
Automatic Extraction of Figures from Scholarly Documents

Sagnik Ray Choudhury
Information Sciences and

Technology
Pennsylvania State University

sagnik@psu.edu

Prasenjit Mitra
Information Sciences and

Technology
Pennsylvania State University

pmitra@ist.psu.edu

Clyde Lee Giles
Information Sciences and

Technology
Pennsylvania State University

giles@ist.psu.edu

ABSTRACT
Scholarly papers (journal and conference papers, technical
reports, etc.) usually contain multiple“figures”such as plots,
flow charts and other images which are generated manually
to symbolically represent and illustrate visually important
concepts, findings and results. These figures can be ana-
lyzed for automated data extraction or semantic analysis.
Surprisingly, large scale automated extraction of such figures
from PDF documents has received little attention. Here we
discuss the challenges of how to build a heuristic indepen-
dent trainable model for such an extraction task and how
to extract figures at scale. Motivated by recent develop-
ments in table extraction, we define three new evaluation
metrics: figure-precision, figure-recall, and figure-F1-score.
Our dataset consists of a sample of 200 PDFs, randomly col-
lected from five million scholarly PDFs and manually tagged
for 180 figure locations. Initial results from our work demon-
strate an accuracy greater than 80%.

Categories and Subject Descriptors
H.4 [Document Analysis]: Information Extraction; D.2.8
[PDF processing]: machine learning

General Terms
figure extraction; machine learning; PDF processing

Keywords
figure extraction; PDF; document analysis

1. INTRODUCTION
Scholarly papers often contain multiple “figures” some of

which are generated from data which is not reported any-
where else in the paper, making them invaluable sources of
information, available only there. These figures can be man-
ually extracted from PDF documents using free software
such as Inkscape. However, a batch extractor is necessary

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
DocEng’15, September 8-11, 2015, Lausanne, Switzerland.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3307-8/15/09 ...$15.00.
DOI: http://dx.doi.org/10.1145/2682571.2797085.

for extraction at scale, say for a search engine. Previous re-
search explored automatic classification and data extraction
from specific types of figures, mostly line graphs and scatter
plots [2,11](see section 2). But, these methods have not yet
been applied to large scale datasets.

One possible way to extract such figures is to segment
a page image (a PDF page converted into an image or a
scanned image of a document page) into text and graphics
region. This is a well-known research problem dating back
to the 1980s [13]. These algorithms assume a considerable
difference in pixel densities in the text and graphics regions.
While that is true for most newspaper/magazine documents,
engineering drawings, and scholarly papers are different [3].

There is an abundance of “born digital” scholarly docu-
ments, mostly in the PDF format. It is certainly possible to
convert a born digital PDF document into page images and
apply existing image segmentation algorithms [4, 14]. But,
PDF to image conversion can be computationally expen-
sive. Our experiments suggest that the average CPU time
for PDF page to image conversion is more than two seconds,
while our PDF processing-based approach takes half of that.

Figures are embedded in PDF documents in raster (PNG,
JPEG) or vector formats (SVG, EPS). Typically, raster im-
ages are embedded in the PDF as separate content streams
(XObjects). Therefore, it is easy for a PDF parser to ex-
tract them but it is hard to extract vector graphics as PDF
documents themselves are written in the same format. In
a PDF document, graphics and textual elements are often
interleaved in the content stream and can not be easily seg-
regated. Previous work by Futrelle et al. [8], Shao et al. [15]
and very recently, Clark et al. [7] have reported heuristic
methods for this task. But as these methods depend strongly
on heuristics, they are often hard to reproduce since they
require elaborate manual tuning. More importantly, most
previous work has not discussed any strategy or results for
the evaluation the extraction accuracy (with the exception
of Clark et al. [7]).

We report a machine learning based method that does
not depend on heuristics to extract figures from PDF doc-
uments. We also define metrics to evaluate the extraction
accuracy and create a tagged dataset for use and future eval-
uation. We show that our method is more scalable with re-
gards to existing approaches. Plus, our average F1-score is
higher than 80%.

