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SUMMARY

Email spam has become a major problem for Internet users and providers. One major obstacle to its
eradication is that the potential solutions need to ensure a very low false-positive rate, which tends to be
difficult in practice. We address the problem of low-FPR classification in the context of naive Bayes, which
represents one of the most popular machine learning models applied in the spam filtering domain. Drawing
from the recent extensions, we propose a new term weight aggregation function, which leads to markedly
better results than the standard alternatives. We identify short instances as ones with disproportionally
poor performance and counter this behavior with a collaborative filtering-based feature augmentation.
Finally, we propose a tree-based classifier cascade for which decision thresholds of the leaf nodes are jointly
optimized for the best overall performance. These improvements, both individually and in aggregate, lead
to substantially better detection rate of precision when compared with some of the best variants of naive
Bayes proposed to date. Copyright © 2009 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Despite numerous important developments in machine learning algorithms, the naive Bayes (NB)
classifier [1,2], based on the simple assumption of class-conditional variable independence, has
retained its popularity due to its computational tractability and competitive performance and easy
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Figure 1. Statistics show that the spread of spam has become one of the most crucial problems
on the web (http://www.dcc-servers.net/).

implementation. Importantly, the learning process of NB is extremely fast compared with current
discriminative learners, which makes it practical for large real-world applications. Since the training
time complexity of NB is linear to the number of training data, and the space complexity is also
linear in the number of features, it makes NB both time and storage efficient for practical systems.
In Web-related problems, NB has proved to be particularly effective for the task of text classification
(TC), which is the process of assigning a document into one or more predefined categories. However,
NB has an overconfidence deficiency for TC applications demanding low false positive (FP) rates,
stemming from the violations of the independence assumption [3]. Given that low-FP constraints
are quite common, improvements to NB in this regard are of significant practical importance. One
such prominent application is email spam filtering, which has recently received much attention in
the machine learning community [4–8].
Huge amounts of spam are being generated every day and waste significant Internet resources,

as well as users’ time. A conservative estimate states that 12.4 billion spam emails were sent daily
in the year 2006§ , compared to 31 billion total emails sent in 2003. Figure 1 shows an example
statistic covering the last 3 years. As can be seen, although spam filters generally perform well (see
trapped spam), the total number of spam emails sent (see likely spam) is still increasing. In general,
spam filtering is a complex problem that can be addressed in many different ways, ranging from the
use of IP block/white lists to statistical content filters. In practice, large systems usually employ
multiple techniques and aggregate them together for better results. A key component of most such
systems provides spam detection based on email content, which can be seen as a specialized TC
task, and also often uses NB as the underlying classifier. Improving the performance of NB in this
important area is the focus of this paper.

§http://spam-filter-review.toptenreviews.com/spam-statistics.html.
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NAIVE BAYES CLASSIFICATION FOR HIGH-PRECISION SPAM DETECTION 1005

Table I. Statistics of data sets in our experiments. The details
of the experiments are presented in Section 6.

Data set Training set Test set Features

Trec-2005 30 727 61 455 208 844
Trec-2006 12 607 25 214 133 495
Hotmail 765 000 149 746 2 644 921

A major characteristic that distinguishes spam filtering from many other TC tasks is its highly
asymmetric misclassification cost. Because misclassifying a legitimate email as spam (i.e. FP
event) is usually much worse than missing a spam email (i.e. a false negative (FN) event), the
misclassification cost should carefully be taken into account in the decision making process [3].
Although exact misclassification costs are sometimes hard to quantify, an acceptable spam filter is
generally one that incurs very low false positive rates (FPRs) (e.g. ≤ 0.005). Recent research has
begun addressing the problem of improving the performance of classifiers for low-FP problems
[3,9]. In this paper we maintain this focus and propose several improvements that make NB a much
more effective classifier in this context. Our contributions are as follows:

• We propose a statistical correlation measure as a new function for document term weighting,
which we show to be very effective both on its own, and as a mixing function combining
different types of term weights.
• Empirically, short instances (e.g. documents or emails) are more likely to be misclassified.
We suggest class-dependent collaborative filtering (CF) for augmenting the features for short
instances. The CF algorithm is very efficient as it scales linearly with the number of training
instances.
• To improve the performance of the NB classifier at a specific FPR, we propose a cascade
combining three NB classifiers. Here, the base classifier separates the training instances into
two parts, and we apply linear programming to jointly optimize the decision thresholds of the
second stage classifiers.
• Finally, we combine the aforementioned techniques together. Experimental results on three
data sets, whose basic statistics are given in Table I, indicate that our model substantially
outperforms the previously proposed NB variants and is able to outperform state-of-the art
methods such as a linear Support Vector Machine (SVM). The improvements come without
compromising the inherent scalability of the NB classifier.

