
Identifying, Indexing, and Ranking Chemical
Formulae and Chemical Names in Digital
Documents

Bingjun Sun, Prasenjit Mitra, C. Lee Giles, Karl T. Mueller

The Pennsylvania State University

End users use chemical search engines to search for chemical formulae and chemical names.
Chemical search engines identify and index chemical formulae and chemical names appearing
in text documents to support efficient search and retrieval in the future. Identifying chemical
formulae and chemical names in text automatically has been a hard problem that has met with
varying degrees of success in the past. We propose algorithms for chemical formula and chemical
name tagging using Conditional Random Fields (CRFs) and Support Vector Machines (SVMs)
that achieve higher accuracy than existing (published) methods. After chemical entities have
been identified in text documents, they must be indexed. In order to support user-provided
search queries that require a partial match between the chemical name segment used as a keyword
or a partial chemical formula, all possible (or a significant number of) sub-formulae of formulae
that appear in any document and all possible sub-terms (e.g., ‘methyl’) of chemical names (e.g.,
‘methylethyl ketone’) must be indexed. Indexing all possible sub-formulae and sub-terms results
in an exponential increase in the storage and memory requirements, and the time taken to process
the indices. We propose techniques to prune the indices significantly without reducing the quality
of the returned results significantly. Finally, we propose multiple query semantics to allow users
to pose different types of partial search queries for chemical entities. We demonstrate empirically
that our search engines improve the relevance of the returned results for search queries involving
chemical entities.

Categories and Subject Descriptors: H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval—Information filtering,Query formulation,Retrieval models,Search process;
H.3.1 [Information Storage and Retrieval]: Content Analysis and Indexing—Linguistic pro-
cessing; H.4.0 [Information Systems Applications]: General; I.2.7 [Artificial Intelligence]:
Natural Language Processing—Text analysis; I.5.4 [Pattern Recognition]: Applications—Text
processing; J.2 [Physical Sciences and Engineering]: Chemistry

General Terms: Algorithms, Design, Experimentation, Documentation

Additional Key Words and Phrases: Chemical name, chemical formula, entity extraction, con-
ditional random fields, independent frequent subsequence, hierarchical text segmentation, index
pruning, query models, similarity search, ranking

Author’s address: B. Sun, Department of Computer Science and Engineering, The Pennsylvania
State University, University Park, PA 16802, Email: sunbingjun@gmail.com. P. Mitra, College
of Information Sciences and Technology, The Pennsylvania State University, University Park, PA
16802, Email: pmitra@ist.psu.edu. C. Lee Giles, College of Information Sciences and Technology,
The Pennsylvania State University, University Park, PA 16802, Email: giles@ist.psu.edu. Karl
T. Mueller, Department of Chemistry, The Pennsylvania State University, University Park, PA
16802, Email:ktm2@psu.edu
Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 2010 ACM 0000-0000/2010/0000-0001 $5.00

ACM Transactions on Information Systems, Vol. 2, No. 3, 10 2010, Pages 1–0??.

2 · Bingjun Sun,Prasenjit Mitra, C. Lee Giles, Karl T. Mueller

1. INTRODUCTION

End-users demand fast responses to searches for chemical entities, like chemical
formulae and chemical names, over large corpuses of documents. A chemical search
engine must identify the occurrences of all instances of chemical entities1 appearing
in text documents and index them in order to enable fast access. The processing
and indexing of the documents are conducted off-line. However, for large document
corpuses or digital libraries we still require reasonable processing and indexing
times.

Tagging chemical formulae and chemical names is a hard problem because of the
inherent ambiguity in natural language text. Corbett, Batchelor, and Teufel indi-
cate that inter-annotator agreement (F-score) for a task of tagging named chemical
entities in full-text chemistry papers is 93% [Corbett et al. 2007]. We show that
using supervised machine-learning-based algorithms, chemical names and chemical
formulae can be tagged with reasonably high accuracy. Our system tags chemi-
cal name and formulae using Conditional Random Fields(CRFs), a discriminative,
probabilistic, undirected graphical model that has been widely used for labeling
sequential data like text documents or biological sequences) [Lafferty et al. 2001].

Consider a researcher in environmental chemical kinetics who wishes to search
for papers on the interactions of sodium acetate (also known as the sodium salt of
acetic acid) with an aluminosilicate surface at different values of solution acidity
(given in pH units). Many entities of chemical interest are involved, including the
acetate ion, which may be protonated or deprotonated depending on pH, the sodium
cations, and the aluminosilicate surface which contains (among other entities): Al-
OH groups, Si-OH groups, various protonated or deprotonated versions of these sites
(depending on pH), and specific Si-O-Al, Si-O-Si, and possibly Al-O-Al linkages.
Chemical entity search on these species run from the simple (sodium cations) to
the more complex Si−O −H+

2 groups at a specific pH). In our search engine, the
chemist can pose such searches using chemical names, chemical formulae and other
keywords.

Chemists and other users of chemical search engines may desire to input a par-
tial forumla or a part of a chemical name 2 They expect that the search engine

1In our implemented search engine, we have not handled any other chemical entity like CAS, InChI,
and SMILES, but only focused on chemical names and chemical formulae although we believe that
supervised-learning-based algorithms, like Conditional Random Fields (CRF) [Lafferty et al. 2001],
can be trained to tag other types of chemical entities. Thus, when we use the term “chemical
entity” in the rest of the paper for the sake of brevity, we refer to only “chemical names and
formulae”. We are not making any substantiated claims about the tagging of any other types of
chemical entities.
2Several search engines support partial chemical name searches, e.g., the search engines associated
with eChemPortal, http://webnet3.oecd.org/echemportal/Contents.aspx?ContentName=PortalInfo,
ChemFinder, http://chemfinder.camsoft.com/chembiofinder/Forms/Home/ContentArea/Home.aspx,
the California Department of Pesticide Regulation, http://www.cdpr.ca.gov/docs/chemical/monster2.htm,
and the ChemSynthesis database, http://www.chemsynthesis.com/text-search.html, supports
partial search for both chemical names and formulae.

ACM Transactions on Information Systems, Vol. 2, No. 3, 10 2010.

Identifying, Indexing, and Ranking Chemical Formulae and Chemical Names in Digital Documents · 3

should return documents having chemical entities that contain the partial formula
or chemical name. For example, a user may search with CH3 and expect the search
engine to return a ranked set of documents with chemical formula containing the
partial formula CH3. Another example, as outlined in eChemPortal, is when a
user searches for “tert-butylphenol”. The search engine should return the set of
documents that contain the term “tert-butylphenol”. Search engines use indexes
to enable efficient, real-time query answering [Manning et al. 2008]. In order to
support such partial term searches efficiently, a chemical search engine can index
partial terms or partial formulae in advance (before the query has been posed by
the user). If the search engine has to index all possible sub-formulae of any formula
appearing in a document or to index all possible sub-terms of a chemical name,
the size of the index will be prohibitively large and building such an index will be
prohibitively expensive both with respect to memory requirements and processing
time requirements. To address this problem, we propose index pruning techniques
that reduce the size of the index to a manageable size while avoiding significant
degradation in the quality of the search results (see Section 6.3).

Users search for chemical formulae using various different forms of the same basic
formula, e.g., they may search for CH3COOH or for C2H4O2. Although the major-
ity of documents (278,000 as obtained from a major search engine) use the formula
CH3COOH, the formula C2H4O2 appears in a substantial number of documents
(40,000 from the same search engine). For larger chemical formulae, without ac-
cepted canonical forms, the diversity is even greater. When a user searches using
one form of the formula, he/she may prefer all documents with the different forms
of the formula to be returned. The search engine at ChemIndustry.com returns
the “synonyms” of a chemical formula and the documents containing any of these
synonyms. In order to build search engines that cater to this requirement, a search
engine has to identify chemical formulae and understand the equivalence among
chemical formulae. Our search engine identifies chemical formulae, disambiguates
them from other non-chemical-entity-related abbreviations (e.g., “OH” may refer
to the hydroxyl group or the state “Ohio”), and indexes them. We support multiple
query semantics to allow for exact chemical formula and chemical name searches,
partial searches, and fuzzy searches for similar chemicals. Identifying whether a
term refers to a chemical formula or chemical name or neither is a hard problem
because it requires context-sensitive, natural-language analysis. Because we intend
to apply our techniques over documents crawled daily from the world-wide-web
and have limited computational resources, our algorithms must be highly scalable.
Hence, we have strived to reduce the size of our data structures, e.g., we show how
our indices can be pruned to reduce memory requirements and improve the runtime
without sacrificing the quality of the search results.

To support partial chemical name searches, our search engine also segments
a chemical name into meaningful subterms (e.g., “ethyl” and “methyl” as op-
posed to “ethy” and ”lmethy”, etc.) automatically. Such segmentation and in-
dexing allow end-users to perform partial name searches. Typically, tools, like
Name=Struct [Brecher 1999], CHEMorph [Kremer et al. 2006], and OPSIN [Cor-
bett and Murray-Rust 2006], segment a chemical name into its morphemes map the
morphemes into their chemical structures, and use these structures to construct the

ACM Transactions on Information Systems, Vol. 2, No. 3, 10 2010.

4 · Bingjun Sun,Prasenjit Mitra, C. Lee Giles, Karl T. Mueller

structure of the named chemical. We believe that our segmentation algorithm can
be used by name-to-structure generating software for segmenting a chemical name
to its constituent morphemes. Our algorithm mines independent frequent substring
patterns in the text corpus, and uses information about those substring patterns for
chemical name segmentation, and then index the subterms obtained by segmenting
the chemical name. The advantage of our algorithm over existing alternatives(see
Section 2) is that we do not use dictionaries or lexicons, which are prone to being
incomplete and to contain inaccuracies. Similarly, for chemical formula indexing,
we propose an index pruning strategy based on a sequential feature selection algo-
rithm that selects frequent and discriminative substrings of formulae as features to
index.

End-users can query our system using queries having different types of semantics
to obtain a set of documents that have exact, partial, or fuzzy occurrences of the
query keyword or formula. Our system returns a ranked list of documents based on
different ranking functions that we have proposed for each type of query. In response
to a chemical formula search, our system suggests a set of related chemical formulae
above the list of returned documents. A user can click on one of the suggested
formulae to further refine the query and retrieve a set of documents pertaining to
that particular formula.

Our experiments show that our chemical formula and name search engine out-
performs general purpose search engines (as expected) and provides better results
than Oscar3, [Corbett and Murray-Rust 2006] (version Alpha1, the latest version
available at the time this work was done) or a rule-based search engine on our
dataset. However, as the Netflix Prize3, the KDD Cup 20094 challenges, and other
research projects (for a tutorial see [Polikar 2006]) have shown, to obtain the best
performance in any real-life annotation or classification task, one has to employ an
ensemble of different classifiers. Our CRF-based tagging module can be a signifi-
cant component of such an ensemble in conjunction with the methods utilized by
Oscar3 and other related tools; therein lies the importance of this work.

We believe that constructing an accurate domain-specific search engine is a hard
task due to a variety of problems; we only address a few of them. One source
of problems is inaccurate format conversion, e.g., due to noisy PDF document to
text conversion. Recovering from these errors in in future stages of processing is
difficult.

Another problem is that chemical lexicons, like PubChem5, are incomplete and
contain inaccuracies. For example, PubChem lists methane and carbon as syn-
onyms. If a search engine uses the synonym list from PubChem to expand queries,
it will return documents containing the term carbon in response to an end-user
query for methane. If a clean dictionary was available, our system can be easily
extended to utilize the dictionary. In response to a user query, the dictionary could
be consulted to obtain synonyms and the original query along with the synonyms
can be looked up to obtain the result set.

Our search engine performs the following: 1) mines chemical formulae and chem-

3http://www.netflixprize.com/
4http://www.sigkdd.org/kddcup/index.php
5http://pubchem.ncbi.nlm.nih.gov/, retrieved on May 27th, 2009

ACM Transactions on Information Systems, Vol. 2, No. 3, 10 2010.

Identifying, Indexing, and Ranking Chemical Formulae and Chemical Names in Digital Documents · 5

ical names in text, 2) indexes chemical formulae and chemical names, and 3) sup-
ports users searching for information using chemical names and chemical formulae
along with other keywords. In the first step, our algorithm tags chemical formulae
and chemical names in text. In the second stage, each chemical formula and name
is indexed. In the third stage, using our novel ranking functions, the search engine
ranks the returned documents and returns them to the end-user. As an alterna-
tive to the steps our search engine takes, an argument can be made to convert all
chemical names to their chemical structure and then enable search using structural
similarity. However, a chemical name may have semantics that can be lost while
transforming the name into a structure. For example, users searching for graphite
and diamond may expect different results even though they may be mapped to
having the same two-dimensional chemical structure.

The major contributions of our work are as follows:

—C1: We propose algorithms for chemical formula and chemical name tagging using
CRFs, and compare them with those using other supervised learning methods like
Support Vector Machines(SVMs) [Burges 1998]. We adapt CRFs by including
parameters for decision-boundary tuning necessary to handle unbalanced entity
distributions (chemical names and formulae occur significantly less frequently
than non-chemical-entities in text). We use stacked Conditional Random Fields,
to tag chemical formulae and chemical names utilizing the information about (a)
the topics discussed in the document, (b) sentence- level features such as which
sections of a document a sentence appears in, and (c)term-level features to tag
chemical formula or chemical names more accurately (see Section 3.3 for details).

—C2: In order to support partial term querying, e.g., to enable a user’s keyword
query “methyl” to match a document with the term “methylethyl”, our algorithm
automatically segments chemical names and indexes them. We introduce a new
concept, independent frequent subsequences, and propose an algorithm to mine
these subsequences, in order to discover meaningful subterms in chemical names.

—C3: To reduce the size of the index, and thereby make the system more effi-
cient, we propose an unsupervised method for hierarchical text segmentation and
use it for chemical name index pruning. We utilize a sequential feature selec-
tion algorithm based on the frequency and discrimination power of features for
chemical formula index pruning. We see that a search engine using the pruned
index returns similar results as that with the full index, however, the memory
requirements of the pruned index and the running time of the search system are
improved significantly by the pruned index.

—C4: We present various query models for chemical formula or chemical name
searches and propose corresponding ranking functions. Our system supports
each of these query models.

Our chemical-entity-aware search engine is an integral part of ChemXSeer1, a
digital library for chemistry. The proposed architecture of our chemical-entity-
aware search engine is shown in Figure 1.

The rest of this paper is organized as follows: Section 2 reviews related works.
Section 3 presents approaches to chemical entity tagging based on CRFs, stacked

1http://chemxseer.ist.psu.edu/

ACM Transactions on Information Systems, Vol. 2, No. 3, 10 2010.