2. RELATED WORK
In earlier work, we described machine learning based algo-

rithms for figure metadata extraction [5] and a search engine

on the extracted metadata [6]. Here, we focus on figure ex-
traction, especially vector graphics.

This problem can be solved in a two-step process: 1. Con-
vert a PDF page into an image, and 2. Segment that image
into text and graphics regions. There has been considerable
work in such page segmentation. The approaches can be
broadly classified into three classes: 1. A top-down block
based approach where the image is segmented into blocks,
and these blocks are classified as text or graphics region [13];
2. A bottom up pixel-based approach where each pixel is
classified as image or text and finally grouped together to
form larger blocks [16]; and 3. A morphological operation
based approach where a “graphics mask” is created through
a set of morphological operations [1]. As discussed in sec-
tion 1, these approaches suffer from a scalability problem.
Also, these methods assume that the pixel density of a fig-
ure region is significantly different from that of a text region,
which is usually not true for scholarly documents [3]. Our
previous work [14] improved the morphological segmentation
but suffered from scalability.

Little work([7,8,15]) has explored figure extraction from
PDF documents by processing the PDF primitives. As men-
tioned before, they suffer from problems such as manual tun-
ing of heuristics and lack of standardized evaluation metrics
and data sets.

3. USING PDF OBJECT MODEL FOR FIG-
URE EXTRACTION

At an abstract level, a PDF document can be described
using three types of primitives: text, path (vector elements
such as lines and curves) and raster (bitmap) images. Each
primitive is painted on the screen using a set of operations,
the graphics state, and a transformation matrix.

We output bounding boxes for figure regions on a page
merging paths and bitmap images. These bounding boxes
contain the text inside the figure.

Extraction of bitmap images is relatively easy because
there are only four operators for painting the image, and
the painting locations can be extracted easily as well. The
scenario is more complicated For the vector elements. Three
types of operators are used to render a path:

1. Path construction: Operators c (curveto), l (lineto) and
others are used to define start and end points of a path.

2. Path painting: Operators S (stroke path), s (close and
stroke path) are used to paint a path on the screen. These
operators determine the color, width and other esthetic
details.

3. Clipping paths: Operators W and W ∗ are used to con-
struct clipping paths. A clipping path defines a region of
the page which should be used for painting the vector ele-
ments.
Extracting the locations for “paths” can be difficult be-

cause the parser needs to consider various elements of the
graphics environment, as described before. Therefore, it
is beneficial to have a higher level representation of the
PDF. Recent work by Hassan et al. [10] introduced an “ob-
ject level” representation of PDF documents. Their soft-
ware (pdfXtk) produces bounding boxes of vector and raster
graphic elements from a PDF document, combining several
small subpaths. The goal of the software is to “obtain a
simplified representation of the most important lines and

boxes which are of material importance for layout analysis,
i.e. they are likely to be noticed immediately by a human
reader just scanning through the page and are at the level of
granularity required for performing document analysis” [10].
Our system uses the output of this software.

The output from pdfXtk are the bounding boxes for paths,
but not all of them belong to graphics regions. For example,
most tables have lines, symbols can be drawn by curves.
These paths need to be filtered out before the grouping.
Surprisingly, previous works don’t discuss that. We propose
models learned from the data to remove these “noisy paths”.
Also, we show that the grouping can be done using clustering
algorithms, removing the need for heuristics. Once paths are
classified and clustered, their bounding boxes can be merged
to produce final figure regions.

3.1 Classification of Raster Graphics and Paths
We considered a binary classification problem where we

classified each path/raster graphic as a member of a figure
region (positive) or not (negative). We observed that most
large raster graphics (area of the graphic > 10% of the page
area) belonged to the positive class. Paths pose a greater
challenge and determining such heuristic is hard. We ex-
tracted following features for each path:
• Character density ratio: It is intuitive that the paths

inside the figure regions will have less text around them
whereas paths inside table/equation region will have a higher
amount of text. Therefore, for each path, we extract the
character density within a region around it. Character den-
sity is defined as the number of characters inside a region
/ area of the region. We also extract the character den-
sity for the whole document. The feature value is defined
as CDp/CDpdf (character density of the path / character
density of the PDF).

