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ABSTRACT
A formal type of scientific and academic collaboration is
coauthorship which can be represented by a coauthorship
network. Coauthorship networks are among some of the
largest social networks and offer us the opportunity to study
the mechanisms underlying large-scale real world networks.
We construct such a network for the Computer Science
field covering research collaborations from 1980 to 2005,
based on a large dataset of 451,305 papers authored by
283,174 distinct researchers. By mining this network, we
first present a comprehensive study of the network statistical
properties for a longitudinal network at the overall network
level as well as for the intermediate community level. Major
observations are that the database community is the best
connected while the AI community is the most assortative,
and that the Computer Science field as a whole shows a
collaboration pattern more similar to Mathematics than
to Biology. Moreover, the small world phenomenon and
the scale-free degree distribution accompany the growth of
the network. To study the individual collaborations, we
propose a novel stochastic model, Stochastic Poisson model
with Optimization Tree (Spot), to efficiently predict any
increment of collaboration based on the local neighborhood
structure. Spot models the non-stationary Poisson process
by maximizing the log-likelihood with a tree structure.
Empirical results show that Spot outperforms Support
Vector Regression by better fitting collaboration records and
predicting the rate of collaboration.
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1. INTRODUCTION
We study the evolution of real-world networks by char-

acterizing and modeling a specific type of social network,
the scientific collaboration network. Scientific collaboration
leverages the intellectual and material resources in academia
and research and greatly benefits the community. Because a
predominant form of scientific collaboration is coauthorship,
a collaboration network can be portrayed by vertices repre-
senting researchers and edges corresponding to coauthored
papers. Over time, the evolution of such a network records
and reflects the growth of an academic field, shedding light
on its future development.

Our work investigates three levels of analysis of networks
at different scales. The highest network level analysis
characterizes the pattern of network evolution using various
network statistics. Such measurements enable us to show
that the underlying growth pattern manifests the well-
known small world phenomenon. At the intermediate
community level, we study the evolution of the structure of
autonomously-formed connected components. Visualization
of topical communities reveals the distinctive collaboration
patterns in each community. At the lowest individual level,
we propose a novel stochastic model, Stochastic Poisson
model with Optimization Tree (Spot), to efficiently predict
future collaboration between individuals based on their local
neighborhood structure.
Contributions: Our contributions are as follows:
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Table 1: Comparison of the statistical properties of several coauthorship networks.
Network CiteSeer NCSTRL Maths SPIRES MEDLINE NeuroSci.
Reference This paper [23] [21] [22] [4] [23] [21] [22] [23] [21] [22] [4]
#Papers 451,305 13,169 70,901 66,652 2,163,923 210,750

#Authors (N) 283,174 11,994 70,975 56,627 1,520,251 209,293
Mean papers/author 4.06 2.55 - 11.6 6.4 -
Mean authors/paper 2.55 2.22 - 8.96 3.75 -
Avg. degree (< k >) 5.56 3.59 3.9 173 18.1 11.54

Exponent (γ) 2.45 1.3 2.5 1.2 2.5 2.1
κ 291 10.7 120 1200 5800 400

Diameter (d) 26 31 - 19 24 -
Avg. path length (lreal) 7.1 9.7 9.5 4.0 4.6 6

Avg. path length, random (lrand) 12.14 7.34 8.2 2.12 4.91 5.01
Cluster coefficient (C) 0.634 0.496 0.59 0.726 0.066 0.76

Cluster coefficient, random (Crand) 7.8 × 10−6 3 × 10−4 5.4 × 10−5 3 × 10−3 1.1 × 10−5 5.5 × 10−5

Giant Comp. Percentage 65.9% 57.2% 70% 88.7% 92.6% 91%

1. To the best of our knowledge, this paper is the first
comprehensive and focused study of the large-scale
scientific collaboration network in Computer Science.
It investigates networks at three different granularities
and provides insights into the distinct collaboration
patterns in six topical communities.

2. A novel stochastic model (Spot) is proposed for
individual collaboration prediction, which shows su-
perior performance over Support Vector Regression
[30]. Spot is efficient by exploiting local neighborhood
information and is generalizable to other types of
networks.

Organization: We first briefly review related work, and
present our findings on the static and dynamic properties
of the Computer Science collaboration network on both the
network level and the community level. We then focus
on the individual level, proposing the Spot model to
investigate how the collaboration between a particular pair
of authors evolves over time. Finally we conclude with plans
for future work.