6 · Bingjun Sun,Prasenjit Mitra, C. Lee Giles, Karl T. Mueller

Fig. 1. Architecture of Chemical Entity Search Engine with Document Search in ChemXSeer

CRFs, and SVMs. Section 4 describes the indexing schemes and related algo-
rithms for sequential feature selection, independent frequent subsequence mining,
and hierarchical text segmentation. Section 5 introduces query models, and rank-
ing functions for name and formula searches. Section 6 presents experiments and
results. Conclusions and future directions are discussed in Section 7.

2. RELATED WORK

Related work falls into two categories: 1) entity extraction from the text, and 2)
indexing and searching for chemical structure information. Banville has provided
a high-level overview for mining chemical structure information from the literature
[Banville 2006].

2.1 Entity Extraction

Hidden Markov Models (HMMs) [Baum and Petrie 1966; Baum et al. 1970] are
commonly used to label or segment sequences. HMMs have a conditional inde-
pendence assumption where given the hidden state, observations are independent
[Lafferty et al. 2001]. Thus, an HMM cannot capture the interactions between
adjacent tokens. Another category of entity extraction methods is based on Maxi-
mum Entropy (ME) [Borthwick 1999], which introduces an exponential probabilistic
model based on binary features extracted from sequences and estimate parameters
using maximum likelihood. Maximum Entropy Markov Models (MEMM s) [McCal-
lum et al. 2000] are also exponential probabilistic models that take the observation
features as input, and output a distribution over possible next states, but they
suffer from the label-bias problem where states with low entropy next-state distri-
butions effectively ignore observations when conditioning on data. Different from
directed graph-based models like HMM and MEMM, CRF [Lafferty et al. 2001]
uses an undirected graphical model, which can relax the conditional independence
assumption of HMMs and avoid the label-bias problem of MEMMs. It follows the
maximum entropy principle [Berger et al. 1996] as in MEMMs, using exponential

ACM Transactions on Information Systems, Vol. 2, No. 3, 10 2010.

Identifying, Indexing, and Ranking Chemical Formulae and Chemical Names in Digital Documents · 7

probabilistic models and relaxing the independence assumption to involve multiple
interactions among adjacent words in text and also long-range dependencies. Mod-
els based on linear-chain CRFs have been applied for labeling sequences in many
applications, such as named-entity recognition [McCallum and Li 2003], detecting
biological entities, such as proteins [Settles 2005] or genes[McDonald and Pereira
2005], etc.

2.1.1 Chemical Entity Extraction. Although methods for converting a chem-
ical name to chemical structure have been proposed since 1962 [Garfield 1962],
automatic recognition of chemical names in natural language and an enhanced
chemical-name identification algorithm were first presented by Hodge, at the Amer-
ican Chemical Society meeting in 1989. Unfortunately, we were unable to find any
subsequent article describing these methods such that we could implement them
and compare them to our methods. [Hodge et al. 1989; Hodge 1991].

Kemp and Lynch discuss a method to identify specific chemical names and do
not extract general chemical names like “alkoxycarbonyl”, “halide”, “hydrocarbon”,
etc. from text [Kemp and Lynch 1998]. As evidenced by the most-popular-search
list on chemindustry.com, a popular hub for chemical information on the web, the
general “chemical name”, nylon is the second most popular search term and another
general chemical name, silicone is the fourth most popular term6. Our system tags
and allows for the retrieval of general chemical names too. Their method requires
substantial manual culling; we present automatic methods in this paper.

Wilbur, et al., have evaluated three methods for chemical name tagging [Wilbur
et al. 1999]. The first method segments a chemical name into its morphemes and
checks if the morphemes appear in a dictionary. They also evaluate two methods
based on Bayesian classification schemes using n-grams. They show that one of their
Bayesian classification methods using n-grams outperforms the segmentation-based
method and the other Bayesian methods.

Narayanaswamy, Ravikumar, and Vijay-Shanker proposed a rule-based algorithm
for identifying chemical names in text documents [Narayanaswamy et al. 2003].
Their paper does not provide the entire set of rules and features on which their
system is based, and thus we cannot reproduce their system for a direct comparison.
The features they mention in the paper, such as the existence of capital letters and
numbers, have been used as features in our system. Our system uses additional
features beyond those mentioned in their paper. We have observed that these
additional features improve the precision and recall of the named entity tagging
task.

Vasserman examined Wilbur’s method and found that their n-gram-based ap-
proach shows “significantly lower performance” on his data [Vasserman 2004]. Vasser-
man’s methods are completely unsupervised, and he shows that the best perfor-
mance is obtained by using n-grams and Naiive-Bayes models; their precision/recall
numbers, while high, are lower than that shown to be achievable by our methods.
Both Wilbur’s and Vasserman’s methods attempt to classify only predetermined
tokens unlike ours.

Other previous attempts at chemical entity tagging use both machine learning

6As obtained from http://www.chemindustry.com/mostpop/cpb cont.html on July 19th, 2010

ACM Transactions on Information Systems, Vol. 2, No. 3, 10 2010.

8 · Bingjun Sun,Prasenjit Mitra, C. Lee Giles, Karl T. Mueller

approaches [Wren 2006] and rule-based approaches7. Corbett and Murray-Rust
proposed Oscar3, an improvement on Oscar2 [Corbett and Murray-Rust 2006].
Besides its other features, Oscar3 provides chemical entity tagging. Their unsu-
pervised chemical name recognition algorithm is also based on an n-gram-based
method like Wilbur’s and Vasserman’s but uses modified Knesser-Ney smooth-
ing [Kneser and Ney 1995]. Oscar3 reports precision and recall numbers ranging
from 60% to 80%. In 2008, Corbett and Copestake published a method based on
using “character-based n-grams, Maximum Entropy Markov Models(MEMM) [Mc-
Callum et al. 2000], and rescoring to recognize chemical names and other such
entities” [Corbett and Copestake 2008]. Their algorithm was deployed by subse-
quent versions of Oscar3. Corbett and Copestake report a maximum F-score of
80.7(precision of 78.7% and recall 82.9% on chemistry journal papers and a max-
imum F-score of 83.2% (85% precision and 81.6% recall) on PubMed abstracts.
Corbett and Copestake acknowledge that CRFs suffer from a label-bias problem
but they nevertheless advocate the use of MEMMs because of “advantages such
as shorter training cycles”. While training MEMMs are undoubtedly faster than
CRFs, their testing times are comparable. Training these classifiers is done offline
and with today’s faster machines, training a CRF can be achieved in reasonable
times as shown in this work. We advocate using a CRF because it avoids the label
bias problem and improves the classification accuracy.

Our supervised method requires more human effort in training the system by
needing between 100-200 tagged documents, but, in turn, we observed that on our
dataset it provides better precision and recall numbers and higher accuracy with
respect to the chemical entity tagging task. Oscar3 is a more mature tool than ours
and can search across different representations of the same compound. Our focus
is not as broad as that of Oscar3. Instead, we focus primarily on chemical formula
and name tagging, indexing, and search algorithms. Our efforts will not replace
Oscar3 but are complementary. In many existing problems, an ensemble classifier
using multiple base technique outperforms any single classifier [Polikar 2006]. We
believe that our algorithm can be used in conjunction with Oscar3 to form such an
ensemble classifier to provide improved chemical formula and name tagging.

After our initial work [Sun et al. 2007; Sun et al. 2008], Klinger, et al., [Klinger
et al. 2008] also obtained similar results as ours using Conditional Random Fields
to detect IUPAC and IUPAC-like chemical names, however, they did not address
the tagging of chemical formulae or common chemical names.

Classifiers such as SVMs 8 [Joachims 1999; Bordes et al. 2005] can be applied
to tag chemical formulae. Entity tagging in text is usually an asymmetric binary
classification problem on imbalanced data, where there are many more false samples
than true samples, but the precision and recall of the true class are more important
than the overall accuracy. In this case, the decision boundary may be dominated by
the false samples. Several methods such as cost-sensitive classification and decision-
threshold tuning have been studied for imbalanced data [Shanahan and Roma 2003].
We have observed that CRFs suffer from this problem too, since in previous work
based on CRFs [McDonald and Pereira 2005; Sha and Pereira 2003], recall is usually

7GATE: http://gate.ac.uk/ and Oscar2: http://wwmm.ch.cam.ac.uk/wikis/wwmm
8SVM light: http://svmlight.joachims.org/

ACM Transactions on Information Systems, Vol. 2, No. 3, 10 2010.

Identifying, Indexing, and Ranking Chemical Formulae and Chemical Names in Digital Documents · 9

lower than precision. To the best of our knowledge, no methods to tune the decision
boundary for CRFs exist. In this work, we address this issue.

2.2 Chemical Name Segmentation

Our search engine has to segment chemical names automatically because of the
following reasons.

(1) The search engine uses the segments as features to identify chemical name
segments and thereby tag a chemical entity as a chemical name.

(2) The search engine indexes the chemical name segments to enable search.

To understand why we need chemical name segmentation for chemical name search,
consider, for example, the chemical name acetaldoxime. Our segmentation algo-
rithm segments it into the segments acet and aldoxime. Thereafter, aldoxime is
segmented into ald and oxime. Consequently, if the end-user searches for the term
aldoxime or oxime, our system can return the documents referring to acetaldoxime.
Like all search engines, we use a ranking function to determine the rank of a doc-
ument containing the term “acetaldoxime”. The rank of a document containing
acetaldoxime would vary depending upon the query term (i.e., whether the query
is for acetaldoxime or aldoxime or oxime).

We believe that the benefits of our automated segmentation method over existing
methods are:

(1) Most existing methods listed above require a dictionary or list of morphemes
and a set of regular expressions created manually in order to segment chemical
names. Our algorithm derives the morphemes by examining chemical literature
and examining the frequencies of terms and sub-terms. (For details, see the
algorithm in Section 4.2.1.) Whenever new chemicals are identified that use
new morphemes, these lists and dictionaries will need to be updated manually.
Our algorithm is automated and eliminates the need for such manual efforts and
human-input domain knowledge by using the occurrence statistics of chemical
names and their morphemes in a text corpora.

(2) We generate a hierarchical segmentation. In the example above, we first seg-
ment the chemical name to aldoxime and then segment the aldoxime to oxime.
The existing methods construct a single segmentation of the term acetaldoxime.
For example, the CAS method segments the term to acetal, d, and oxime. If
the document with acetaldoxime is indexed using this segmentation a search for
aldoxime will not retrieve it. Our segmentation, however, allows the retrieval
of acetaldoxime in response to the query aldoxime.

We now review the existing work in this area and contrast them with ours. In his
seminal work, Garfield proposes a technique to construct the chemical formula from
a chemical name by breaking down the chemical name into its morphemes [Garfield
1962]. Garfield’s method uses a dictionary of morphemes and a method that shows
how the data can be examined to identify morphemes. His method considers the
right-most eight characters in a chemical name, and looks up the chemical name in a
dictionary. For example, but in butane is a morpheme, while but in nembutal is not.
Garfield’s method identifies morphemes that can be substituted for each other and

ACM Transactions on Information Systems, Vol. 2, No. 3, 10 2010.

10 · Bingjun Sun,Prasenjit Mitra, C. Lee Giles, Karl T. Mueller

checks if the substituted chemical name occurs in the data to determine whether a
string in a term is a morpheme. The string but in butane can be replaced by another
morpheme hex to create a term that occurs in the literature like hexane. However,
for the term nembutal, the corresponding term nemhexal does not appear in the
literature. Therefore, but is considered a morpheme in butane but not in nembutal.
Our problem of segmenting chemical names is the same as Garfield’s problem of
detecting morphemes from chemicals. Garfield’s method suffers from the following
problem. Since his algorithm attempts to match the longest string from the right
to left, it would segment tribromethanol as tri-bro-methanol or tribro-methanol,
whereas, the term should be segmented as tri-brom-ethanol.

Van der Stouw, et al., proposed a method to convert chemical names to chemical
formula [Vander Stouw et al. 1967] used by the Chemical Abstract Service in 1967
that processes chemical names from left to right. However, their description of
the algorithm remains anecdotal. They do not provide enough details for us to
re-implement their algorithm. They claim that their algorithm works in about
60% of the cases and with additional studies can be enhanced to cover “80 to
85% of names of carbon-containing compounds” [Vander Stouw et al. 1967]. The
Chemical Abstract Service has also published the Registry File Basic Name Segment
Dictionary in 1993 [ACS 1993]. The document provides a left to right chemical name
segmentation algorithm.

Cooke-Fox, Kirby, and Rayner, proposed context-free grammars for various types
of organic chemical compounds and a parser based on the grammar to segment
chemical names [Cooke-Fox et al. 1989]. Brecher indicated that a rigid grammar-
based method does not work because people use chemical names that do not con-
form to the formalized rules that were proposed by Cooke-Fox, et al. [Brecher 1999].
He validated this claim by examining “chemical sites on the Internet” and “catalogs
produced by commercial chemical vendors”. Brecher proposed a practical system
“Name=Struct”. However, again the details provided in their article do not allow a
full reconstruction of their method. Since the work was done at CambridgeSoft, his
software is also not available freely. Corbett and Murray-Rust have proposed the
OPSIN sub-system as part of the OSCAR3 system [Corbett and Murray-Rust 2006].
OPSIN uses a finite-state grammar, which is “less expressive but more tractable”
than the context-free grammars used in previous methods along with a set of in-
formal rules. Their tokenization is based on “a list of multi-character tokens” and
“a set of regular expressions”, both created manually.

If a user posed a query by drawing a chemical structure, that could be converted
to a name and matched against chemical names in text documents. AutoNom, a
tool that converts a chemical structure into a chemical name, claimed to be the
“first general program for” such conversion [Wisniewski 1990]. The ACD/Name
“systematic nomenclature software” is said to be “a current industry standard” for
converting drawn chemical structures into chemical names9.

Apart from chemical name segmentation, automatic text segmentation techniques
have been used in other contexts. Zhao, Mahmud and Ramakrishnan proposed a
method for segmenting a text string into structured records [Zhao et al. 2008].
Their technique is useful for segmenting text containing relational attributes like

9http://207.176.233.196/products/name lab/name/

ACM Transactions on Information Systems, Vol. 2, No. 3, 10 2010.

Identifying, Indexing, and Ranking Chemical Formulae and Chemical Names in Digital Documents · 11

addresses, citations, etc. and segments a text string into its ‘n’ attributes given ‘n’.
The number of segments in different chemical names varies and thus their method
cannot be applied for our purposes.

3. CHEMICAL ENTITY EXTRACTION

In this section, we discuss how chemical entities in text are tagged.

3.1 Chemical Entities

In this work, we address the problem of tagging the following entities in text: chem-
ical formulae (e.g., CH4), trivial chemical names (e.g., water ; including common
or trade names like viagara, paraquat, etc.), systematic chemical names, such as
those conforming to IUPAC nomenclature (e.g., 2-acetoxybenzoic acid), and semi-
systematic organic chemical names (e.g., calciferol).