• Distance from boundary: PDF pages usually contain
paths which acts as demarcations or used for decorative
purposes. For example, footnotes are usually separated
from the main content by a straight line near the boundary
of the page. On the contrary, paths inside figure regions
are far from the page boundary. We define the distance of
a path from a boundary as the minimum of distances from
all axes.

• Number of paths in ε neighborhood: This feature is
motivated from DBSCAN algorithm where a point is clas-
sified as noise if it has less than N points in its ε neighbor-
hood. Often, paths are used to paint symbols such as ratio
(/), summation (Σ). As these paths should be inside the
text regions and not the figure regions, ideally they should
have less number of paths around them.

• Area: We observed that the paths inside the figure regions
had smaller area compared to the other paths.

We experimented with four classifiers, and the results are
reported in section 4.3.

3.2 Combining Paths into Figure Regions
Paths classified as positive instances can be grouped by

heuristics to create figure regions. A popular way for such
grouping is optimized X-Y cut, [12] but the parameters for
the algorithm need to be tuned. Therefore, our system uses
a clustering algorithm.

A clustering algorithm such as K-means has three param-
eters: 1. The number of clusters, 2. Distance function and 3.

Initialization. Most scholarly documents contain figure cap-
tions. Therefore, number of clusters can be estimated eas-
ily using regular expressions. From our previous work [14],
it was evident that the best distance function is the Eu-
clidean distance between the centers of the bounding boxes.
In the usual implementations of K-means algorithm, the ini-
tial points are chosen randomly, which can lead to arbitrary
results. We experimented with two initialization methods:

• Nearest point to a figure caption (NFC): Points near-
est to the figure captions were used as initialization points.
The distance is measured by Manhattan distance between
two rectangles.

• K-means++: In this method, cluster centers are chosen to
be far away from each other. The first initial cluster center
is chosen at random. The second cluster center x is chosen
with a probability proportional to the distance of the point
x from the first cluster center. This process is repeated until
K cluster centers are chosen.

4. EXPERIMENTS AND RESULTS

4.1 Dataset
We randomly sampled 200 PDF files from CiteSeerX repos-

itory and split them into pages, yielding approximately 1800
pages. 85 pages each having more than one figure and more
than five paths/images were randomly selected as test data.

From the rest, we randomly selected 50 pages containing
at least one figure to generate the data for the classifica-
tion experiment. We extracted approximately 3000 paths,
but more than 85% of these paths belonged to the positive
class. This is not surprising, given that most paths would
belong to some figure. However, this could create highly
overfitted models, especially in decision trees. To solve this
data imbalance problem, we further sampled 50 pages that
contained no figure but tables. The final data for classifica-
tion (approximately 4000 paths) had 2:1 positive to negative
ratio.

Since figure regions had to be manually tagged from the
page images, and we only investigated the harder cases (pages
with minimum two figures), the dataset is relatively small.
A completely random selection would include pages with
one figure. Though that would increase the accuracy, there
would be no clustering evaluation.

4.2 Evaluation
For the classification problem, we use well-known evalua-

tion metrics: precision, recall, and F1-score. For our prob-
lem, it is important to have high recall for the negative
class, even at the expense of the positive class. Because,
even if some positive samples belonging to a figure region
are wrongly classified, they would possibly be merged into
the region due to the correctly classified samples. Figure 1
shows an example of that case.