2. RELATED WORK
Static properties of various social networks have been

studied in the context of epidemiological networks [17],
online newsgroups [5], blogs and photo sharing websites [13],
citation networks [14], the database research community [9],
etc. Many of these networks follow a power-law degree
distribution and exhibit the “small world phenomenon” [18,
2]. Recent studies [8, 27, 14] on the network dynamics and
evolution reveal some interesting growth patterns, e.g. a
gradually shrinking diameter and degree densification in the
citation networks which can be explained by the Forest Fire
model [14]. Social capital can be quantified for predicting
event participation in a friendship-event network [16].

Recently, Newman applied modern network analysis tech-
niques to study the static network properties of several
coauthorship network, such as MEDLINE (biomedicine),
SPIRES (high energy physics), NCSTRL (Computer Science
preprints) [19, 23, 25]. Barabási et al [4] studied the
dynamics of coauthorship networks using the Maths and
Neuroscience networks as prototypes [4]. These studies how-
ever only focused on the macroscopic network properties.
Other studies on these networks have also revealed some

distinctive properties, e.g. the mixing pattern (i.e. positive
or negative assortativity, which indicates the tendency of
nodes linking to others that have a similar or dissimilar
degree distribution) [24]. The component structure of
such networks represents smaller research communities of
different sizes, and communities can be discovered through
clustering [29].

Preferential attachment [3] (i.e. the tendency of a
new node connecting to an existing node in the net-
work is proportional to its degree) is probably the best
known mechanism for depicting the scale-free networks.
For collaboration (coauthorship) networks, Barabási et al
[4] extended preferential attachment to model the web
of science. Although the proposed model can simulate
networks in terms of global network statistics (e.g. expo-
nents) by only taking into account node degrees, one can
not generally infer the probability that a pair of nodes
in the network will in the future collaborate. Recently,
Newman found that the probability of scientists to collab-
orate increases with the number of common collaborators
and there is a positive correlation between the number of
past collaborations and future (repeat) collaborations [20].
Liben-Nowell and Kleinberg [15] formalized this as the link
prediction problem, and studied the effect of various network
proximity measures for predicting the addition of edges in
the coauthorship network. These informative structural
features in the node’s neighborhood, combined with the
available exogenous extracted information in our datasets,
will be used in the statistical model for predicting the
number of collaborations in this paper.

3. DATA COLLECTION
We studied the evolution of scientific collaboration using

data drawn from the CiteSeer Digital Library1. CiteSeer
is a popular digital library with a focus on computer and
information sciences and consists of more than 700,000
academic papers. From CiteSeer, we extracted the metadata
of these papers [10], including titles, authors, affiliations,
physical/email addresses, publication years, etc. To min-
imize the impact of the author name ambiguity problem,
we used the author disambiguation techniques proposed
in [11] so that each vertex in this network represents a

1The CiteSeer Digital Library: http://citeseer.ist.psu.edu.
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distinct author. We obtain a large dataset (denoted by
CS) consisting of 283,174 unique authors and 451,305 papers
published between 1980 and 2005 (Figure 1:left). In Table
1 we compare our network with several other coauthorship
networks in the literature [1].

Figure 1: Left: number of authors and papers
from 1980 to 2005. Right: the increasing trend of
collaboration.

To study collaboration in a more fine-grained fashion, we
decomposed and mapped the data into six topical datasets
(Table 2): Artificial Intelligence (ai), Applications (app),
Architecture (arch), Database (db), System (system), and
Theory (theory). We obtained a list of representative
conferences in each topic from Computer Science Conference
Rankings2. We matched the names of these conferences with
the venue information extracted from the paper metadata
and constructed six datasets. Each dataset contains papers
published in the representative conferences corresponding to
a particular topic. For consistency, we intentionally selected
approximately 1,700 papers for each topic, yielding 11,820
authors and 10,195 papers in total.

To capture the dynamics of the growing network, we
used a “snowball sampling” approach. Using the publication
timestamps of the papers, we generated a series of 25 year-
by-year snapshots for the CS dataset. Each snapshot at
time t is represented by G(t) = (V, E), where every vertex
v ∈ V represents an author, and a pair of authors u and v
are connected by an edge 〈u, v〉 ∈ E if and only if they have
coauthored one or more papers. For any given timestamp t,
G(t) contains all the vertices and edges that have appeared
up to time t. For example, the snapshot G(2001) contains
all the authors who have published between 1980 and 2001,
and G(2005) represents all the author and paper information
in the CS dataset.

2http://www-static.cc.gatech.edu/∼guofei/CS ConfRank.htm

Table 2: Overview of the six topical datasets.
Topic Representative venues #Authors #Papers

ai AAAI, IJCAI, NIPS, KDD ... 2,105 1,666
app WWW, SIGGRAPH, SIGIR ... 2,087 1,548
arch DAC, MICRO, HPCA ... 2,589 1,740
db SIGMOD ,VLDB, ICDE ... 1,559 1,755

system SIGCOMM, PODC, SOSP ... 1,733 1,785
theory STOC, FOCS, COLT ... 1,747 1,701

Figure 2: The average distance of the network
gradually decreases over time, indicating that the
collaboration “world” in fact gets smaller over time.