A chemical formula can represent different compounds, and a compound may
have different formulae and name representations. A partial formula is also a for-
mula, by definition, but may not be a meaningful formula. For example, CH3(CH2)2OH
is a chemical formula, and C, CH2, (CH2)2, and CH3(CH2)2OH all are partial
formulae. Currently, our system does not tag abbreviations, e.g., EtOAc, M(acac)3,
or wildcards, e.g., R in ROH, X in CH3CH2X as chemical formulae. We believe
that extending our methods to address chemical formulae that have place-holders
for elements should be straight-forward. For example, adding terms like acac, the
wildcard R or X into our vocabulary should easily extend our method to handle
most abbreviations and wildcards. However, processing abbreviations, like EtOAc,
would still remain harder to tag and will be handled in future work.

Chemical names are harder to define precisely; we provide some discussion here
regarding the types of names our system was trained to detect. We tag any term
that refers to the name of a chemical compound as a chemical name, e.g., methane.
Corbett, Batchelor and Teufel have classified chemical entities as “chemical com-
pound”, “chemical reaction”, “chemical adjective”, “enzyme”, and, “chemical pre-
fix” [Corbett et al. 2007]. Our system does not tag “chemical reactions” since
our focus is on the narrower class of “chemical names”. The system does not tag
“chemical adjective”s separately but does tag the chemical adjective followed by
the noun as a chemical name, e.g., “ascorbic acid”. Similarly, it does not detect
and tag “chemical prefix”es separately. Furthermore, separating “chemical com-
pound”s from “enzymes” or biological macro-molecules is beyond the scope of this
work. Thus, we tag each of them as chemical names. We do not tag InChIs or CAS
numbers as chemical formula or chemical name. Corbett and Batchelor have pro-
posed an annotation manual that runs over 31 pages and contains 91 rules (obtained
via personal communication). Our instructions to the annotator was as indicated
above and thus at a higher-level than that in the detailed specification proposed by
Corbett and Batchelor.

We believe that machine learning methods to mine textual chemical molecule
information utilizing domain knowledge are desired due to the following reasons:
1) Two types of ambiguity exist for tagging chemical formulae. First, even though
the string pattern may be similar to a formula at first glance, in reality, it may be
an abbreviation, e.g., NIH. Second, even though a string appears to be a chemical
formula, it may be a word, e.g., I (Iodine) versus the pronoun I, He(Helium) versus

ACM Transactions on Information Systems, Vol. 2, No. 3, 10 2010.

12 · Bingjun Sun,Prasenjit Mitra, C. Lee Giles, Karl T. Mueller

the pronoun He, In(Indium) versus the preposition In. 2) Because a chemical name
can be a long phrase in the text, segmenting it from the context is also challenging,
especially when there are ambiguous terms or other chemical names surrounding
it. 3) If a system matches a term to terms occurring in a chemistry lexicon, then
it will miss newly coined names and names not present in an incomplete lexicon.
Furthermore, it cannot handle noisy strings, e.g., those that occur because of small
misspellings. We present the following text fragments to show the two types of
ambiguities of chemical formulae and the segmentation issue of chemical names in
Figure 2.

Non-Formula or Name:
“... This work was funded under NIH grants ...”
“... YSI 5301, Yellow Springs, OH, USA ...”
“... action and disease. He has published over ...”

Chemical Formula:
“... such as hydroxyl radical OH, superoxide O2- ...”
“... and the other He emissions scarcely changed ...”

Chemical Name:
“... studies for Acetic acid, 1-methylethyl ester and
2,4-Dichlorophenoxyacetic acid, 1-methylethyl ester

on all organism groups ...”

Fig. 2. Example of Chemical Formulae, Chemical Names, and Ambiguous Terms

In order to tag chemical entities, we use supervised machine-learning algorithms,
namely, Conditional Random Fields and Support Vector Machines, as discussed
below.

3.2 Conditional Random Fields

CRFs[Lafferty et al. 2001] are a powerful method for tagging sequential data. Sup-
pose we have a training set S of labeled graphs. Each graph in S is an identical
independent distribution (i.i.d.) sample with an internal structure [Lafferty et al.
2001]. CRFs model each graph as an undirected one G = (V,E). Each vertex v ∈ V
has a label yv and an observation xv. Each edge e = {v, v′} ∈ E represents the mu-
tual dependence of two labels yv, yv′ . For each sample, the conditional probability
p(y|x,λ), where x is the observation vector of all vertices in G, y is the label vector,
and λ is the parameter vector of the model, representing the probability of y given
x. An exponential probabilistic model based on feature functions is graph as an
undirected one G = (V,E). Each vertex v ∈ V has a label yv and an observation xv.
Each edge e = {v, v′} ∈ E represents the mutual dependence of two labels yv, yv′ .
For each sample, the conditional probability p(y|x,λ), where x is the observation
vector of all vertices in G, y is the label vector, and λ is the parameter vector of
the model, representing the probability of y given x. An exponential probabilistic
model based on feature functions is used to model the conditional probability,

p(y|x,λ) =
1

Z(x)
exp(

∑

j

λjFj(y,x)), (1)

ACM Transactions on Information Systems, Vol. 2, No. 3, 10 2010.

Identifying, Indexing, and Ranking Chemical Formulae and Chemical Names in Digital Documents · 13

where Fj(y,x) is a feature function that extracts a feature from y and x. Z(x) is
a normalization factor.

For sequential data, chain-structured CRF models are usually applied, where only
the labels (yi−1 and yi) of neighbors in a sequence are dependent. Moreover, only
binary features are usually considered for sequential data. There are two types of
features, state features Fj = Sj(y,x) =

∑|y|
i=1 sj(yi,x, i) that consider only the label

(yi) of a single vertex and transition features Fj = Tj(y,x) =
∑|y|

i=1 tj(yi−1, yi,x, i)
to consider mutual dependence of vertex labels (yi−1 and yi) for each edge e in
G. We use two types of state features: single-vertex features obtained from the
observation of a single vertex and overlapping features obtained from the observa-
tions of adjacent vertices. Transition features are co-occurrence of vertex labels and
state features. Each feature has a weight λj to specify how much the corresponding
feature is favored. The weight λj should be highly positive if feature j tends to be
“on” for the training data, and highly negative if it tends to be “off”.

The log-likelihood for the whole training set S is given by

L(λ) =
∑

x∈S

log(p(y|x,λ)), (2)

where the conditional probability of each sample can be estimated from the data
set. Maximum log-likelihood is applied to estimate λ. To predict labels of x, the
probabilities of all possible y are computed using Equation 1, and y with the largest
probability is the best estimation.

3.3 Stacked Conditional Random Fields

Although CRFs can model multiple and long-term dependencies on and may have
better performance than models that do not consider those dependencies [Li and
McCallum 2005], in practice only short-term dependencies and features of neighbors
of each vertex (i.e., a word-occurrence) are considered due to the following reasons:
1) we usually do not know what kinds of long-term dependencies exist; 2) too many
features will be extracted if all kinds of long-term features are considered; and 3)
most long-term features are too sparse and specific to be useful.

However, dependencies across levels may be useful to improve the accuracy of
tagging tasks. For example, at the document level, biological articles have much
smaller probabilities of containing chemical names and formulae. At the sentence
level, sentences in different sections have different probabilities and feature fre-
quencies of the occurrences of chemical names and formulae, e.g., references seldom
contain chemical formulae. Based on these observations, we use stacked CRFs as
illustrated in Figure 3. We use classifiers from the highest level to the lowest level
of granularity, tag each vertex (e.g., document, sentence, or term) with labels, and
use the labels in a higher level as features in a lower level. In principle, at each
level, CRFs could be replaced by other unsupervised or supervised classifiers.

The probability models of the CRFs from the highest level to the level m for a
sequence are defined as

p(y1|x,λ1) =
1

Z(x)
e(

∑

j λ
(1)
j Fj(y1,x)),,

ACM Transactions on Information Systems, Vol. 2, No. 3, 10 2010.

14 · Bingjun Sun,Prasenjit Mitra, C. Lee Giles, Karl T. Mueller

Fig. 3. Illustration of Stacked Conditional Random Fields

p(ym|y1, ...,ym−1,x,λm) =
e
∑

j λ
(m)
j Fj(y1,...,ym,x)

Z(x)
,

where y1, ...,ym−1 are the labels at the level of 1, ...,m− 1, and Fj(y1, ...,ym,x) is
the feature function that extracts a feature from the label sequences of each level
y1, ...,ym and the observation sequence x. During training, the parameter λ is
estimated, while during testing, y1, ...,ym−1 are estimated before ym is estimated
at the level m. For the level m, besides the normal features

Sj(ym,x) =
∑|y|

i=1 sj(y
(m)
i ,x, i), and

Tj(ym,x) =
∑|y|

i=1 tj(y
(m)
i−1 , y(m)

i ,x, i),

there are two types of features regarding the current observation x and the higher
levels of label sequences y1, ...,ym−1: non-interactive features

S′
j(y1, ...,ym,x) =

∑|ym|
i=1 s′j(y

(m)
i ,y1, ...,ym−1) and

T ′
j(y1, ...,ym,x) =

∑|ym|
i=1 t′j(y

(m)
i−1 , y(m)

i ,y1, ...,ym−1)

which have no interaction with the observation sequence x; and interactive features

S′′
j (y1, ...,ym,x) =

∑|ym|
i=1 s′′j (y(m)

i ,y1, ...,ym−1,x, i),

T ′′
j (y1, ...,ym,x) =

∑|ym|

i=1 t′′j (y(m)

i−1, y
(m)

i ,y1, ...,ym−1,x, i)

that interact with the observation x. Interactive features are generated by the
combination of the non-interactive features and the normal features as defined
above at the level m. For example, for vertex i at the level m,

s′′(y(m)
i ,y1, ...,ym−1,x, i) = s′(y(m)

i ,y1, ...,ym−1)s
T (y(m)

i ,x, i),

where s′ and s are state feature vectors for each vertex with sizes of |s′| and |s|,
and s′′ is a |s′| by |s| matrix of features.

3.4 Support Vector Machines

For chemical formula tagging, since each chemical formula is a single term instead
of a phrase of several terms, the sequential dependence is not as strong as chemical
name tagging, where each chemical name may be a phrase of several terms. Thus,
traditional binary classifiers, such as Support Vector Machines (SVMs), can be
applied for formula tagging.

ACM Transactions on Information Systems, Vol. 2, No. 3, 10 2010.

Identifying, Indexing, and Ranking Chemical Formulae and Chemical Names in Digital Documents · 15

3.5 Decision Boundary Tuning for Imbalanced Data

We tune our algorithms to handle imbalanced data as follows. An SVM can be
tuned by adjusting the classification threshold value t. When t < 0, recall is
improved but precision decreases. When t > 0, the converse is expected.

To address the problem of imbalanced training datasets, while using CRFs, we
use a weight parameter θ to boost features corresponding to the true class during
the testing process. Like the classification threshold t in SVMs, θ can tune the
trade-off between recall and precision, and may be able to improve the overall
performance, because the probability of the true class increases. During the testing
process, the sequence of labels y is determined by maximizing the probability model
p(y|x,λ) = 1

Z(x)exp(
∑

j λjFj(y,x, θy)), where

Fj(y,x, θy) =

|x|
∑

i=1

θyi
sj(yi,x, i), or

|x|
∑

i=1

θyi
tj(yi−1, yi,x, i),

and θy is a vector with θyi
= θ when yi =true classes, or θyi

= 1 when yi =false
class, and λj are parameters learned while training.

3.6 Feature Set

Our algorithm uses two categories of state features from sequences of terms in the
text: single-term features, and overlapping features from adjacent terms. Single-
term features are of two types: surficial features and advanced features. Surficial
features can be observed directly from a term, such as word or word prefix and
suffix features, orthographic features, or lists of specific terms. The lists of spe-
cific terms we used are comprised of lists of chemical symbols, e.g., ‘C’, ‘H’, etc.,
lists of abbreviations that are not chemical terms, e.g., ‘HSF’,‘NIH’, etc., lists of
abbrevations of countries and U.S. states that are not chemical terms, like, ‘US’,
‘UK’, ‘OH’, ‘CA’. Note that some features are associated with positive examples
and others are features of negative examples. The classifier will learn the weights
of these features.

Additionally, our algorithms use a set of parts-of-speech(POS) tagging features
extracted using and open source natural language processing tool, like OpenNLP10.
We use overlapping features, (described below in more detail) e.g., we use a feature
that checks if a word begins with a capital letter and the following word has a
POS-tag of verb. We also use rule-based features that match string patterns using
domain knowledge from chemistry. For chemical name tagging, we use WordNet 11

and downloaded a lexicon of chemical names available online 12. We use both to
extract features of a term that we want to tag. For example, a chemical term
is more likely to appear in the chemical lexicon. A non-chemical term is more
likely to appear in WordNet but not in the chemical lexicon. We use Levenshtein
Distance [Levenshtein 1966] to allow for some fuzzy matching between between
the term the algorithm is tagging and a term in the chemical lexicon or a term in
WordNet as features. Furthermore, we check if a term has subterms (i.e., prefix,

10http://opennlp.sourceforge.net/
11http://wordnet.princeton.edu/
12http://webbook.nist.gov/chemistry/

ACM Transactions on Information Systems, Vol. 2, No. 3, 10 2010.

16 · Bingjun Sun,Prasenjit Mitra, C. Lee Giles, Karl T. Mueller

Table I. Features applied on chemical entity tagging
Name Meaning
InitialCapital Is the first letter of current word capital?
AllCapitals Are all letters of current word capital?
HasPunctuation Does current word contain punctuation?
IsAbbreviation Is current word in the list of common abbreviations?
IsTermLong Is current word longer than a threshold?
IsFormulaPattern Does current word follow a string pattern of a chemical formula?
IsPOSTagNN Is the part-of-speech tag of current word NN (< noun >)?
NotInWordNet Is not current word in the WordNet lexicon?
HasSimTermInChemLex Is current word similar to a term in the chemical lexicon?
HasSubterm Does current word contain a subterm in a list?
LastHasPunctuation Does last word have punctuation
and CurrentInitialCapital and is the first letter of current word capital?

infix, and suffix) learned from the chemical lexicon based on the method discussed
in Section 4.2.1.

Overlapping features of adjacent terms are extracted from text sequences. For
each term, all overlapping features of the last term and the next term are in-
cluded in the feature set. For example, for the term He in “... . He is ...”,
feature(termn−1 = “.” ∧ termn = initialCapital)=true, and feature(termn =
initialCapital ∧ termn+1 = isPOSTagV BZ)=true. Consequently, “He” is likely
to be an English word instead of Helium. We list some of the features used by our
algorithms in Table I.