The rest of the paper is organized as follows: Section 2 presents the related work on NB; Section 3
discusses our correlation-based method as well as its combination with other term weighting func-
tions; Section 4 presents the class-dependent CF technique for augmenting short instances; Section 5
proposes the cascaded models as well as the entire framework for binary classification; Section 6
shows the experimental results; Section 7 compares our model with the most related cascaded
models; finally we conclude in Section 8.

2. NAIVE BAYES FOR LOW-FP TC

From the machine learning perspective, spam filtering can be treated as a binary classification
problem, where legitimate (good) emails are considered as negative (–) instances, and spam as
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positive (+) instances. Here, given a labeled training set {x (d), y(d)}n1, where x (d)∈Rm with m
denoting the size of the vocabulary, n the size of the training data set, and y(d)∈{−1,+1}, one seeks
to find a function f that minimizes the expected loss of the mapping x �→{−1,+1}. Under the bag
of words model each email d is represented by a feature vector, where each attribute corresponds
to the number of occurrences of the corresponding term in the email, i.e. x (d)={x (d)

1 , . . . , x (d)
m },

where x (d)
j is the frequency of feature x j in email d .

Based on the assumption that document features are independent of each other given the class,
NB estimates the posterior class membership of a document in terms of the class-conditional
probabilities of individual features. A decision rule, such as maximum a posteriori, is then used to
assign the document to a specific class. Although the theoretical assumption of feature independence
is often violated in practice, numerous experiments and practical experience have shown that NB
performs surprisingly well regardless [10].
Several flavors of NB have been proposed in the literature, including variants based on the

multinomial, Poisson, and Bernoulli event models [2]. Among these, the multinomial NB [11]
tends to be particularly favored in TC. Specifically, the multinomial model assumes that the bag
of words representing a document is generated by sampling from a larger vocabulary according
to a multinomial distribution. For a problem involving C classes, the model is captured by a
parameter vector �={�1, . . . ,�C }, where for class c, �c={�c1, . . . ,�cm}. Each �ci corresponds to
the probability that term xi appears in class c, i.e. �ci= P(xi |c). Based on the feature independence
assumption, the probability of a document x (d) for a given class c is given by:

P(x (d)|�c)= (
∑

i x
(d)
i )!∏

i x
(d)
i !

∏
i
(�ci )

x (d)
i (1)

One way to estimate the value of �ci is via a smoothed maximum likelihood estimate:

�ci= �+∑x (i)∈c x
(i)
k

�m+∑k
∑

x (i)∈c x
(i)
k

(2)

which is called Lidstone smoothing [12]. When �=1, this is also known as Laplace smoothing [13].
While NB can naturally be applied to multi-class problems [14], the decision rule becomes

particularly simple for binary classification tasks. Then the choice of whether to assign a document
to the positive (+) or the negative (–) class depends on the ratio of the posterior probabilities of
the two classes given the input document, i.e.

P(+|x (d))

P(−|x (d))
= P(+)

1−P(+)

P(x (d)|+)

P(x (d)|−)

eq.1∝ ∏
i

(
�+i
�−i

)x (d)
i

(3)

where �+i and �−i denote the probability of term xi belonging to the positive and the negative
class, respectively. Many improvements have been proposed to counter the simple assumptions of
NB. While some of them make the induction of NB significantly more complex, and thus less
attractive, others lead to substantial improvements at a much smaller cost. The latter category
includes: document-specific feature selection, application of termweighting functions and document
length normalization [15,16]. In particular, Rennie et al. [15] proposed to use L2 document length
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normalization coupled with traditional TFIDF term weighting, which is a document representation
commonly used in Information Retrieval. More recently, Kołcz and Yih [17] suggested that for
NB L1 document length normalization would be more appropriate. They also showed that further
improvements in the performance can be gained by considering more complex term weighting
functions, e.g. those combining supervised and unsupervised approaches. Their results provide a
motivation for this work, particularly in the direction of introducing more powerful term weighting
techniques while adopting L1 document length normalization. Accounting for the presence of
document length normalization and term weighting changes the traditional bag-of-words document
representation to one, where a document x (d) containing u unique terms is represented by a real-
valued feature vector

x (d)={t (d)
1 , . . . , t (d)

u } (4)

with t (d)
j = tw(x (d)

j )/
∑

k tw(x (d)
k ) and where tw(�) corresponds to term weight associated with

term �.