4. CHARACTERIZING NETWORK
EVOLUTION

4.1 More Collaboration in a Smaller World
Collaboration among authors becomes increasingly popu-

lar as evidenced in our 25 snapshots (Figure 1:right). Over
the past 25 years, the average number of collaborators per
author has been steadily increasing, and so has the average
number of authors per paper but at a much slower pace
(from 2 authors per paper in 1980 to 2.55 in 2005).

The growth pattern of the network can be also investi-
gated by examining the diameter and the average distance
between a pair of authors in the collaboration network over
time. Distance is defined here as the number of hops from
one vertex to another and diameter as the longest distance
between two vertices. As shown in Figure 2, the average
distance between pairs of authors continuously decreases
from 9.3 in 1994 to 7.1 in 2005, which is another evidence
of scientific collaboration gaining popularity. On the other
hand, the network diameter fluctuates around 26, with two
dips in G(1997) and G(2003) which we believe are due to the
merge of the giant components which we further explore in
the next subsection.

Further investigation reveals the intrinsic growth pattern
of the network. First of all, the coauthorship network
manifests the small world phenomenon [18, 2]. As shown
in Table 1, all the coauthorship networks show a very
high clustering coefficient compared to Erdös-Rényi random
networks of the same size, suggesting that there is strong
local clustering in these networks. This partially explains
why the coauthorship network grows through the addition
of edges between a pair of nodes having a common node that
forms a closed triangle. In other words, the introduction
between authors by the same coauthor accounts for the
increasing number of collaborations. Also, despite the
stringent definition of coauthorship, the CS network has
average distance 7, implying that the famous six degrees
of separation can also be valid in the scientific world. Less
obviously, the average distance scales logarithmically with
respect to the number of researchers in the network:

logN

log < k >
= 7.32 ≈ lreal (1)

further confirming that the coauthorship network is a
growing small world.
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Figure 3: The degree distribution of the CiteSeer
co-authorship network in 2005.

The scale-free degree distribution also characterizes the
network growth pattern. Figure 3 shows the degree distri-
bution in G(2005)3. Qualitatively, the degree distribution
follows the power law especially in the middle degree
region. Similar to other coauthorship networks [4], the
counts in small degrees are substantially lower and the curve
tapers off more quickly in the large degrees resembling an
exponential distribution. The best fit for the (scale-free)
degree distribution in the middle region is obtained by
minimizing the sum of squares criterion and is (as shown
with the straight line)4:

p(k) ∼ (0.8 + k)−2.45 (2)

In Table 1 we compare our findings on G(2005) with ex-
isting work on the coauthorship networks in other domains,
e.g. biology, physics, and maths. Based on these metrics,
the way in which computer scientists collaborate is much
more similar to that of mathematicians and physicists than
to biologists. For instance, the average distance of the
computer science collaboration network lies between that
of mathematics and physics.

4.2 Shrinking Assortativity and Reciprocity
Two interesting findings are made regarding the assor-

tativity and reciprocity of the network. The first one is
a quantitative measure of the tendency for vertices to be
connected to other nodes that are similar (or dissimilar). In
our particular case of the collaboration network, we consider
assortativity mixing by degree - the tendency of nodes to
link to others that have a similar degree distribution (e.g.
researchers with many collaborators tend to coauthor with
other researchers who also have many collaborators). This
is defined in [24] as:

a =

∑
i jiki − N−1

∑
i ji

∑
i′ ki′√

[
∑

i j2
i − N−1(

∑
i ji)2][

∑
i k2

i − N−1(
∑

i k2
i )]

(3)

where ji and ki are the excess in-degree and out-degree of the
vertices that the ith edge leads into and out of respectively,

3To reduce the effect of outliers in the middle and high
degrees, we use the median of a window of five points (the
median is resilient to outliers) to plot the degree distribution.
4The curve may be better fitted with a piece-wise scale-free
distribution with lower exponent for low degrees and larger
exponent for high degrees.

Figure 4: Assortativity and reciprocity are both
shrinking over time. Note that assortativity
dropped significantly.

and N is the total number of edges. Note that we consider
the collaboration network as symmetric and ignore the order
of authorship.

We measure reciprocity of the network as the tendency
for a pair of coauthors to exchange their positions in the
authors list, formally defined as:

r =

∑
et

vu∑
et′

uv

, (4)

where et ∈ Gt, et′ ∈ Gt′ , u, v ∈ Gt, t < t′. Intuitively, it is
the fraction of directional edges < v, u > such that < u, v >
also exists in the graphs with earlier time-stamps.