4. CHEMICAL ENTITY INDEXING

In this section, we discuss the schemes for chemical formula and name indexing. We
focus on how to extract and select tokens for indexing. We discuss index pruning
for both chemical name and formula indexing.

Since the number of all possible partial formulae of the set of all chemical formulae
is quite large and many of them have redundant information, indexing every possible
partial formula is prohibitively expensive. Previous research has shown that small
indices that fit into main memory usually have much better search response times
[de Moura et al. 2005; Buttcher and Clarke 2006]. We proposed an index pruning
algorithm in our previous work [Sun et al. 2007] to sequentially select features
of partial formulae (a subsequence in a chemical formula) that are frequent and
discriminative. The algorithm considers the shortest partial formulae first and
then proceeds to consider longer partial formulae.

Our system does not index all possible substrings of chemical names because that
would make the index extremely large. Instead, our system hierarchically segments
chemical names into “meaningful” substrings and indexes them. For example, for
a chemical name string “methylethyl”, indexing “methyl” and “ethyl” is enough,
while “hyleth” is not necessary.

4.1 Chemical Formula Indexing

In this subsection, we discuss how to analyze a chemical formula and select features
for indexing, which is important for subsequence search and similarity search. Since
the full graphical structure information of a molecule is unavailable, we use partial

ACM Transactions on Information Systems, Vol. 2, No. 3, 10 2010.

Identifying, Indexing, and Ranking Chemical Formulae and Chemical Names in Digital Documents · 17

formulae as features for indexing and search. The same chemical molecule may
have different formula strings mentioned in text, e.g., “acetic acid” may have been
listed as CH3COOH or C2H4O2. The same formula can also represent different
molecules, e.g., C2H4O2 can be “acetic acid” (CH3COOH) or “methyl formate”
(CH3OCHO).

Algorithm 1 Sequential Feature Selection: SFS(C,Freq∀s,D∀s,Freqmin,αmin)

Input:
Candidate Feature Set C,
set Freq∀s of all frequencies Freqs for each subsequence s,
set D∀s of all support Ds for each subsequence s,
minimal threshold value of frequency Freqmin, and
minimal discriminative score αmin.
Output:
Selected Feature Set F .
1. Initialization: F = {∅}, D∅ = D, length l = 0.
2. while C is not empty, do
3. l = l + 1;
4. for each s ∈ C
5. if Freqs > Freqmin

6. if Ls = l
7. compute αs using Eq (3) (α(0)

s = |D|
|Ds|

, since

no s satisfies s′ % s ∧ s′ ∈ F)
8. if αs > αmin

9. move s from C to F ;
10. else remove s from C;
11. else remove s from C;
12. return F ;

Again, indexing all possible sub-formulae of every formula is prohibitively ex-
pensive. For example, the sub-formulae of CH3OH are C, H3, O, H, CH3, H3O
OH, CH3O H3OH and CH3OH. Ideally, an analysis of a query log would reveal
which sub-formulae are cost-effective to index. However, in the absence of a query
log, we assume that infrequent sub-formulae will also not be frequently queried and
thus, use an indexing scheme that does not index infrequent sub-formulae. We use
a similar idea and notations about feature selection as those proposed by Yan, et
al. [Yan et al. 2004]

Definition 4.1. Support: Given a data set D of sequences s, Ds′ , the support
of subsequence s′ is the set of all sequences s containing s′, i.e., s′ % s. |Ds| is the
number of sequences in Ds.

For the set D = {CH4, CH2Cl2, CHCl3}, DCH2 the support of subsequence
CH2 is the set DCH2 = {CH4, CH2Cl2} and |DCH2 | = 2.

We propose two sequential criteria to select the set of features of subsequences F .
The feature selected should be 1) frequent, and, 2) its support should not overlap
too much with the intersection of the supports of its selected subsequences in F .

ACM Transactions on Information Systems, Vol. 2, No. 3, 10 2010.

18 · Bingjun Sun,Prasenjit Mitra, C. Lee Giles, Karl T. Mueller

After the algorithm extracts all chemical formulae from documents, it generates the
set of all partial formulae and records their frequencies. For the second criterion, we
define a discriminative score for each feature candidate with respect to F . Similar
to the definitions proposed by Yan, et al., [Yan et al. 2004], a subsequence s is
redundant with respect to the selected feature set F , if |Ds| ≈ | ∩s′∈F∧s′'s Ds′ |.
For example, consider the set D = {CH4, CH3Cl,CHCl3}, and the feature set
F = {CH,CH2}. The set DCH = D, and DCH2 = {CH4, CH3Cl}. Consider the
sequence CH3 whose subsequences are CH2 and CH. The intersection of DCH and
DCH2 has the same number of elements (namely, two) as that in DCH3 . Hence the
sequence CH3 is redundant with respect to F . A subformula s is discriminative
with respect to F , if |Ds| << | ∩s′∈F∧s′'s Df |. For example, consider the set
D = {CH4, CH3Cl,CHCl3, CH2Cl2, CCl4}, the feature set F = {C,H}, and
the sequence s = CH4. DCH4 = {CH4} and has only one element whereas the
intersection of DC and DH have four elements in them. Since, DCH4 << (DC ∩
DH), the sequence CH4 is considered discriminative with respect to the feature set
F . The discriminative score for each subformula candidate s with respect to F is
defined as:

αs = | ∩s′∈F∧s′'s Ds′ |/|Ds|. (3)

In the last example above, αCH4 = 4/1 = 4.
Algorithm 1 shows the sequential feature selection algorithm. The algorithm

starts with an empty set F of selected features, scans each subsequence from the
length l = 1 to l = L(s)max.

4.2 Chemical Name Indexing

Before a chemical name is indexed, it has to be segmented into its subterms (or
morphemes). A chemical name is first segmented using the punctuations that
appear in it, e.g., 10-Hydroxy-trans-3-oxadecalin will be first segmented into its
subterms 10, hydroxy, trans, 3, and oxydecalin. Then, these terms individually
will be segmented into their morphemes, e.g., oxydecalin will be segmented into
the subterms oxy and decalin. Similarly, the chemical name (1R*, 3S*)-1-Bromo-
3-chlorocyclohexane will be segmented using the parenthesis, the comma, and the
hyphens as delimiters and then further broken down into the morphemes of the
term chlorocyclohexane. The subterms and their positions in the name are indexed.
However, because we do not interpret the chemical name into a structure, we do
not try to interpret the locant information, Greek letters, say representing phases,
or stereochemical identifiers. We treat them as subterms in a sequence of terms
making up a chemical name. If the end-user wants a “cis” or a “trans” isomer
and this term appears in the name of the chemical compound, the chemical name
representing the exact isomer will be ranked first by virtue of matching both the
chemical-name-term and the isomer-term followed by those documents where the
chemical-name-term matches but the isomer-term does not match.

In this subsection, we have shown how to mine frequent subterms from chemical
names, and then how to hierarchically segment chemical names into those discovered
subterms that can be used for index construction.

4.2.1 Independent Frequent Subsequence Mining. In the Section 3.6, we used
subterms as features for chemical name tagging. We mined these subterms from the

ACM Transactions on Information Systems, Vol. 2, No. 3, 10 2010.

Identifying, Indexing, and Ranking Chemical Formulae and Chemical Names in Digital Documents · 19

data set. Our search engine supports subterm-based search. However, the search
algorithm must have some additional subtlety; when the user searches for “ethyl”,
we should not return the documents that contain “methyl” before the documents
that contain the term “ethyl” not as a substring of methyl. Due to this subtlety,
simply using maximal frequent subsequences as defined by Yang [Yang 2004] is
not enough. We define the concept of independent frequent subsequence below
to address this subtlety. Our system attempts to identify independent frequent
subsequences and index them. In the rest of this paper, we use “subterm” to refer
to a substring in a term that appears frequently. Independent frequent subterms
and their frequencies can be used in hierarchical segmentation of chemical names
(explained in detail in the next subsection). First, we introduce some notations:

Definition 4.2. Sequence, Subsequence, Occurrence: A sequence s =<
t1, t2, ..., tm >, is an ordered list, where each token ti is an item, a pair, or an-
other sequence. Ls is the length of s. A subsequence s′ % s is an adjacent
part of s, < ti, ti+1, ..., tj >, 1 ≤ i ≤ j ≤ m. An occurrence of s′ in s, i.e.,
Occurs′'s,i,j =< ti, ..., tj >, is an instance of s′ in s. We say that in s, Occurs′'s,i,j

and Occurs′′'s,i′,j′ overlap, i.e., Occurs′'s,i,j ∩ Occurs′′'s,i′,j′)= ∅, iff ∃n, i ≤ n ≤
j ∧ i′ ≤ n ≤ j′. Unique occurrences are those without overlapping.

For example, the term “methylene” can be thought to have the subsequences,
“meth”, “yl”, and “ene”. We say Occur(ylene % methylene, 2, 3) =< yl, ene > and
Occur(ylene % methylene, 2, 3) overlaps with Occur(methyl % methylene, 1, 2).

Definition 4.3. Frequent Subsequence: Freqs′'s is the frequency of s′ in s,
i.e., the count of all unique Occurs′'s. A subsequence s′ is in the set of frequent
subsequences FS, i.e., s′ ∈ FS, if

∑

s∈Ds′
Freqs′'s ≥ Freqmin, where Freqmin is

a threshold of the minimal frequency.

For example, the frequency of the subsequence “thyl” in the sequence “methylethyl”
is two. All frequent subsequences may not be meaningful subterms. All subse-
quences of a frequent subsequence are frequent, e.g., “methyl” (−CH3) is a mean-
ingful subterm, but “methy” is not, although it is frequent too. Thus, simply mining
frequent subsequences results in much redundant information. Previous work gives
the following concepts [Yan and Han 2003; Yang 2004] to remove redundant infor-
mation among discovered frequent subsequences (we modify the two definitions to
consider subsequence frequencies):

Definition 4.4. Closed Frequent Subsequence: A frequent subsequence s is
in the set of closed frequent subsequences CS, iff there does not exist a frequent
super-sequence s′ of s such that for all s′′ ∈ D, the frequency of occurrence of s
in s′′ is the same as that of s′ in s′′. The set of closed frequent subsequences is
CS = {s|s ∈ FS and !s′ ∈ FS such that s ≺ s′∧∀s′′ ∈ D,Freqs′'s′′ = Freqs's′′}.

For example, in a corpus we used, the term “methy” occurs only as part of the
term “methyl” and both terms are frequent. The term “methy” is not in the set
of closed frequent subsequences CS for that corpus because there exists a super-
sequence “methyl” with the same frequency.

Definition 4.5. Maximal Frequent Subsequence: A frequent subsequence s
is in the set of maximal frequent subsequences MS, iff it has no frequent super-

ACM Transactions on Information Systems, Vol. 2, No. 3, 10 2010.

20 · Bingjun Sun,Prasenjit Mitra, C. Lee Giles, Karl T. Mueller

sequences. The set of maximal frequent subsequences is MS = {s|s ∈ FS and !s′ ∈
FS such that s ≺ s′}.

For example, if “methyl” and “ethyl” are both frequent subsequences in the corpus,
then only methyl belongs to the maximal frequent subsequences set MS.

Input Sequences: D = {methy, metha, met, men, etm},
Parameters: Freqmin = 2, Lmin = 2
l = 5, Freqmethy = Freqmetha = 1, IS = ∅;
l = 4, Freqmeth = 2, IS = {meth}; now for s = met/eth/
me/et/th, Freqs!methy −− = 0, Freqs!metha −− = 0;
for s = the/de, Freqs!methy −− = 0;
for s = thf/df , Freqs!metha −− = 0;
l = 3, all Freq < 2, IS = {meth};
l = 2, Freqme = Freqme!met + Freqme!men = 2, but Freqet =
Freqet!etm = 1, so IS = {meth, me};
Return: IS = {meth, me}, IFreqmeth = 2 & IFreqme = 2.

Fig. 4. Illustration of Independent Frequent Subsequence Mining

The example in Figure 4 demonstrates the set of Closed Frequent Subsequences,
CS, and Maximal Frequent Subsequences, MS. Given D = {methy,metha,met,men, etm}
and Freqmin = 2, e.g., support Dmeth = {methy,metha}, Dme = {methy,metha,met,men},
etc. The set of frequent subsequences FS = {meth,met, eth,me, et, th} has sub-
terms that are unlikely to be useful as index keys. The set CS = {meth,me, et}
removes some redundant information, while the set MS = {meth} removes all re-
dundant information as well as potentially useful information, e.g., me and et have
occurrences excluding those in meth. In order to decide if me or et are useful to
index, we need to determine if me and et are frequent even after excluding their
occurrences in meth. For a frequent sequence s′, its subsequence s ≺ s′ is also
frequent independently only if the number of all the occurrences of s not in any
occurrences of s′ is larger than Freqmin. If a subsequence s has more than one
frequent super-sequence, then all the occurrences of those super-sequences are ex-
cluded to count the independent frequency of s. Thus, in D, meth is frequent and
me is frequent independently, but et is not, because me occurs twice independently,
but et only once independently, and Freqmin = 2. Thus, the set of independent fre-
quent subsequences is {meth,me}. We define independent frequent subsequences
as follows:

Definition 4.6. Independent Frequent Subsequence: The set of indepen-
dent frequent subsequences IS contains all frequent subsequences s iff the indepen-
dent frequency of s, IFreqs, i.e., the total frequency of s, excluding all the oc-
currences of its independent frequent super-sequences s′ ∈ IS, is at least Freqmin.
That is IS = {s|s ∈ FS and IFreqs ≥ Freqmin}, where IFreqs =

∑

s′′∈D #Occurs's′′ ,∀s′ ∈
IS, ∀s′′ ∈ D, !Occurs′'s′′∩Occurs's′′)= ∅ and #Occurs's′′ is the number of unique
occurrences of s in s′′.

Why is computing the CS or MS not sufficient for our application? Consider
the case of the subterms “methyl” and “ethyl” (-C2H5). Both are independent
frequent subsequences in chemical texts, but not a closed or maximally frequent

ACM Transactions on Information Systems, Vol. 2, No. 3, 10 2010.