The clustering evaluation is tricky. Standard metrics such
as adjusted rand index are not suitable because even a single
point clustered wrongly can change the region size dramat-
ically. Suppose the location of the actual figure is given
by a rectangle Rg and the predicted location is given by a
rectangle Rp. The evaluation metrics are defined as:

1. Figure-precison:
Area overlap between Rg and Rp

Area of Rp

2. Figure-recall:
Area overlap between Rg and Rp

Area of Rg

3. Figure-F1-score:Harmonic mean of figure-precison and
figure-recall.
Given the gold standard data for a page (i.e. set of all

Rgs for that page) and the predicted locations for the same
page (set of all Rps for that page) we first calculate the
correspondence between the sets. A correspondence con-
figuration is defined as a one to one mapping between two
sets. We calculate the total area overlap for all such possi-
ble configurations and the one having the maximum value is
considered to be the final mapping. Once the mapping is de-
fined, we calculate the “figure-precision”, “figure-recall” and
“figure-F1-score” values between (Rp, Rg) pairs. Our met-
rics are motivated by ICDAR 2013 table localization com-
petition [9].

(a) Classification results
on a sample page.

(b) Clustering results on
the classified paths.

Figure 1: An example where some instances of the
positive class (green) are classified as negative class
(red). However, that doesn’t change the clustering
quality.

4.3 Classification: Results and Discussions
We experimented with four classifiers for the classifica-

tion problem: 1. A Linear Kernel SVM (penalty parameter
value=1), 2. A Gaussian Näıve Bayes classifier, 3. A De-
cision Tree classifier with depth=3 and Gini index as the
splitting criterion and 4. A Logistic Regression classifier.
The data (4000 paths) was splitted in 70:30 ratio for training
and testing, maintaining the class balance. Each classifier
was run 200 times, and the metrics were calculated on the
test data. The results of the experiments are presented in
table 1. Note that the experiment process is equivalent to
stratified cross-validation but more robust as it is done for
200 times. The decision tree performed better in classifying
the negative class. More importantly, the recall is the high-
est when we use decision trees. Inference in decision trees is
rule-based, hence scalable. We experimented with multiple
combinations of the features, but the results didn’t improve.

4.4 Clustering: Results and Discussions
We used the decision tree model learned from the training

data to classify each path in test data. Positively classified
paths were clustered using K-means, and finally merged into
figure regions. For the clustering problem, we experimented

Classifier
Recall Precision F1-Score
(-)ve (+)ve (-)ve (+)ve (-)ve (+)ve

SVM 53.9 87.7 65.4 82.0 58.7 84.7
Näıve Bayes 45.5 92.0 70.4 80.1 55.1 85.7
Decision
Tree

73.2 73.1 53.7 86.8 61.7 79.1

Logistic Re-
gression

72.4 69.1 49.5 85.7 58.8 76.5

Table 1: Classification results for used classifiers.

with two initialization parameters. The results are presented
in table 2. For the first method of initialization (Nearest
point to a figure caption), clustering is deterministic because
the choice of the initial cluster centers is deterministic. For
the second method (K-means++), the choice is probabilis-
tic. Therefore, we ran the clustering process ten times and
chose the fifth output. We ran the clustering and merging
process on 85 pages, each having more than one figure region
and five paths. Figure precision, recall, and F1-scores were
calculated as described in section 4.2. We had 180 figures
in the gold standard. Table 2 presents the average values
for the metrics. As expected, the first initialization method
outperforms the K-means++ method.

Initialization
method

Figure-
precison

Figure-
recall

Figure-
F1-score

Nearest point to a
figure caption

81.9 85.0 80.9

K-means++ 78.4 80.4 76.6

Table 2: Figure-precison,recall and F1-scores on test
data.

5. CONCLUSION AND FUTURE WORK
We propose a machine learning based approach to extract

figures from scholarly PDF documents. Our system builds
on recent developments in document processing. Contrary
to most work in this area, our approach is heuristic inde-
pendent and achieves good accuracy and scalability. We
have also designed evaluation metrics and created a labeled
dataset. Future work would be to improve the clustering
algorithm and explore the table extraction problem using a
similar approach.