Shown in Figure 4 are assortativity and reciprocity from
1984 to 2005. The positive assortativity could be corrobo-
rated by the observation [2] [26] that real-world social net-
works, unlike most artificial networks, are usually strongly
assortative. Assortativity eventually dropped to 0.28 in
G2005, smaller than that of the Physics community (see
Table 3). Reciprocity was also significantly lower than those
observed in online social network: the reciprocity in G2005

was 0.0055 in sharp contrast to 0.702 in the Flickr social
network and 0.84 in the Yahoo 360 social network [13], as
actors in these online social networks generally exchange
links and linking back is much less costly than that in
coauthorship networks.

5. COLLABORATION AT THE
COMMUNITY LEVEL

In this section, we present our findings as we scale down
the level of analysis to the community level, with focus
on two different types of communities.

5.1 Component Structure Evolution
The first type of communities are those autonomously

Table 3: Assortativity coefficient in Computer
Science and other research domains.

Metric Biology Comp. Sci. Maths Physics

Assortativity 0.13 0.28 0.12 0.36
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Figure 5: The largest component of G(2005), enlarged
on the left, visually forms the core of the network
shown in the bottom-right inset. Edges showing
collaborations in different topics are rendered in
different colors. Visualization is performed by the
Large Graph Layout (LGL) package.

formed through collaboration in the entire Computer Sci-
ence field. Such communities are represented by components
of different sizes in the network. Formally defined, a
component is a connected subgraph, i.e. two vertices are
in the same component if and only if there is a traversal
path between them.

Let |C| denote the size of a component C. We are
interested in three types of components:

• Giant components represent the large (|C| ≥ τ ,
where τ is a threshold) groups of researchers who
are connected to each other either directly as coau-
thors or indirectly through a chain of collaborators.
Collectively, the giant components form the “core of
productivity” in the network, usually containing the
most prolific and active collaborators. The largest
component (Figure 5) typically covers a significant
portion of the network [25]. In our case the largest
component in G(2005) covers about 65.95% of the
network.

• Singletons are the individuals who never publish
with other researchers. They are the loners in the
community, represented by vertices with zero degree.
About 7.2% of the vertices in G(2005) are singletons.

• Middle region is the remaining section in the col-
laboration spectrum, typically consisting of relatively
isolated groups of researchers who seldom collaborate
with outsiders. In G(2005) the middle region comprises
about 26.85% of the authors.

The dynamics of how components of different sizes evolve
over time are even more interesting (Figure 6). The band
at the top represents the giant components (τ = 103)
and the bottom band corresponds to the singletons. The
remaining bands constitute the middle region. Most notably,
the number of vertices that belong to the middle region

Figure 6: The evolution of component structure,
shown as the fraction of vertices in components
of different sizes. The middle region gradually
lost ground as the giant components came into
dominance. The percentages became constant after
reaching a steady state.

drops significantly, and then quickly reaches a steady state
where the width of each band remains almost constant since
G(1989). The components of sizes between 100 and 999
(the green band) disappear after 1987 and we find that they
merged with the giant components5. Similar patterns of
connected component evolution were also observed in other
types of social networks [13].

5.2 Collaboration in Topical Communities
The second type of communities correspond to different

research topics. We study the collaboration in topical
communities using the six topical datasets described earlier
and present the findings in Table 4. One interesting
observation is that the database community has the best
connected collaboration network, with the lowest average
distance between pairs of authors and the highest average
betweenness. Its component structure (see Figure 7) has
the fewest components and the largest component covers
a significant portion (∼ 60%) of the network. Compared
with other topics, database researchers also have the largest
number of collaborators on average, and are more reciprocal
to coauthors [13]. On the other hand, AI researchers
have the weakest tendency to reciprocate in publication.
They however have the largest assortativity among all
six topics (Table 4), showing the strongest tendency to
collaborate with someone who are in the same league,
i.e. researchers with many collaborators tend to coauthor
with other researchers who also have many collaborators.
Figure 7 shows a comparison between the database and the
applications community. The much lower betweenness of the
applications topic might be due to the fact that it contains
authors from several rather disjoint communities, such as
multimedia research and information retrieval, and is thus
more heterogeneous than the other topics.