Identifying, Indexing, and Ranking Chemical Formulae and Chemical Names in Digital Documents · 21

Algorithm 2 Independent Frequent Subsequences Mining:

Algorithm: IFSM(D,D∀s,O∀s,Freqmin,Lmin)
Input:
Candidate set of sequences D,
set D∀s including the support Ds for each subsequence s,
set O∀s including all Occurs∈D,
minimal threshold value of frequency Freqmin, and
minimal length of subsequence Lmin.
Output:
Set of Independent Frequent Subsequences IS, and
Independent Frequency IFreqs of each s ∈ IS.
1. Initialization: IS = {∅}, length l = maxs(Ls).
2. while l ≥ Lmin, do
3. put all s ∈ D, Ls = l,

∑

s′∈Ds
Freqs's′ ≥ Freqmin into Set S;

4. while ∃s ∈ S,
∑

s′∈Ds
Freqs's′ ≥ Freqmin, do

5. move s with the largest Freqs's′ from S to IS;
6. for each s′ ∈ Ds

7. for each Occurs′′'s′ ∩ (∪s's′Occurs's′)*)= ∅,
8. Freqs′′'s′ −−;
9. l −−;

11.return IS and IFreqs∈IS = Freqs;

*∪s's′Occurs's′ is the range of all Occurs's′ in s′, except Occurs's′ ∩Occurt's′)=
∅ ∧ t ∈ IS.

subsequence. For example, for the chemical name in Figure 5, “methyl” occurs
twice and “ethyl” occurs once independently. Assume in the collection of names
D, “methyl” occurs 100 times, while “ethyl” occurs 80 times independently. In
this case, “ethyl” is not discovered in MS since it has a frequent super-sequence
“methyl”. In CS, “ethyl” occurs 180 times, since for each occurrence of “methyl”,
an “ethyl” occurs. Thus, CS over-estimates the probability of “ethyl” that is used
for hierarchical text segmentation (described in the next subsection). If a bias exists
while estimating the probability of subterms, the quality of the segmentation result
suffers.

Based on these observations, we propose an algorithm (Algorithm 2, IFSM) that
mines independent frequent subsequences from a collection of sequences with an ex-
ample in Figure 4. This algorithm scans from the longest to the shortest sequence s
, checking if s is frequent. If Freqs ≥ Freqmin, the algorithm puts s in IS, removes
all occurrences of its subsequences that are in any occurrences of s, and removes
all occurrences overlapping with any occurrences of s. If the remaining occurrences
of a sequence s′ still make s′ frequent, then the algorithm puts s′ into IS and re-
peats the removal process. After mining independent frequent subsequences, the
independent frequencies of the subsequences can be used to estimate their proba-
bilities for hierarchical text segmentation in the next subsection. For example, for
“trimethyl”, the correct segmentation is “tri” and “methyl”. If we over-estimated
the probability of “ethyl”, the algorithm is likely to segment it into “trim” and

ACM Transactions on Information Systems, Vol. 2, No. 3, 10 2010.

22 · Bingjun Sun,Prasenjit Mitra, C. Lee Giles, Karl T. Mueller

“ethyl”, because the frequency of “trim” is also not very low.

4.2.2 Hierarchical Text Segmentation. We propose an unsupervised hierarchical
text segmentation method that segments chemical names into terms (Algorithm
3, HTS), and then utilizes the independent frequent subsequences discovered for
further segmentation into subterms (Algorithm 4, DynSeg). DynSeg finds the best
segmentation with the maximal probability that is the product of probabilities of
each subterm. DynSeg estimates the probability of subterms as:

P (s) =
IFreqs

∑

s′∈IS IFreqs′
∝ IFreqs. (4)

For each term t with m tokens, a segmentation

seg(t) =< t1, t2..., tm >→< s1, s2..., sn >

is to cluster adjacent tokens into n subsequences, where n = 2 for recursive seg-
mentation. The probability of segmentation is

P (seg(t)) =
∏

i∈[1,n]

P (si),

and the corresponding log-likelihood is

L(seg(t)) =
∑

i∈[1,n]

log(P (si))).

Thus, maximum (log) likelihood is used to find the best segmentation,

seg(t) = argmaxseg(t)

∑

i∈[1,n]

log(P (si)). (5)

DynSeg uses dynamic programming for text segmentation [Sun et al. 2007] (Figure
4). In practice, instead of segmenting text into n parts directly, we use hierarchical
segmentation of text and at each level, a text string is segmented into two parts.
We opt for hierarchical segmentation because of two reasons: 1) determining the
appropriate n is difficult, and 2) a text string usually has hierarchically semantic
meanings. For example, “methylethyl” is segmented into “methyl” and “ethyl”, and
then “methyl” into “meth” and “yl”, “ethyl” into “eth” and “yl”, where “meth”
means “one”, “eth” means “two”, and “yl” means “alkyl”.

Hence, after hierarchical text segmentation, we need to index substrings at each
node on the segmentation tree. If only strings at the high levels are indexed, then
nothing is returned when searching for strings at lower levels. If only strings at the
lowest levels are indexed, too many candidates are returned for verification. Since
the number of strings in the segmentation tree is no more than twice the number of
leaves, indexing all of the strings is a reasonable approach, resulting in a reasonable
index size.

5. CHEMICAL ENTITY SEARCH

Users may search for one or more chemical formulae or parts of chemical formulae
in a search engine. The search engine returns documents that contain the chemical
formulae in the query. A user may also enter substrings of chemical names and the

ACM Transactions on Information Systems, Vol. 2, No. 3, 10 2010.

Identifying, Indexing, and Ranking Chemical Formulae and Chemical Names in Digital Documents · 23

Fig. 5. Illustration of Hierarchical Text Segmentation

Algorithm 3 Hierarchical Text Segmentation

Algorithm: HTS(s,IF ,P ,r):
Input:
A sequence s,
a set of independent frequent strings IF with corresponding independent frequency
IFreqs′∈IF ,
a set of natural segmentation symbols with priorities P , and
the tree root r.
Output:
The tree root r with a tree representation of s.
1. if s has natural segmentation symbols c ∈ P
2. segment s into subsequences < s1, s2..., sn > using c with the highest priority;
3. put each s′ ∈ {s1, s2..., sn} in a child node r′ ∈ {r1, r2..., rn} of r;
4. for each subsequence s′ in r′ do
5. HTS(s′,IF ,P ,r′);
6. else if Ls > 1
7. DynSeg(s,IF ,r,2);
8. else return;

search engine should return documents with chemical names containing the search
term, e.g., a user querying for aldoxime should be able to retrieve documents with
the term acetaldoxime (a document with the term acetaldoxime may be ranked after
documents with the exact term aldoxime). Our search engine calculates a relevance
score of a document in response to a user query by weighting each matched indexed
feature based on its length, frequency in entities, and distribution among entities.

We propose four basic types of queries for chemical formula search: exact for-
mula search, frequency formula search, subsequence formula search, and similarity
formula search, and three basic types of queries for chemical name search: exact
name search, substring name search, similarity name search.

Features based on subsequences (substrings in names and partial formulae in
formulae) are used as tokens for search and ranking. Our search engine uses a
scoring scheme based on the Vector Space Model [Baeza-Yates and Ribeiro-Neto
1999] to rank retrieved chemical entities. We define subsequence frequency and
inverse entity frequency and use them to rank documents as described below.

ACM Transactions on Information Systems, Vol. 2, No. 3, 10 2010.

24 · Bingjun Sun,Prasenjit Mitra, C. Lee Giles, Karl T. Mueller

Algorithm 4 Sequence Segmentation by Dynamic Programming:

Algorithm: DynSeg(t,IF ,r,n):
Input:
A sequence t =< t1, t2..., tm >,
a set of independent frequent strings IF with corresponding independent frequency
IFreqs′∈IF ,
the tree root r, and
the number of segments n.
Output:
The tree root r with a tree representation of s.
1. if Ls = 1 return;

2. Compute all log(IFreqsi
) = log(IFreq<tj ,tj+1,...tk>), 1 ≤ j < k ≤ m,

where si =< tj , tj+1, ...tk > is a subsequence of t. The tree root r with a tree
representation of s.
1. if Ls = 1 return;

2. Compute all log(IFreqsi
) = log(IFreq<tj ,tj+1,...tk>), 1 ≤ j < k ≤ m,

where si =< tj , tj+1, ...tk > is a subsequence of t.

3. Let M(l, 1) = log(IFreq<t1,t2,...,tl>), where 0 ≤ l ≤ m.
Then M(l, L) = maxd(M(d, L − 1) + log(IFreq<td+1,td+2...,tl>)),

5. segment s into subsequences < s1, s2..., sn >
using the corresponding seg(t) for M(m,n).

6. if only one s′ ∈ {s1, s2..., sn})= ∅ return;
7. put each s′ ∈ {s1, s2..., sn} ∧ s′)= ∅ in a child node

r′ ∈ {r1, r2..., rn} of r;
8. for each subsequence s′ in r′ do
9. DynSeg(s′,IF ,r′,n);

Definition 5.1. SF.IEF: Given a collection of entities C, a query q and an entity
e ∈ C, SF (s, e) is the subsequence frequency for each subsequence s % e, which is
the total number of occurrences of s in e, and IEF (s) is the inverse entity frequency
of s in C. They are defined as

SF (s, e) =
freq(s, e)

|e|
, IEF (s) = log

|C|

|{e|s % e}|
,

where freq(s, e) is the frequency of s in e, |e| =
∑

k freq(sk, e) is the total frequency
of all indexed subsequences in e, |C| is the total number of entities in C, and
|{e|s % e}| is the number of entities that contain subsequence s.

For example, consider the term “methylethyl” and say the terms “methyl” and
“ethyl” are indexed. Thus freq(methyl,methylethyl) = 1 and freq(ethyl,methylethyl) =
2 because the sequence “ethyl” appears twice in “methylethyl”. Therefore, |methylethyl| =
1+2 = 3 and SF (ethyl,methylethyl) = 2/3. Now, let there be 10 entities in C and
five of them contain the subsequence ethyl. Therefore, IEF (ethyl) = log(10/5) =
log2.

ACM Transactions on Information Systems, Vol. 2, No. 3, 10 2010.

Identifying, Indexing, and Ranking Chemical Formulae and Chemical Names in Digital Documents · 25

5.1 Chemical Formula Search

In this subsection, we introduce four search semantics for chemical formula search.
Frequency formula search allows end-users to list the elements that should be in
the formula, and subsequence formula search allows end-users to search by listing
functional groups. If the end-user wants an exact match of the term as written,
then they can use the exact search. The last type of formula search is similarity
search. Similarity search could be performed by converting the chemical formula
to a chemical structure [Garfield 1962] and then using chemical structure match-
ing [Willett et al. 1998; Yan et al. 2006; Shasha et al. 2002; Raymond et al. 2002]
to rank documents containing that chemical formula. However, because subgraph
isomorphism involved in structure matching is a costly operation, we propose a fast
similarity search method based on the appearance of substrings in the user query
and the chemical entity terms in a document. We do not claim that these are the
only formula search semantics that are necessary, but believe that these methods
are interesting and useful. The utility of our methods and usefulness of our pro-
posed semantics need to be validated by a large scale user study or by examining
real query logs of a popular system where these options are made available in the
future.

Definition 5.2. Formula Query and Frequency Range: A formula query q
is a sequence of pairs of a partial formula and the corresponding frequency range
< si, rangesi

>, where token si is a chemical element e ∈ E or another chemical
formula f ′, and rangesi

= ∪k[lowk, upperk], upperk ≥ lowk ≥ 0.

For example, the formula query < CH, 1 − 2 >< Cl, 1 > returns a chemical com-
pound that has one or two CH pairs and one chlorine atom.

Exact formula search
In this case, a user specifying a formula query gets back documents having for-

mulae that match the query exactly, i.e., the elements in the formulae appear in
the exact sequence as that specified in the query and the frequency of the elements
fall in the range specified in the query. For instance, the query C1-2H4-6 matches
CH4 and C2H6, but not H4C or H6C2. Exact formula search may at first appear
to be too rigorous a category since, for example, a chemical researcher searching
for CH4 would surely want to have her search return results for H4C. However, in
more complex searches a researcher may have prior knowledge that one particular
form of a formula is usually used for their compound of interest. For example acetic
acid is often written as CH3COOH, whereas methyl formate as CH3OCOH, both
of which have the same general formula H4C2O4. A researcher interested in results
for only one of these compounds could use the exact formula search in an attempt
to discriminate among these forms. Frequency formula searches

Most current chemistry databases support frequency searches as the only query
models for formula searches. Our system supports two types of frequency searches:
full frequency search and partial frequency search. When a user specifies the query
C2H4-6, the system returns documents with the chemical formulae with two C and
four to six H, and no other atoms for full frequency search, e.g., C2H4, and returns
formulae with two C, four to six H, and any numbers of other atoms for partial
frequency search, e.g., C2H4 and C2H4O.

ACM Transactions on Information Systems, Vol. 2, No. 3, 10 2010.

26 · Bingjun Sun,Prasenjit Mitra, C. Lee Giles, Karl T. Mueller

For a query formula q and a formula f ∈ C, where C is a collection of formulae,
the scoring function of frequency searches is given as

score(q, f) =

∑

e'q SF (e, f)IEF (e)2

√

|f |×
√

∑

e'q (IEF (e))2
, (6)

where e is a chemical element, |f | =
∑

e'f freq(e, f) is the total atom frequency

of chemical elements in f , 1/
√

|f | is a normalizing factor to give a higher score to

formulae with fewer atoms, and 1/
√

∑

e'q (IEF (e))2 is a factor to normalize the

score to one atom, so that scores are comparable between different queries. Normal-
ization does not affect the rank of retrieved formulae for a specific formula query,
but affects the rank of retrieved documents when one query contains more than two
formula searches. Without this factor, documents containing more occurrences of
the longer query formula would receive higher scores. Equation 6 considers f as a
bag of atoms, where e % f is a chemical element.

Subsequence formula search
In this case, the system returns documents with formulae that contain the formula

query as a subsequence. We allow for three types of matches as shown using the
following example. For the query COOH, COOH is an exact match (high score),
HOOC is a reverse match (medium score), and CHO2 is a parsed match (low
score).

The scoring function for the subsequence formula search is given as

score(q, f) = Wmat(q,f).SF (q, f).IEF (q)/
√

|f |, (7)

where Wmat(q,f) is the weight for different matching types, e.g., exact match (high
weight, e.g., 1), reverse match (medium weight, e.g., 0.8), and parsed match (low
weight, e.g., 0.25), which can be tuned by an expert.

Similarity formula search
Similarity searches return documents with chemical formulae that are similar to

the query formula. We have not used an edit distance to measure the similarity
of two formulae because of two reasons: 1) Formulae with more similar strings or
substrings may have a large edit distance. For example, H2CO3 can also be written
as HC(O)OOH, but the edit distance of them is larger than that of H2CO3 and
HNO3 (6 > 2). Using our partial-formula-based similarity search (Equation 8),
for the query of H2CO3, HC(O)OOH has a higher ranking score than HNO3. 2)
Computing edit distances of the query formula and all the formulae in the data set
is expensive, so a method based on indexed features of partial formulae is much
faster and feasible in practice. Our approach is feature-based similarity search that
is based on selected features of partial formulae.