6. ACKNOWLEDGEMENTS
We gratefully acknowledge partial support from the Na-

tional Science Foundation and NPRP grant # 4-029-1-007
from the Qatar National Research Fund (a member of Qatar
Foundation).

7. REFERENCES
[1] D. S. Bloomberg. Multiresolution morphological

approach to document image analysis. In Proc. of the
International Conference on Document Analysis and
Recognition, Saint-Malo, France, 1991.

[2] W. Browuer, S. Kataria, S. Das, P. Mitra, and C. L.
Giles. Segregating and extracting overlapping data
points in two-dimensional plots. In Proceedings of the
8th ACM/IEEE-CS joint conference on Digital
libraries, JCDL ’08, pages 276–279, New York, NY,
USA, 2008. ACM.

[3] S. S. Bukhari, F. Shafait, and T. M. Breuel. Improved
document image segmentation algorithm using
multiresolution morphology. In IS&T/SPIE Electronic
Imaging, pages 78740D–78740D. International Society
for Optics and Photonics, 2011.

[4] H. Chao and J. Fan. Layout and content extraction for
pdf documents. In Document Analysis Systems VI,
pages 213–224. Springer, 2004.

[5] S. R. Choudhury, P. Mitra, A. Kirk, S. Szep,
D. Pellegrino, S. Jones, and C. L. Giles. Figure
metadata extraction from digital documents. In
Document Analysis and Recognition (ICDAR), 2013
12th International Conference on, pages 135–139.
IEEE, 2013.

[6] S. R. Choudhury, S. Tuarob, P. Mitra, L. Rokach,
A. Kirk, S. Szep, D. Pellegrino, S. Jones, and C. L.
Giles. A figure search engine architecture for a
chemistry digital library. In Proceedings of the 13th
ACM/IEEE-CS joint conference on Digital libraries,
pages 369–370. ACM, 2013.

[7] C. Clark and S. Divvala. Looking beyond text:
Extracting figures, tables and captions from computer
science papers. In Workshops at the Twenty-Ninth
AAAI Conference on Artificial Intelligence, 2015.

[8] R. P. Futrelle, M. Shao, C. Cieslik, and A. E. Grimes.
Extraction, layout analysis and classification of
diagrams in pdf documents. In 2013 12th
International Conference on Document Analysis and
Recognition, volume 2, pages 1007–1007. IEEE
Computer Society, 2003.

[9] M. Gobel, T. Hassan, E. Oro, and G. Orsi. Icdar 2013
table competition. In Document Analysis and
Recognition (ICDAR), 2013 12th International
Conference on, pages 1449–1453. IEEE, 2013.

[10] T. Hassan. Object-level document analysis of pdf files.
In Proceedings of the 9th ACM symposium on
Document engineering, pages 47–55. ACM, 2009.

[11] X. Lu, S. Kataria, W. J. Brouwer, J. Z. Wang,
P. Mitra, and C. L. Giles. Automated analysis of
images in documents for intelligent document search.
IJDAR, 12(2):65–81, 2009.

[12] J.-L. Meunier. Optimized xy-cut for determining a
page reading order. In ICDAR, volume 5, pages
347–351, 2005.

[13] G. Nagy and S. Seth. Hierarchical representation of
optically scanned documents. In Proceedings of
International Conference on Pattern Recognition,
volume 1, pages 347–349, 1984.

[14] S. Ray Choudhury and C. L. Giles. An architecture
for information extraction from figures in digital
libraries. In Proceedings of the 24th International
Conference on World Wide Web Companion, pages
667–672. International World Wide Web Conferences
Steering Committee, 2015.

[15] M. Shao and R. P. Futrelle. Recognition and
classification of figures in pdf documents. In Graphics
Recognition. Ten Years Review and Future
Perspectives, pages 231–242. Springer, 2006.

[16] S. N. Srihari. Document image understanding. In
Proceedings of 1986 ACM Fall Joint Computer
Conference, ACM ’86, pages 87–96, Los Alamitos, CA,
USA, 1986. IEEE Computer Society Press.

