardly affects the extraction process. Furthermore, the automata ex-
tracted from low-capacity second-order RNNs in some cases actually out-
perform the RNN trained model when processing sequences longer than
those seen during training. Our findings imply that one potential pathway
to improving an RNN’s ability to learn longer-term dependencies might
be through the exploitation of the DFA’s natural ability to handle infinitely
long sequences and that it would be interesting to exploit transfer learn-
ing in this area. Future work will focus on comparing extracted DFAs and
source RNN models on more complex or real-world data sets consisting of
long sequences such as currency exchange rates Giles, Lawrence, and Tsoi
(2001) and others.
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Appendix: Experimental Results for All Tomita Grammars

Figure 7: Influence of model capacity on DFA extraction for Tomita grammars.
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Figure 7: Continued.
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Table 3: Influence of Training Time on DFA Extraction and RNN Performance
for All Tomita Grammars.

Grammar Classification Errors Reached under Different Training Epochs

G1 Epoch 30 60 90 120 150 180 210
RNN (train) 0.0 0.0 0.98 1.0 1.0 1.0 1.0
RNN (test) 0.0 0.0 4.2e-3 4.3e-3 4.3e-3 4.4e-3 4.4e-3
DFA (test) 4.0e-3 4.0e-3 1.0 1.0 1.0 1.0 1.0

G2 Epoch 100 200 300 400 500 600 700
RNN (train) 0.0 0.54 0.91 0.85 0.85 0.92 0.97
RNN (test) 0.0 0.0 2.0e-2 2.0e-2 2.0e-2 2.0e-2 2.0e-2
DFA 2.0e-3 2.0e-3 1.0 1.0 1.0 1.0 1.0

G6 Epoch 90 120 150 180 210 240 270
RNN (train) 0.0 0.0 0.0 1.2e-2 1.0 1.0 1.0
RNN (test) 0.0 0.0 0.0 4.7e-3 1.0 1.0 1.0
DFA 0.5 0.5 0.5 0.5 1.0 1.0 1.0

G7 Epoch 20 40 60 80 100 120 140
RNN (train) 0.92 0.99 0.99 1.0 1.0 1.0 1.0
RNN (test) 0.64 0.94 1.0 1.0 1.0 1.0 1.0
DFA 2.0e-3 2.0e-3 1.0 1.0 1.0 1.0 1.0
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