A scoring function such as a sequence kernel [Haussler 1999] is designed to mea-
sure the similarity between formulae for similarity searches. It maps a query for-
mula into a vector space where each dimension is an indexed partial formula. For
instance, the query CH3OH is mapped into dimensions of C, H3, O, H, CH3, and
OH, if only these six partial formulae are indexed. Then formulae with those par-
tial formulae (including reverse or parsed matched partial formulae) are retrieved,
and scores are computed cumulatively for each substring. Larger partial formulae

ACM Transactions on Information Systems, Vol. 2, No. 3, 10 2010.

Identifying, Indexing, and Ranking Chemical Formulae and Chemical Names in Digital Documents · 27

are given more weight for scoring, and scores of long formulae are normalized by
their total frequency of partial formulae. The scoring function of similarity search
is given as

score(q, f) =

∑

s'q Wmat(s,f)W (s)SF (s, q)SF (s, f)IFF (s)
√

|f |
, (8)

where W (s) is the weight of the partial formula s, which is defined as the total
atom frequency of s and Wmat is as defined above.

5.2 Chemical Name Search

In this subsection, we introduce the different semantics allowed by our system for
chemical name search. Exact name search is used if the user wants an exact match
between the query string and the term in the document. A user uses substring
name search when the user wants the query term (e.g., aldoxime) to match part
of a term (e.g., acetaldoxime). A similarity name search searches for substrings
that are common between a query term and a term in the document. We propose
a subterm based similarity computation that runs faster than an algorithm that
tries to identify the structure from a chemical name and then matches based on
structural similarity. For cases where the chemical names are similarly written, we
expect the subterms to match. However, in cases where the same chemical can
be named in completely different ways (using completely different sub-terms), our
similarity search may not work effectively and a structure-based search will work
better. However, in a large digital library, we expect precision to be more important
than recall and thus even if our similarity name search misses synonyms of the query
term, it may produce a reasonable number of matches to satisfy the end-user. The
cost-benefit analysis of the different querying models and their popularity is possible
to obtain only when a real system provides these search capabilities to the end-user
and analyzes their query logs or performs user studies to poll their satisfaction;
currently, we do not have any means to perform such a large-scale unbiased user
study.

Exact name search

An exact name search query returns chemical names with documents where the
exact keyword appears.

Substring name search

Substring name searches return a ranked list of documents containing chemical
names that contain the user-provided keyword as a substring. If the query string is
indexed, the results are retrieved directly. Otherwise, the query string is segmented
hierarchically. The algorithm looks up the substrings in the index. If an entry exists,
the entry is retrieved. Otherwise, the substring is further segmented and looked
up. Finally, documents that appear in all the index entries retrieved are verified to
check whether they contain the query keywords. The ranking function of substring
name searches for a query q and a name string e is given as

score(q, e) = SF (q, e)IEF (q)/
√

|e|.

Similarity name search

ACM Transactions on Information Systems, Vol. 2, No. 3, 10 2010.

28 · Bingjun Sun,Prasenjit Mitra, C. Lee Giles, Karl T. Mueller

Similarity name searches return names that are similar to the query. We design a
ranking function based on indexed substrings, so that the query is processed and the
ranking score is computed efficiently. First, our algorithm segments a query string
hierarchically. Then the algorithm looks up the substrings in the index to retrieve
postings lists for each substring, and finally, scores are computed using Equation 9.
Longer substrings are given higher weights while scoring, and the scores of names
are normalized by the total frequency of their substrings. The ranking function is
given as

score(q, e) =
∑

s'q

W (s)SF (s, q)SF (s, e)IEF (s)/
√

|e|, (9)

where W (s) is the weight of s, defined as the length of s.

5.3 Conjunctive Entity Search and Document Search

Conjunctive search
Conjunctive searches of the basic chemical entity searches are supported for fil-

tering search results. For example, a user can search formulae that have two to four
C, four to ten H, and have a subsequence of CH2, using a conjunctive search of a
full frequency search C2-4H4-10 and a subsequence formula search of CH2. For
conjunctive chemical name searches, you can define multiple substrings in a query,
so that the satisfied chemical name must contain both of them. Chemical names
where both substrings appear in order are given higher priority than those in which
only one appears.

Query rewriting
When a user inputs a query that contains chemical names and formulae as well

as other keywords, our search engine performs the following: 1) chemical entity
searches are executed to find desired names and formulae, and 2) returned entities as
well as other (textual, i.e., non-chemical-formula and non-chemical-name) keywords
defined by users are used to retrieve related documents. We use TF.IDF [Spärck
Jones 1972] as the ranking function in the second stage, and the ranking scores of
each returned chemical entity in the first stage are used as weights of the TF.IDF
of each chemical entity when computing the ranking score in the second stage.

6. EXPERIMENTAL EVALUATION

In this section, we present the results of evaluating our proposed methods empiri-
cally.

6.1 Independent Frequent Subsequence Mining and Hierarchical Text Segmentation

We collected 221,145 chemical names online as a lexicon to tag chemical names.
We evaluate our algorithm, IFSM, with different threshold values Freqmin =
{10, 20, 40, 80, 160}. The system first tokenizes chemical names and obtains 66,769
unique terms. Then, it discovers frequent subterms from them. The distributions of
the subterms’ lengths with different values of Freqmin are presented in Figure 6(a)
and the runtime of our algorithm is shown in Figure 6(b). A graduate student
manually determined that most of the discovered subterms have semantic mean-
ings in the chemistry domain. Table II shows the most frequent subterms along

ACM Transactions on Information Systems, Vol. 2, No. 3, 10 2010.

Identifying, Indexing, and Ranking Chemical Formulae and Chemical Names in Digital Documents · 29

with their real meanings. Note that “methyl” has a higher frequency than “ethyl”
because we only count the independent frequencies. After IFSM, hierarchical text
segmentation is tested, and two examples of the results are shown in Figure 7. We
see that most of the segmented subterms have semantic meanings. Not indexing
meaningless subterms reduces the size of the index.

Table II. The most frequent subterms at each length, Freqmin = 160
String Freq Meaning

tetramethyl 295

tetrahydro 285

trimethyl 441
dimethyl 922

String Freq Meaning
hydroxy 803
methyl 1744
ethyl 1269
thio 811
tri 2597 three
di 4154 two

0 5 10 15 20 25 30
0

100

200

300

400

500

600

700

800

900

Length of substring

N
um

be
r o

f s
ub

st
rin

gs

Freqmin=10
Freqmin=20
Freqmin=40
Freqmin=80
Freqmin=160

(a) Distribution of discovered frequent
substrings

0 1 2 3 4 5 6 7
x 104

0

10

20

30

40

50

60

70

80

Sample size of terms

R
un

ni
ng

 ti
m

e
(s

ec
)

Freqmin=10
Freqmin=20
Freqmin=40
Freqmin=80
Freqmin=160

(b) Algorithm running time

Fig. 6. IFSM applied on chemical names

Fig. 7. Examples of HTS. Strings in bold rectangles have semantic meanings.

ACM Transactions on Information Systems, Vol. 2, No. 3, 10 2010.

30 · Bingjun Sun,Prasenjit Mitra, C. Lee Giles, Karl T. Mueller

6.2 Chemical Entity Tagging

Table III. Formula tagging average accuracy
Method Recall Precision F-measure
String Pattern Match 98.38% 41.70% 58.57%
CRF,θ = 1.0 86.05% 96.02% 90.76%
CRF,θ = 1.5 90.92% 93.79% 92.33%
SCRF,θ = 1.0 88.63% 96.29% 92.30%
SCRF,θ = 1.5 93.09% 93.88% 93.48%
SVM linear,t = 0.0 86.95% 95.59% 91.06%
SVM linear,t = −.2 88.25% 94.23% 91.14%
SVM poly,t = 0.0 87.69% 96.32% 91.80%
SVM poly,t = −.4 90.36% 94.64% 92.45%
LASVM linear,t = 0.0 83.94% 90.65% 87.17%
LASVM linear,t = −.2 85.42% 89.55% 87.44%
LASVM poly,t = 0.0 75.87% 93.08% 83.60%
LASVM poly,t = −.4 83.86% 88.51% 86.12%

To test the performance of our chemical entity tagging, we randomly selected
publications from multiple journals crawled from the digital library of the Royal
Society of Chemistry 1. First, 200 documents are selected randomly from the data
set, and a part of each document is selected randomly to construct the training set
manually. This data set is very imbalanced because of the preponderance of terms
that are not chemical entities. For example, only 1.59% of the tokens are chemical
formulae (5203 formulae vs. 321514 non-formula tokens).

6.2.1 Accuracy of Chemical Formula Tagging. In our experiments to evaluate
the tagging of chemical formulae, we test a 2-level stacked CRF(SCRF), where
the two levels are the sentence level and the term level. At the sentence level, we
construct the training set by labeling each sentence as content (document contents)
or meta (document meta data, including titles, authors, references, etc.). Then
the algorithm uses the sentence tags as features at the term level to tag chemical
formulae. For formula tagging, we label each token as a formula or a non-formula.

We perform 10-fold cross-validation to evaluate sentence and formula tagging.
For each testing set of samples obtained from 20 files, the rest of the 180 files were
used to train the classifiers. For formula tagging, we evaluate several methods, in-
cluding rule-based String Pattern Match, CRFs with different feature sets, SCRFs,
SVMs with linear (SVM linear) and polynomial kernels (SVM poly), and SVM
active learning with the linear (LASVM linear) and polynomial kernels (LASVM
poly). SVM light 1 for batch learning and LASVM [Bordes et al. 2005] for active
learning are used. We used the CRF tool that is available in MALLET, a Java-
based package for statistical natural language processing2. For SVMs, we tested
the linear, polynomial, RBF and Gaussian kernels. We show the results of the first
two and not the latter because they resulted in worse performances and were more
expensive computationally than the linear and polynomial kernels. For CRFs, to

1http://www.rsc.org/Publishing/index.asp
1http://svmlight.joachims.org/
2http://mallet.cs.umass.edu

ACM Transactions on Information Systems, Vol. 2, No. 3, 10 2010.

Identifying, Indexing, and Ranking Chemical Formulae and Chemical Names in Digital Documents · 31

0 0.5 1 1.5 2 2.5 3

x 105

0

500

1000

1500

2000

2500

3000

3500

Sample Size

Tr
ai

ni
ng

 ti
m

e(
se

co
nd

)

CRF
SVM Linear
SVM Poly
LASVM Linear
LASVM Poly
Feature extraction

(a) Training time

0 0.5 1 1.5 2 2.5 3

x 105

0

200

400

600

800

1000

1200

Sample Size

Te
st

in
g

tim
e(

se
co

nd
)

CRF
SVM Linear
SVM Poly
LASVM Linear
LASVM Poly
Feature extraction

(b) Testing time

Fig. 8. Running time of formula extraction including feature extraction

avoid the overfitting problem, regularization is used, with σ2 = 5.0 [Lafferty et al.
2001]. Features are categorized into three subsets: features using rule-based string
pattern match (RULE), features using part-of-speech tags (POS), and other fea-
tures. Four combinations are tested: (1) all features, (2) no POS, (3) no RULE,
and (4) no POS or RULE.

We test different values {0.5, 0.75, 1.0, 1.5, 2.0, 2.5, 3.0} for the feature boosting
parameter θ for the formula (or the B-name or I-name) class. Note that when
θ = 1.0, we have a normal CRF, while when θ < 1.0, the non-formula (or non-
name) class gets more preference. To measure the overall performance, we use
F-measure, F = 2PR/(P + R) [McDonald and Pereira 2005], where P is precision
(i.e., the proportion of true instances among all the predicted true instances) and
R is recall (i.e., the proportion of predicted true instances among all the true
instances), instead of using an average error rate because the error rate is too small
for imbalanced data even if we tag all formulae or chemical names wrongly. Results
of average recall, precision, and F-measure for sentence tagging are presented in
Table IV and formula tagging in Table III and Figure 9. Figure 9 shows that using
the SCRF, we can obtain a high F-measure with precision near 95% at over 90%
recall. The p-values for the t-tests of significance for formula tagging are shown in
Table V. The shapes in Figure 9 and 10 show an F-measure curve with a peak.
Thus, we can optimize the classifier by tuning the parameters so that we can achieve
performance close to that peak if desired.

Table IV. Sentence tagging average accuracy
Method Recall Precision F
CRF,θ = 1.0 78.75% 89.12% 83.61%

From Figure 9, we can see that the RULE features contribute more than the
POS features, because the difference between curves with or without POS features
is significantly smaller than that between curves with or without RULE features.
Usually, the performance with more features is better than that with fewer features.
We can observe that F-measure curves with fewer features have a higher curvature
and are more sensitive to θ than those with more features. We have the best

ACM Transactions on Information Systems, Vol. 2, No. 3, 10 2010.

32 · Bingjun Sun,Prasenjit Mitra, C. Lee Giles, Karl T. Mueller

0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Recall

P
re

ci
si

on

HCRF
all features
no POS
no RULE
no POS+RULE

(a) Avg precision v.s. recall

0.5 1 1.5 2 2.5 3
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Feature boosting parameter θ

P
re

ci
si

on

HCRF
all features
no POS
no RULE
no POS+RULE

(b) Average precision

0.5 1 1.5 2 2.5 3
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Feature boosting parameter θ

R
ec

al
l

HCRF
all features
no POS
no RULE
no POS+RULE

(c) Average recall

0.5 1 1.5 2 2.5 3
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Feature boosting parameter θ

F−
m

ea
su

re

HCRF
all features
no POS
no RULE
no POS+RULE

(d) Average F-measure

Fig. 9. Chemical formula tagging using different values of feature boosting param-
eter θ

overall performance based on F-measure for θ = 1.5 using all features and, for this
case, recall and precision are more balanced than that in the cases using other θ
values. We can also see that SCRFs have the best performance. In comparison
to CRFs, SCRFs only have an improvement of 1.15%. However, since the total
error rate is just 7.67%, the improvement is about 15% of the total error rate of
7.67%. This shows that long-dependence features at the sentence level have positive
contributions. The downside of SCRFs is an increased runtime when compared to
CRFs. However, because the entity extraction and indexing is being done offline,
we believe that the extra cost can be justified by the better performance. Both for
SCRFs and CRFs using all features, the best F-measure is reached when θ = 1.5.

Based on empirical experiences of using the SVMs, we let C = 1/δ2, where
δ = 1/n

∑n
i=1

√

ker(xi,xi) − 2 · ker(xi,0) + ker(0,0) for SVM light, C = 100 for
LASVM, and we use the polynomial kernel (x · x′ + 1)3. We test different decision
threshold values {-0.4, -0.2, 0.0, 0.2, 0.4, 0.6, 0.8}. From Figure 10(a), we can see
that CRF and SVM poly perform better than SVM Linear, but the difference is
not statistically significant at the level of 0.05 (Table V). All of these classifiers are
much better than LASVM and this conclusion is statistically significant. Moreover,
we can see that CRF confers more importance to recall than to precision as opposed
to SVM poly, which values precision more. When the importance of recall is more
than that of precision, CRF can produce results with a better F-measure. This

ACM Transactions on Information Systems, Vol. 2, No. 3, 10 2010.