5We note the merging effect may be confounded by the
relatively low availability of online publication in the 1980s;
the constitution since mid 1990s corresponding to the
majority of papers in CiteSeer, however, remains relatively
stable.
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Dataset
Connectivity Component structure Collaboration patterns

avg. dist. betweenness #comp. largest comp. singleton papers/author collaborator reciprocity assortativity

ai 5.5 0.5 × 10−2 574 11.1% 6.6% 1.9 2.7 1.7× 10−3 0.61
app 3.5 0.1 × 10−2 593 4.9% 6.3% 2.0 3.0 2.8 × 10−3 0.29
arch 8.3 1.9 × 10−2 603 21.1% 4.1% 1.9 3.4 3.6 × 10−3 0.44
db 5.3 5.9 × 10−2 205 55.9% 2.9% 3.6 4.7 7.3× 10−3 0.35

system 6.0 1.7 × 10−2 415 24.2% 4.7% 2.6 3.0 1.9 × 10−3 0.25
theory 6.5 1.9 × 10−2 461 31.8% 8.4% 2.3 2.8 5.2 × 10−3 0.37

Table 4: Summary statistics of the six topical communities. Cells with particularly high/low values are
highlighted in bold font.

Figure 7: The database community (right) is more
cohesive than the applications community (left), and
its largest component forms a significantly larger
core in the network.

6. SCIENTIFIC COLLABORATION
BETWEEN INDIVIDUALS

We now investigate how a collaboration between a pair of
authors evolves over time, which serves as the finest level
collaboration in the network. Specifically, a fundamental
research question is: given a pair of authors vi and vj with
existing collaboration ei,j, what is the probability that they
will collaborate k times within the next Δt time interval.

As shown above, real world social networks (coauthorship
networks in particular) are typically very large in terms of
the number of vertices |V |, but are very sparse in terms
of the number of edges |E|, i.e. |E| � |V |2. Algorithms
that examine all pairs of vertices in the network result
in the computational complexity Ω(|V |2), and as such are
generally intractable for large |V |. Nonetheless, we can
model the microscopic collaboration patterns between all
pairs of vertices with existing edges, due to the sparsity of
the edges in such networks. In the coauthorship network,
existing edges represent previous collaboration between a
pair of authors. Intuitively, past collaboration patterns
between two authors and the structural information in the
neighborhood of the vertices involved would suffice for the
prediction of future collaboration. Hence, we propose a
novel and efficient (Θ(|E| log(|E|))) method for learning and
predicting the collaboration patterns between author pairs
with existing collaboration and without resorting to the rest
of the network.

We note that there is a related yet separate question:
how does a new collaboration appear in the network? The
answer to this depends highly on the macroscopic network
characteristics. For instance, artificial networks are usually

dissortative [24], whereas preferential linking is common in
social networks for which the well known Barabási-Albert
(BA) model [3] can be used to predict P{ei,j}. Also, in
real world scenarios, there is usually insufficient information
in the data to predict intercollegiate or interdisciplinary
collaboration.

We first propose the Stochastic Poisson model with Op-
timization Tree (Spot) method, consisting of a stochastic
model for collaboration over time and an Optimization Tree
for optimizing the model. Then we evaluate the performance
of the model on longitudinal coauthorship network data.
Although we derive the model in the coauthorship network,
our learning algorithm can be readily generalized to other
types of evolutionary networks.

6.1 A Stochastic Poisson Model for
Collaboration

We denote an evolutionary collaboration network by a
series of discrete time snapshots {G(t)}(t = 0, 1, 2, ...). In the
graph G(t), an existing collaboration between authors vi and
vj is denoted by an edge ei,j(t), associated with its weight
equal to the number of collaborations Ni,j(t) up to time t.
Since N(t) is discrete and represents the cumulative number
of collaborations, N(t) is a counting process. The Poisson
process [28] is a prominent stochastic model for counting
processes, appearing in many real world phenomena. In the
time invariant Poisson process with rate λ, the probability
of the number of events k, occurring in the Δt time interval,
is given by:

Prλ{N(t + Δt) − N(t) = k} =
e−λΔt(λΔt)k

k!
(5)

In our case, however, the stationary Poisson rate condition
typically does not hold for scientific collaboration due to
various influencing factors. For example, collaborating
with prolific authors may lead to a faster rate. Thus
this requires the use of the more general nonstationary
(nonhomogenous) Poisson process [28], where the rate is a
variant function rather than a constant. As noted above, the
local collaboration structure provides valuable information
for determining the underlying rate function. For instance,
while international or intercollegiate collaboration is not un-
common, two authors may collaborate more when they work
in the same laboratory; authors collaborated assortatively
before are likely to collaborate in the same way in the future.
Specifically, for an existing collaboration ei,j(t) at time t,
the subgraph G(ei,j(t)) is defined as the neighborhood
of ei,j(t), consisting of the author pairs (vi, vj), their
immediate neighbors (coauthors) and the associated edges.
A feature vector a = (a1, ..., ap) is computed with respect
to the neighborhood G(ei,j(t)). For instance, features
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concerning the local neighborhood can be the fraction of
the number of shared coauthors to the total number of
collaborators for each author, the collaboration rate in the
previous snapshot, the cumulative number of publications,
etc. Therefore, for a specific edge ei,j(t), the collaboration
rate λ is defined as a function of the feature vector of the
neighborhood, i.e. λ(ei,j(t)) = f(ai,j(t)). Our goal is to
learn the optimal function f from the past collaboration
patterns for the prediction of future collaboration.

We obtain a training instance for each edge between two
adjacent snapshots ei,j(t) and ei,j(t+Δt). We then compute
the increment of publication by ki,j = N(t+Δt)−N(t) and
the feature vector ai,j(t) from the neighborhood G(ei,j(t)).
For simplicity of notation, we let Prλ(ei,j(t)){ki,j} denote

Prλ(ei,j(t)){N(t + Δt) − N(t) = ki,j |ei,j(t0)} (6)

Note that the probability conditions on the existence of an
edge (denoting collaboration) prior to the counting process.
Once the counting process starts, it is modeled as a non-
homogeneous Poisson process and thus in any time interval
Δt the increment ki,j can be any non-negative number. We
also assume Δt to be one unit of time in the sequel. Given
the observations, the optimal function f should maximize
the log-likelihood with respect to the training instances:

f∗ = arg max
f

log
∏

ei,j(t)

Prλ(ei,j(t)){ki,j}

= arg max
f

∑
ei,j(t)

log Prλ(ei,j(t)){ki,j}

= arg max
f

∑
ei,j(t)

[ki,j log(λ(ei,j(t))) − λ(ei,j(t)) − log ki,j !]

= arg max
f

∑
ei,j(t)

[ki,j log(f(ai,j(t))) − f(ai,j(t))] (7)

where the function f is plugged into Eq. (7) and the
factorial terms ki,j ! are dropped as they are not related
to the maximization. In general, there is no closed-form
solution for Eq. (7). We now propose a nonparametric
solution to this optimization problem.

6.2 The Optimal Tree for Estimating the Rate
Function

In an evolutionary network, we model the collaboration,
or more generally the addition of weights to the edges, as
a non-stationary Poisson process. The collaboration rate
function depends on the neighborhood structure. We refrain
from making a priori parametric assumptions about the
rate function, as such our model can be applied to a wide
variety of real-world networks. Furthermore, we opt to solve
the optimization problem using a nonparametric approach,
the Optimization Tree, inspired by decision tree methods
such as CART [6].

Similar to decision trees, the Optimization Tree is grown
in a top-down and best-first fashion. Our goal is to derive
the decision rule criterion in each split in order to find the
function f∗ in Eq. (7). Each internal node in the tree
represents a decision: aj ≤ h, where aj is the jth attribute
and h is the splitting value. Geometrically, a splitting
hyperplane is orthogonal to an axis in the feature space and
splits the feature space into hypercubes (regions). As such
it dramatically reduces the search space and consequently

the training time as well. We note that the terms in the
summation in Eq. (7) are not related to one another.
Thus for any internal node, the optimal decision rule should
maximize the log-likelihood in the two sub-regions:

(R1, R2)
∗ =

arg max
R1∪R2=R

∑
ei,j(t)∈R1

[ki,j log f(ai,j(t)) − f(ai,j(t))]

+
∑

ei,j (t)∈R2

[ki,j log f(ai,j(t)) − f(ai,j(t))] (8)

Since all the instances in a node are assumed to be
drawn from an identical Poisson distribution, the optimal
estimate for the rate which maximizes the log-likelihood for
the training samples in region R is the mean:

λR =
∑

ei,j(t)∈R

ki,j

/
‖ R ‖ (9)

Substituting Eq. (9) into Eq. (8), we derive the optimal
splitting criterion for the region R:

(R1, R2)
∗ = arg max

R1∪R2=R
[

∑
ei,j (t)∈R1

ki,j log λR1

+
∑

ei,j(t)∈R2

ki,j log λR2 − λR1 ‖ R1 ‖ −λR2 ‖ R2 ‖]

= arg max
R1∪R2=R

[
∑
R1

ki,j log λR1 +
∑
R2

ki,j log λR2 ] (10)

where the linear terms in Eq.(10) are dropped, since they
sum up to

∑
ei,j(t)∈R ki,j and thus are not related to the

optimization.
In each step of growing the Optimization Tree, the internal

node, which when split causes the maximum increment
in the log-likelihood, is selected as the splitting node.
Techniques used in training decision trees can also be
adopted here for efficient implementation. For instance,
training instances can be sorted by feature value beforehand
and a linear search can be performed per feature to obtain
the maximum in Eq.(10). After the tree is grown, each leaf
in the Optimization Tree corresponds to a fixed rate Poisson
distribution and can therefore be used for prediction.