Identifying, Indexing, and Ranking Chemical Formulae and Chemical Names in Digital Documents · 33

0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0.75

0.8

0.85

0.9

0.95

1

Recall

P
re

ci
si

on

SVM Linear
SVM Poly
LASVM Linear
LASVM Poly
CRF
Precision=Recall

(a)

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
0.75

0.8

0.85

0.9

0.95

1

Decision threshold t

P
re

ci
si

on

SVM Linear
SVM Poly
LASVM Linear
LASVM Poly

(b)

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

Decision threshold t

R
ec

al
l

SVM Linear
SVM Poly
LASVM Linear
LASVM Poly

(c)

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
0.7

0.75

0.8

0.85

0.9

0.95

Decision threshold t

F−
m

ea
su

re

SVM Linear
SVM Poly
LASVM Linear
LASVM Poly

(d)

Fig. 10. SVM and LASVM with different values of threshold t

observation is important for imbalanced data.

Table V. P-values of 1-sided T-test on F-measure
Pairs of methods F-measure
CRF,θ = 1.0;CRF,θ = 1.5 0.130
CRF,θ = 1.5;SVM,linear,t = −.2 0.156
CRF,θ = 1.5;SVM,poly,t = −.4 0.396
CRF,θ = 1.5;LASVM,linear,t = −.2 0.002
CRF,θ = 1.5;LASVM,poly,t = −.4 0.000
SCRF,θ = 1.5;CRF,θ = 1.5 0.159
SCRF,θ = 1.5;LASVM,poly,t = −.4 0.172
SVM,linear,t = 0.0;SVM,linear,t = −.2 0.472
SVM,poly,t = 0.0;SVM,poly,t = −.4 0.231
SVM,linear,t = −.2;SVM,poly,t = −.4 0.072
SVM,linear,t = −.2;LASVM,linear,t = −.2 0.009
SVM,poly,t = −.4;LASVM,poly,t = −.4 0.000

We show the results for formula tagging using all approaches and all features in
Table III and compare them with the String Pattern Match approach, which has
very high recall but quite low precision. We compare the formula tagging results

ACM Transactions on Information Systems, Vol. 2, No. 3, 10 2010.

34 · Bingjun Sun,Prasenjit Mitra, C. Lee Giles, Karl T. Mueller

with the GATE Chemistry Tagger 1. Since it cannot handle superscripts and can
recognize names of chemical elements, e.g., oxygen, the GATE Chemistry Tagger is
not fully comparable with our approach. Without counting these two cases, its recall
is around 63.4%, precision 45.2%, and F-measure 52.8%. In contrast, the sCRF
formula tagger achieves over 93% precision, recall, and F-measure demonstrating
that identifying chemical formulae automatically with high accuracy is possible.

6.2.2 Runtime of Chemical Formula Tagging. We also evaluate the time taken
to run these methods both for the training and testing processes. Note that fea-
ture extraction and CRF are implemented in Java, while SVM and LASVM are
implemented using the C programming language. The reported runtime includes
the time taken for feature extraction and training (or testing) time. In Figure 8(a),
we can see that the CRF has a computational cost lying between that of SVM
poly and other methods. We also observe that LASVM is much faster than SVM,
especially for complex kernels. Nevertheless, because the runtimes of the CRF both
for training and testing are reasonable and stacked CRFs produce the best results,
we suggest that stacked CRFs be used for chemical formula tagging.

6.2.3 Accuracy of Chemical Name Tagging. For name tagging, because a name
may be a phrase of several terms, we label each token as a B-name (beginning of
a name), or I-name (continuing of a name), or a non-name. We use 5-fold cross-
validation to evaluate our methods for name tagging. Specifically, we evaluate
CRFs with different feature sets. Features are classified into three subsets: fea-
tures using frequent subterms (subterm), features using lexicons of chemical names
and WordNet (lexicon), and other features. Four combinations are tested: (1) all
features, (2) no subterm, (3) no lexicon, and (4) no subterm or lexicon.

Table VI. Chemical name tagging average accuracy
Method, θ = 1.0 Recall Precision F
all features 76.15% 84.98% 80.32%
no subterm 74.82% 85.59% 79.84%
no lexicon 74.73% 84.05% 79.11%
no subterm+lexicon 73.00% 83.92% 78.08%

The precision, recall, and the f-measures of the chemical name tagging using
different combinations of features are presented in Table VI and Figure 11. From
Figure 11, we observe that using all features results in the best recall and F-measure,
and using features of frequent subterms improves the recall and the f-measure but
decreases precision. Our system outperforms the only downloadable tool for chemi-
cal name tagging: Oscar32 on our dataset. We used version alpha 1, which was the
latest available version at the time this work was done. The experimental results
for Oscar3, alpha 1, on our annotated corpus are: recall 70.1%, precision 51.4%,
and F-measure 59.3%. These observations are worse than that reported by Os-
car3 [Corbett and Murray-Rust 2006]. Hettne, et al., [Hettne et al. 2009] used
Oscar3 for chemical entity extraction and reported that they obtained a precision

1http://gate.ac.uk/
2http://wwmm.ch.cam.ac.uk/wikis/wwmm

ACM Transactions on Information Systems, Vol. 2, No. 3, 10 2010.

Identifying, Indexing, and Ranking Chemical Formulae and Chemical Names in Digital Documents · 35

0.4 0.5 0.6 0.7 0.8 0.9
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall

P
re

ci
si

on

all features
no subterm
no lexicon
no subterm+lexicon

(a) Avg precision v.s. recall

0.5 1 1.5 2 2.5 3
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Feature boosting parameter θ

Pr
ec

is
io

n

all features
no subterm
no lexicon
no subterm+lexicon

(b) Average precision

0.5 1 1.5 2 2.5 3
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

Feature boosting parameter θ

R
ec

al
l

all features
no subterm
no lexicon
no subterm+lexicon

(c) Average recall

0.5 1 1.5 2 2.5 3
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Feature boosting parameter θ

F−
m

ea
su

re

all features
no subterm
no lexicon
no subterm+lexicon

(d) Average F-measure

Fig. 11. Chemical name tagging using different values of feature boosting parameter
θ

of 45%, recall of 82% and an F-measure of 58%. These numbers are similar to our
observations. The variation of the performance of Oscar3 are perhaps due to the
differences in characteristics of the different datasets that were used for training
and testing in the three studies. The exact sources of these differences need to be
better understood in the future.

As shown above, acceptable precision and recall can be achieved for the task of
chemical name tagging using our CRF-based algorithm using features mentioned.

6.2.4 Conclusions of Chemical Entity Tagging. We posit that a CRF-based clas-
sifier is preferred, for our work, to SVM due to the following reasons: 1) It not only
has a high overall F-measure, but also a more balanced tradeoff between recall and
precision. 2) The CRF classifier has a reasonable running time. The testing time
taken by a CRF classifier is trivial compared with the cost of feature extraction.
3) SVMs only had good performance for chemical formula tagging. For chemical
name tagging, CRFs performed better than the SVMs, which is not shown here.
The stacked CRFs have the best results, but were also significantly more expensive
than CRFs and SVMs with respect to runtime. In summary, we have shown that
chemical names and chemical formulae in text can be extracted with reasonable
accuracy using the methods listed above.

ACM Transactions on Information Systems, Vol. 2, No. 3, 10 2010.

36 · Bingjun Sun,Prasenjit Mitra, C. Lee Giles, Karl T. Mueller

6.3 Chemical Entity Indexing

We selected a set of 5036 documents and extracted 15853 formulae with a total
of 27978 partial formulae before feature selection. Different values for the fre-
quency threshold Freqmin ∈ {1, 2, 3, 4, 5} and the discrimination threshold αmin ∈
{0.9, 1.0, 1.2} are tested. Note that when αmin = 0.9, all frequent partial formulae
are selected without considering the discriminative score α. When αmin = 1.0,
each partial formula whose support is the intersection of its selected subsequences’
supports is removed. When αmin > 1.0, feature selection may be lossy. In this
case, say the feature f is not indexed. The intersection of the supports of the sub-
sequences of f may contain formulae that do not contain f . After feature selection
and index construction, we generate a list of 100 query formulae that are selected
randomly from the set of extracted formulae and from a chemistry textbook and
some webpages 13. These formulae are used to perform similarity searches.

1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.05

0.1

0.15

0.2

0.25

Values of Freqmin

Pe
rc

en
ta

ge
 o

f s
el

ec
te

d
fe

at
ur

es

αmin=0.9
αmin=1.0
αmin=1.2

(a) Ratio of selected features

1 1.5 2 2.5 3 3.5 4 4.5 5
0.73

0.74

0.75

0.76

0.77

0.78

0.79

0.8

0.81

0.82

Values of Freqmin

In
de

x
Si

ze
 /

O
rig

in
al

 In
de

x
Si

ze

αmin=0.9
αmin=1.0
αmin=1.2

(b) Ratio of index size

Fig. 12. Features and index size ratio after feature selection

The experimental results (Figure 12) show that depending on different threshold
values, most of the features are removed after feature selection so that the index
size decreases correspondingly. Even for the case of Freqmin = 1 and αmin = 0.9,
75% of the features are removed, since they appear only once. We can also observe
that from αmin = 0.9 to αmin = 1.0, many features are removed, because those
features have selected partial formulae with the same support D. When αmin ≥ 1.0,
the selection ratio changes a little. We also evaluated the runtime of the feature
selection algorithm (Figure 13). A larger Freqmin can filter infrequent features
directly without computing discriminative scores, which speeds up the algorithm,
while the value of αmin affects the runtime little (note that curves with the same
Freqmin but different αmin almost overlap in Figure 13). Figure 13 establishes that
index pruning reduces the index size by 90% and the search time by over 65%; in
the next subsection, we show that the quality of the search results remains high.

For chemical name indexing and search, we use our segmentation based index
construction and pruning. We compare our approach to the method using all
possible substrings for indexing. We use the same collection of chemical names as

13http://webbook.nist.gov/chemistry/

ACM Transactions on Information Systems, Vol. 2, No. 3, 10 2010.

Identifying, Indexing, and Ranking Chemical Formulae and Chemical Names in Digital Documents · 37

0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8

x 104

0

5

10

15

20

25

30

35

Feature Size

R
un

ni
ng

 ti
m

e(
se

co
nd

)
Freqmin=1,amin=0.9
Freqmin=1,amin=1.2
Freqmin=2,amin=0.9
Freqmin=2,amin=1.2
Freqmin=3,amin=0.9
Freqmin=3,amin=1.2

Fig. 13. Running time of feature selec-
tion

0 20 40 60 80 100 120 140 160
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Values of Freqmin

R
at

io
 a

fte
r i

nd
ex

 p
ru

ni
ng # substrings

index size
similarity search time

Fig. 14. Ratio of after v.s. before in-
dex pruning

mentioned in Section 6.1, and split the collection into two subsets. The first subset
is used for index construction (37,656 chemical names), while the query names are
randomly selected from the second subset. We test different values of the frequency
threshold Freqmin ∈ {10, 20, 40, 80, 160} to mine independent frequent substrings.
The results in Figure 14 show that about 99% of the substrings are removed after
hierarchical text segmentation, so that the index size decreases correspondingly (6%
of the original size remains), when Freqmin = 10. Other values of Freqmin result
in similar results.

6.4 Chemical Entity and Document Search

6.4.1 Chemical Formula Search Results After Indexing Pruning. We observed
that for the same similarity formula searches (Figure 15), the search results with
feature selection are similar to those without feature selection for reasonable thresh-
old values. We determine the average normalized overlap score, which we will refer
to as the average correlation ratio for the top n ∈ [1, 30] retrieved formulae, which
is defined as Overn = |Rn ∩ R′

n|/n, n = 1, 2, 3, ..., where Rn and R′
n are the search

results obtained by applying feature selection or not respectively. As expected,
when the threshold values of Freqmin and αmin increases, the average correlation
ratio decreases. The average correlation ratio increases with an increase in n. From
the retrieved results, we also find that if there is an exactly matched formula, usu-
ally it is returned as the first result. Thus the average correlation ratio for the top
retrieved formula is not much lower than that of the top two retrieved formulae.
Also, we can see from these curves that a low threshold value of Freqmin can keep
the curve flat and result in a high average correlation ratio for smaller n, while a
low threshold value of αmin can increase the average correlation ratio for the whole
curve. For the case of Freqmin = 1 and αmin = 0.9, more than 80% of the retrieved
results are the same for all cases, and 75% of the features are removed, which is
both efficient and effective. Reducing the feature space results in reduced memory
consumption and query processing times.

6.4.2 Chemical Name Search Results After Index Pruning. For similarity name
searches, we generate a list of 100 queries using chemical names selected randomly:

ACM Transactions on Information Systems, Vol. 2, No. 3, 10 2010.

38 · Bingjun Sun,Prasenjit Mitra, C. Lee Giles, Karl T. Mueller

0 5 10 15 20 25 30
0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

Top n retrieved formulae (αmin=0.9)

Av
er

ag
e

co
rre

la
tio

n
ra

tio

Freqmin=1
Freqmin=2
Freqmin=3
Freqmin=4
Freqmin=5

(a) α = 0.9

0 5 10 15 20 25 30
0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

Top n retrieved formulae (αmin=1.0)

Av
er

ag
e

co
rre

la
tio

n
ra

tio

Freqmin=1
Freqmin=2
Freqmin=3
Freqmin=4
Freqmin=5

(b) α = 1.0

0 5 10 15 20 25 30
0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

Top n retrieved formulae (αmin=1.2)

Av
er

ag
e

co
rre

la
tio

n
ra

tio

Freqmin=1
Freqmin=2
Freqmin=3
Freqmin=4
Freqmin=5

(c) α = 1.2

Fig. 15. Overlap of similarity formula search results before and after feature selec-
tion

half from the set of indexed chemical names and half from unindexed chemical
names. Moreover, for substring name search, we generate a list of 10 queries using
the most frequent but semantically meaningful subterms with the length 3-10 dis-
covered in Section 6.1. We also evaluated the response times for similarity name
searches, illustrated in Figure 14. The method using HTS only requires 35% of the
time for similarity name search compared with the method using all substrings.
However, we did not test the case where the index using all substrings requires
more space than the main memory. In that case, we believe that the response time
will be even longer.