6.3 Remarks on the Optimization Tree Method
Before turning to the experimental studies, it is worth-

while to remark on the proposed Optimization Tree method.
We first offer an alternative viewpoint of the Optimization
Tree method as entropy maximization. Substituting
λ in Eq. (9) into Eq. (10), we note that with proper
normalization each term in Eq. (10) can be regarded as
a proxy of the entropy of the corresponding sub-region.
Therefore, although we aim to maximize the log-likelihood,
the Optimization Tree method can in fact be regarded as
maximizing the proxy of the entropy of the samples in a
greedy fashion.

Although the proposed Optimization Tree method shares
some structural similarities with decision trees, we empha-
size the key differences between them. First, the Optimiza-
tion Tree aims to estimate a probability distribution or more
precisely its parameters with respect to the input feature
vector, rather than solving a classification or regression
problem as in classification or regression trees. Second,
the Optimization Tree solves the optimization problem by
maximizing the log-likelihood of the training instances,
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Table 5: Features used for collaboration prediction.
Level Feature

Individual
- Total number of publications of author vi

- Total number of publications of author vj

Pairwise

- Whether author vi and vj belong to
the same affiliation
- Total number of collaboration by time t
- Total number of shared collaborators
by author vi and vj

- Collaboration rate between vi and vj

in the previous snapshot

Neighbor-
hood

- The fraction of shared collaborators to
all the collaborators of author vi times
the fraction of that of author vj

- The fraction of publication with shared
collaborators to all publication of vi times
the fraction of that of vj

instead of using the impurity function such as Gini index
[6] to determine the decision rules. We formally derive the
functional form of the decision rule in each split which is
fundamentally different from the impurity functions as used
in classification/regression trees.

Despite these differences, the Optimization Tree shares
some advantages with other decision tree methods. First,
the Optimization Tree can be regarded as a smoothing
technique for samples within a region, as such it dampens the
effect of outliers in the training data. Moreover, since Spot
learns from a non-homogeneous Poisson process rather than
a fixed distribution, it has the effect of smoothing evolving
data over time. Second, with a linear region boundary the
Optimization Tree provides a simple and stable model for
estimating the rate function. Also, the training computation
complexity is O(p |E| log |E|), where p is the dimension of
the feature space. It is thus more efficient than other
methods such as SVMs. These features are highly desirable
for our problem.

6.4 Empirical Studies on the Collaboration
Model

To evaluate the accuracy of the prediction, we collected
a total of 105,122 collaboration records in 1997 to 2000
and 2001 to 2003 from the CS dataset. The goal is
then to predict the increment in collaboration between the
snapshots6. Table 5 shows the different features used in
each collaboration record. These features are organized
in three levels: the first level relates to the individual
author per se, the second level concerns with pairwise
collaboration information and the third level pertains to
the collaboration structure in the neighborhood. Since
we only use local information, an efficient solution can be
easily achieved. Although Table 5 is not a complete list
of all possible features, we intentionally select the most
informative features in each level to showcase the prediction
power of our method.

We use two models for comparison. The Past Collab-

6Publications have been aggregated into a three year
interval. The increment in publications between the
intervals ranges from 0 to 42. We did not choose a one year
interval since the number of publications by two authors is
relatively small and unstable.

oration Rate model is used as a baseline which predicts
the number of collaborations to be the same as that in
the previous time interval, regardless of other information.
In [20], Newman has shown by using a relative probability
that the number of past collaborations is a good indicator
of the probability of future collaboration. We also choose
Support Vector Machines [30] as a sophisticated model for
comparison, due to its efficacy in various classification and
regression problems. Specifically, given the feature vectors
and the corresponding number of collaborations as training
samples, Support Vector Regression (SVR)7 [30] is used as
a strong baseline comparator to learn the regression model.
The SVR model then predicts the number of collaborations
in the test data.

Note that the above two baselines are however inherently
different from Spot, which predicts the number of collabo-
ration with a Poisson probability distribution. In practice,
it is desirable to obtain a discrete value as the number
of collaborations. The mean of the Poisson distribution
is a natural choice, since it maximizes the log-likelihood
in the training data. In the sequel, we use the Poisson
mean corresponding to the distribution predicted by the
Spot method to compare with the values predicted with
the baseline methods. To give an actual example, rules
of the following form could be condensed from the tree for
predicting the distribution:

IF (total collaboration is between 9 and 18)

AND (collaboration rate in the previous

interval is lower than 7)

AND (fraction of shared authors among

author i’s coauthors times that among

author j’s is lower than 0.025) ...