We also show in Figure 17 that for the same query of similarity name searches or
substring name searches, the search results using segmentation-based index pruning
has a high average correlation ratio with respect to the result before index pruning.
(We use the same average correlation ratio as used for similarity formula searches
as discussed in the last subsection to compare the overlap between the results in
the two cases.) We observe that for similarity name searches, when more results
are retrieved, the average correlation ratio decrease. Conversely, for substring name
searches, the overlap between the results in the two cases increase as more results
are retrieved. When Freqmin is increased, the overlaps also decrease, especially for
substring name searches.

Overall, we see that the pruned indexes significantly while preserving the quality

ACM Transactions on Information Systems, Vol. 2, No. 3, 10 2010.

Identifying, Indexing, and Ranking Chemical Formulae and Chemical Names in Digital Documents · 39

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Top n retrieved documents

P
re

ci
si

on

Formula
Lucene
Google
Yahoo
MSN

(a) Hard Queries

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Top n retrieved documents

P
re

ci
si

on

Formula
Lucene
Google
Yahoo
MSN

(b) Medium Queries

0 2 4 6 8 10 12 14 16 18 20
0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

Top n retrieved documents

P
re

ci
si

on

Formula
Lucene
Google
Yahoo
MSN

(c) Easy Queries

Fig. 16. Average Precision in Document Search using Ambiguous Formulae

0 5 10 15 20 25 30
0.46

0.48

0.5

0.52

0.54

0.56

0.58

0.6

0.62

0.64

0.66

Top n retrieved formulae

A
ve

ra
ge

 c
or

re
la

tio
n

ra
tio

Freqmin=10
Freqmin=20
Freqmin=40
Freqmin=80
Freqmin=160

(a) Similarity name search

0 5 10 15 20 25 30

0.25

0.3

0.35

0.4

0.45

0.5

Top n retrieved formulae

A
ve

ra
ge

 c
or

re
la

tio
n

ra
tio

Freqmin=10
Freqmin=20
Freqmin=40
Freqmin=80
Freqmin=160

(b) Substring name search

Fig. 17. Correlation of name search results before and after index pruning

of the search results.

6.4.3 Term Disambiguation in Document Search. To test the ability of our ap-
proach for term disambiguation in documents, we index 5325 PDF documents

ACM Transactions on Information Systems, Vol. 2, No. 3, 10 2010.

40 · Bingjun Sun,Prasenjit Mitra, C. Lee Giles, Karl T. Mueller

crawled from the digital library of the Royal Society of Chemistry 1. Then, we de-
sign 15 queries of chemical formulae. We categorize them into three levels based on
their ambiguity, 1) hard (He, As, I, Fe, Cu), 2) medium (CH4,H2O,O2, OH,NH4),
and 3) easy (Fe2O3, CH3COOH,NaOH,CO2, SO2). We compare our approach
with the traditional approach using keyword matching by analyzing the precision
of the top-20 returned documents. The precision is defined as the percentage of
returned documents that really contain the query formula in the chemical sense.
Lucene 1 is used for the traditional approach. We also evaluate generic search en-
gines (Google, Yahoo, and MSN) using those queries to demonstrate the ambiguity
of terms. Since the documents indexed by different search engines are different,
the results of general-purpose search engines are not directly comparable with our
results and that of Lucene. The results illustrate that ambiguity exists and domain-
specific search engines are desired and can improve performance.

From Figure 16, we can observe 1) the ambiguity of terms is very serious for short
chemical formulae, 2) results (obtained on Feb 20, 2007) from Google and Yahoo are
more diversified than that obtained from MSN and 3) our approach out-performs
the traditional approach based on Lucene, especially for short formulae.

7. CONCLUSIONS AND FUTURE WORK

Disambiguating chemical entities from abbreviations, acronyms, and other text is
a challenging problem especially for short chemical names, such as OH, He, As,
I, NIH, etc. We evaluate classification algorithms based on SVM and CRF for
chemical entity tagging and use multi-level stacked CRFs to to address this task.
Experiments show that the stacked CRFs perform well, and that our techniques
outperform known entity extractors like GATE and Oscar3 on our dataset. We
propose efficient index pruning schemes to support partial and fuzzy searches for
chemical formulae and chemical names. Experiments illustrate that most of the
discovered subterms in chemical names using our algorithm, IFSM, have semantic
meanings. Our HTS method for automatic chemical name segmentation worked
well on examples obtained from our dataset. Our experiments also show that
our schemes of index construction and pruning can reduce the number of indexed
tokens as well as the index size significantly. Moreover, the response time of simi-
larity searches is considerably reduced. We show that the retrieved ranked results
of similarity and substring searches before and after index pruning are highly corre-
lated. We introduce several query models for chemical name and formula searches
with corresponding ranking functions. Entity fuzzy matching and query expansion
among synonyms will be considered in the future.

ACKNOWLEDGMENTS

This material is based upon work supported by the National Science Foundation
under Grant No. 0535656. We thank Qingzhao Tan for collecting part of the data
and Seyda Ertekin for providing the LASVM code.

1http://www.rsc.org/Publishing/index.asp
1http://lucene.apache.org/

ACM Transactions on Information Systems, Vol. 2, No. 3, 10 2010.

Identifying, Indexing, and Ranking Chemical Formulae and Chemical Names in Digital Documents · 41

REFERENCES

ACS. 1993. Registry file basic name segment dictionary.

Baeza-Yates, R. and Ribeiro-Neto, B. 1999. Modern Information Retrieval. Addison Wesley.

Banville, D. L. 2006. Mining chemical structural information from the drug literature. Drug
Discovery Today 11(1-2), 35–42.

Baum, L. E. and Petrie, T. 1966. Statistical inference for probabilistic functions of finte state
markov chains. Annals of Mathematical Statistics 37, 1554–1563.

Baum, L. E., Petrie, T., Soules, G., and Weiss, N. 1970. A maximization technique occurring
in the statistical analysis of probabilistic functions of markov chains. Annals of Mathematical
Statistics 41, 1, 164–171.

Berger, A. L., Pietra, S. D., and Pietra, V. J. D. 1996. A maximum entropy approach to
natural language processing. Computational Linguistics 22, 1, 39–71.

Bordes, A., Ertekin, S., Weston, J., and Bottou, L. 2005. Fast kernel classifiers with online
and active learning. Journal of Machine Learning Research 6(Sep), 1579–1619.

Borthwick, A. 1999. A Maximum Entropy Approach to Named Entity Recognition. Ph.D. thesis,
New York University.

Brecher, J. 1999. Name=struct: A practical approach to the sorry state of real-life chemical
nomenclature. Journal of Chemical Information and Computer Sciences 39, 6, 943–950.

Burges, C. J. C. 1998. A tutorial on support vector machines for pattern recognition. Data Min.
Knowl. Discov. 2, 2, 121–167.

Buttcher, S. and Clarke, C. L. A. 2006. A document-centric approach to static index pruning
in text retrieval systems. In Proc. CIKM. ACM Press.

Cooke-Fox, D. I., Kirby, G. H., and Rayner, J. D. 1989. Computer translation of iupac
systematic organic chemical nomenclature. 3. syntax analysis and semantic processing. Journal
of Chemical Information and Computer Sciences 29, 2, 112–118.

Corbett, P., Batchelor, C., and Teufel, S. 2007. Annotation of chemical named entities. In
BioNLP 2007, A workshop of ACL 2007. 57.

Corbett, P. and Copestake, A. 2008. Cascaded classifiers for confidence-based chemical named
entity recognition. BMC bioinformatics 9, Suppl 11, S4+.

Corbett, P. and Murray-Rust, P. 2006. High-throughput identification of chemistry in life
science texts. In Computational Life Sciences II. Springer, New York, 107–118.

de Moura, E. S., dos Santos, C. F., Fernandes, D. R., Silva, A. S., Calado, P., and Nasci-

mento, M. A. 2005. Improving web search efficiency via a locality based static pruning method.
In Proc. WWW. ACM Press, New York, 235–244.

Garfield, E. 1962. An algorithm for translating chemical names to molecular formulas. Journal
of Chemical Documentation 2, 3, 177–179.

Haussler, D. 1999. Convolution kernels on discrete structures. Technical Report UCS-CRL-99-
10.

Hettne, K. M., Stierum, R. H., Schuemie, M. J., Hendriksen, P. J. M., Schijvenaars, B.

J. A., Mulligen, E. M. v., Kleinjans, J., and Kors, J. A. 2009. A dictionary to identify
small molecules and drugs in free text. Bioinformatics 25, 22, 2983–2991.

Hodge, G. 1991. Enhanced chemical name identification algorithm. In Abstracts of Papers of
the American Chemical Society. Vol. 202. P41–CINF.

Hodge, G., Nelson, T., and Vleduts-Stokolov, N. 1989. Automatic recognition of chemical
names in natural-language texts. In Abstracts of Papers of the American Chemical Society.
Vol. 197. P17–CINF.

Joachims, T. 1999. Making large-scale support vector machine learning practical. 169–184.

Kemp, N. and Lynch, M. 1998. Extraction of information from the text of chemical patents.
1. identification of specific chemical names. Journal of Chemical Information and Computer
Sciences 38, 4, 544–551.

Klinger, R., Kolarik, C., Fluck, J., Hofmann-Apitius, M., and Friedrich, C. 2008. Detection
of IUPAC and IUPAC-like chemical names. Bioinformatics 24, 13, i268.

ACM Transactions on Information Systems, Vol. 2, No. 3, 10 2010.

42 · Bingjun Sun,Prasenjit Mitra, C. Lee Giles, Karl T. Mueller

Kneser, R. and Ney, H. 1995. Improved backing-off for m-gram language modeling. In In
Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing,
volume I. 181–184.

Kremer, G., Anstein, S., and Reyle, U. 2006. Analysing and classifying names of chemical
compounds with chemorph. In Proceedings of the Second International Symposium on Semantic
Mining in Biomedicine, S. Ananiadou and J. Fluck, Eds.

Lafferty, J., McCallum, A., and Pereira, F. 2001. Conditional random fields: Probabilistic
models for segmenting and labeling sequence data. In Proc. ICML.

Levenshtein, V. I. 1966. Binary codes capable of correcting deletions, insertions, and reversals.
Soviet Physics Doklady.

Li, W. and McCallum, A. 2005. Semi-supervised sequence modeling with syntactic topic models.
In Proc. AAAI.

Manning, C. D., Raghavan, P., and Schütze, H. 2008. Introduction to Information Retrieval.
Cambridge University Press, Cambridge, UK.

McCallum, A., Freitag, D., and Pereira, F. 2000. Maximum entropy markov models for
information extraction and segmentation. In Proc. ICML.

McCallum, A. and Li, W. 2003. Early results for named entity recognition with conditional
random fields, feature induction and web-enhanced lexicons. In Proc. CoNLL.

McDonald, R. and Pereira, F. 2005. Identifying gene and protein mentions in text using
conditional random fields. Bioinformatics 6(Suppl 1):S6.

Narayanaswamy, M., Ravikumar, K. E., and Vijay-Shanker, K. 2003. A biological named
entity recognizer. In Pacific Symposium Biocomputing. AU-KBC Research Centre, Chennai
600044 India., 427–438.

Polikar, R. 2006. Ensemble based systems in decision making. IEEE Circuits and Systems
Magazine 6, 3, 21–45.

Raymond, J. W., Gardiner, E. J., and Willett, P. 2002. Rascal: Calculation of graph similarity
using maximum common edge subgraphs. The Computer Journal 45(6), 631–644.

Settles, B. 2005. Abner: an open source tool for automatically tagging genes, proteins, and
other entity names in text. Bioinformatics 21(14), 3191–3192.

Sha, F. and Pereira, F. 2003. Shallow parsing with conditional random fields. In Proc. HLT-
NAACL.

Shanahan, J. G. and Roma, N. 2003. Boosting support vector machines for text classification
through parameter-free threshold relaxation. In Proc. CIKM.

Shasha, D., Wang, J. T. L., and Giugno, R. 2002. Algorithmics and applications of tree and
graph searching. In Proc. PODS.

Spärck Jones, K. 1972. A statistical interpretation of term specificity and its application in
retrieval. Journal of Documentation.

Sun, B., Mitra, P., and Giles, C. L. 2008. Mining, indexing, and searching for textual chemical
molecule information on the web. In Proceedings of the 17th International Conference on World
Wide Web, WWW 2008, Beijing, China, April 21-25. 735–744.

Sun, B., Mitra, P., Zha, H., Giles, C. L., and Yen, J. 2007. Topic segmentation with shared
topic detection and alignment of multiple documents. In Proc. of SIGIR.

Sun, B., Tan, Q., Mitra, P., and Giles, C. L. 2007. Extraction and search of chemical formulae
in text documents on the web. In Proceedings of the 16th International Conference on World
Wide Web, WWW 2007, Banff, Canada.

Vander Stouw, G. G., Naznitsky, I., and Rush, J. E. 1967. Procedures for converting sys-
tematic names of organic compounds into atom-bond connection tables. Journal of Chemical
Documentation 7, 3, 165–169.

Vasserman, A. 2004. Identifying chemical names in biomedical text: An investigation of substring
co-occurrence based approaches.

Wilbur, W. J., Hazard, G. F., Divita, G., Mork, J. G., Aronson, A. R., and Browne, A. C.

1999. Analysis of biomedical text for chemical names: A comparison of three methods. In Proc.
AMIA Symp.

ACM Transactions on Information Systems, Vol. 2, No. 3, 10 2010.

Identifying, Indexing, and Ranking Chemical Formulae and Chemical Names in Digital Documents · 43

Willett, P., Barnard, J. M., and Downs, G. M. 1998. Chemical similarity searching. J. Chem.
Inf. Comput. Sci. 38(6), 983–996.

Wisniewski, J. 1990. AUTONOM: system for computer translation of structural diagrams into
IUPAC-compatible names. 1. General design. Journal of Chemical Information and Computer
Sciences 30, 3, 324–332.

Wren, J. D. 2006. A scalable machine-learning approach to recognize chemical names within
large text databases. BMC Bioinformatics 7, 2.

Yan, X. and Han, J. 2003. Closegraph: Mining closed frequent graph patterns. In Proc. SIGKDD.

Yan, X., Yu, P. S., and Han, J. 2004. Graph indexing: A frequent structure-based approach. In
Proc. SIGMOD.

Yan, X., Zhu, F., Yu, P. S., and Han, J. 2006. Feature-based substructure similarity search.
ACM Transactions on Database Systems.

Yang, G. 2004. The complexity of mining maximal frequent itemsets and maximal frequent
patterns. In Proc. SIGKDD.

Zhao, C., Mahmud, J., and Ramakrishnan, I. 2008. Exploiting structured reference data for
unsupervised text segmentation with conditional random fields. In SDM. 420–431.

ACM Transactions on Information Systems, Vol. 2, No. 3, 10 2010.