THEN IF (fraction of shared papers in author i’s

papers times that in author j’s is

lower than 0.0124)

THEN predict rate=2.38

ELSE predict rate=3.51

Thus in the example above, the leaf nodes predict the
collaboration rate. If the predicted rate is 2.38 for the
respective Poisson distribution, the probabilities of incre-
mental collaborations of 0, 2 and 3 are 0.093, 0.262 and
0.208 respectively.

We evaluate the performance of these models by measur-
ing two goodness of fit statistics for the data. The sample
correlation coefficient (Pearson correlation coefficient) mea-
sures the linear relationship between the predicted and the
true number of collaboration. Let yi and ỹi (i = 1, ..., n)
denote the true and predicted increment of collaboration,
the sample correlation coefficient is defined as,

ryỹ =

∑
i (yi − y)(ỹi − ỹ)

(n − 1)sysỹ
(11)

where y and ỹ are sample means, sy and sỹ are sample
standard deviations. The correlation coefficient is between
-1 and 1, and the higher the absolute value the stronger the
linear relationship between the predicted and true value. We
also measure the absolute magnitude of the residuals (the
difference between the predicted and the true value) with

7The classical implementation ε-SVR in LIBSVM [7] is used
in our experiments.
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Table 6: Comparison of prediction performance of
Past Collaboration (baseline), Spot and SVR using
10-fold cross validation.

Method Correlation Root Mean Squared
Coefficient (r) Error (RMSE)

Past Collaboration 0.227 4.74
SVR 0.673 1.53
Spot 0.782 1.42

the Root Mean Squared Error (RMSE),

RMSE =

√∑
i err2

i

n
=

√∑
i (ỹi − yi)2

n
(12)

Lower RMSE indicates a better fit to the data as the
predicted values deviate less from the true values.

We held out a portion of the training data to determine
the parameters in the methods. The only parameter in
Spot is the number of internal nodes which determines
the size of the tree. Experiments on the hold-out datasets
suggest that a tree with 75 internal nodes fits the data well.
This parameter is relatively insensitive as the correlation
coefficient ranges from 0.73 to 0.82 in the hold out dataset.
Similarly, we determine the parameters C=10 and γ=0.001
(with RBF kernel) in the SVR model using the same hold-
out dataset.

We conducted 10-fold cross validation in the remaining
data in all our experiments, namely, parameters are trained
on 90% of the samples and tested on the remaining data
in a rotation manner. The results are summarized in
Table 6. The baseline Past Collaboration model scores
only 0.227 coefficient correlation, while both Spot and
SVR score much higher, suggesting that there is significant
information in the neighborhood structure that can be used
for prediction. Using the Poisson mean as the predicted
value, Spot increases the correlation coefficient by 18.7%
compared to SVR. Considering the contribution of other
complicating factors in future collaboration, Spot’s high
correlation coefficient (0.782) suggests that there is strong
correlation between the predicted and true value and thus
Spot can be a good predictor. Similar results are found
in the RMSE metric. The RMSE is 4.74 when using only
the number of collaboration in the previous time interval
for prediction. SVR and Spot significantly outperforms the
baseline by accounting for the information existed in the
neighborhood. Compared to SVR, Spot incurs 8.4% less
RMSE. These results demonstrate that Spot fits a better
model for collaboration than SVR.

7. CONCLUSIONS AND FUTURE WORK
This work adds to the literature of social network analysis

of collaborating authors by characterizing and modeling the
growth of a large Computer Science collaboration network
over a period of 25 years. By conducting a longitudinal
analysis at the network and the community levels, our
study presents the first comprehensive picture of the evolv-
ing trends of collaboration in the field. In addition, we also
quantify, compare and contrast the distinctive collaboration
patterns in six topical communities. On the individual
level, we proposed a new model, the Spot method, for
learning and predicting collaborations between pairs of
authors. In an evolutionary network, we model the col-

laboration as a non-stationary Poisson process and propose
the Optimization Tree method to learn the collaboration
rate function. Since only local neighborhood information
is used, our model is able to learn from a heterogeneous
network, is efficient, and is flexible to the set of features.
Our experimental results show that Spot outperforms the
popular SVR method for collaboration prediction.

There are several opportunities for future studies. For
instance, one could study the creation and evolution of
bridge nodes in different topical communities since they
serve as brokers of information between different research
areas. The identification of such nodes will further our
understanding of the interaction between collaborations at
the individual level and community level. Another direction,
as alluded earlier, is to extend our model with the Bayes
formula to predict the joint probability P{N(t+Δt)−N(t) =
k, ei,j} for new edges, where the prior of new edges may
be modeled by topological and topical information such as
cyclic closure and focal closure [12].
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