3. ABSOLUTE CORRELATION RATIO (ACR) FOR SUPERVISED TERM
WEIGHTING

In TC and information retrieval, a variety of term weighting methods have been proposed with the
goal of improving the performance beyond that offered by using binary features or in-document
term frequencies. Generally, they can be classified into two categories:

• Unsupervised methods: In this case no class labels for training instances are available and the
statistics of a document corpus as well as each individual document are used to derive the term
weights. These methods include Term Frequency (TF), Inverse Document Frequency (IDF) as
well as their combination, i.e. TFIDF¶ [18], which is usually found to perform better.
• Supervised methods: These methods use the functions normally used for attribute ranking in
feature selection to provide term weights. Popular choices include Information Gain (IG) and
�2 [19]. More recently, it has been suggested to use the outcomes of linear classifiers as scoring
functions, with good results reported for, among others, SVM, odds-ratio (OR) derived from
NB, and absolute log-odds (ALO), also by NB.

These methods can naturally be used to rank features as well as to provide numerical values
for weighting features. It has also been observed that the combination of both supervised and
unsupervised term weighting methods has the potential of outperforming either method [17]. For
example, combining the unsupervised IDF approach with the supervised ALO scheme (i.e. twk=
I DF(xk) ·ALO(xk)) showed better performance than either of them [17].
In this section, we propose a correlation-based term weighting method. Statistically, correlation

indicates how strongly pairs of variables are related linearly. In the context of feature selection
in TC, it can be used to measure the predictive power of a specific term with respect to the class
variable. Indeed, the correlation function has been found quite effective as a feature ranking function

¶ T F(d)
i = x(d)

i /
∑

k x
(d)
k , I DFi = log |D|/

∑
d 1(x

(d)
i �=0), where |D| is the total number of documents, and the denominator

corresponds to the number of documents that contain term xi .
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for high-dimensional data [20]. Specifically, the absolute correlation ratio (ACR) between term xk
and the class variable y∈{−1,+1} is defined as

ACR(y, xk)=�(xk) ·|�(y, xk)| (5)

where

�(y, xk)=
∑n

d=1(y(d)− ȳ)(x (d)
k − x̄k)√∑n

d=1(y(d)− ȳ)2
√∑n

d=1(x
(d)
k − x̄k)2

(6)

and ȳ and x̄k correspond to the mean values of labels and term xk , respectively, i.e.

ȳ= 1

n

n∑
d=1

y(d), x̄k= 1

n

n∑
d=1

x (d)
k (7)

Here, � is a term-dependent smoothing parameter. Adding the parameter � to the correlation method
is critical, since it is easy to verify that if a term only appears in a single document, its correlation
with the class variable will always be 1. Recall that the absolute value of correlation is always
between 0 and 1, where larger values indicate stronger correlation. Intuitively, a term that appears
only once is not expected to have a strong predictive power and needs therefore to be down-
weighted. This can be accomplished naturally by mixing the Document Frequency (DF) with the
correlation function. Thus, the ACR used in this paper is defined as:

ACR(y, xk)= log(DF(xk)) ·|�(y, xk)| (8)

It is easy to see that the proposed function is a combination of supervised and unsupervised
weighting functions, since the correlation takes the class labels into consideration, while DF does
not. Additionally, the correlation function itself can also be seen as a term weighting aggregator.
Notice that if the feature values x (i)

k correspond to the TFIDF weights of these features in the
training documents, the correlation measure transforms these unsupervised weights into supervised
ones by taking the class label into account.

4. CLASS-DEPENDENT CF

In information retrieval, query expansion is sometimes applied to short queries to increase the quality
of search results, since short queries are usually ambiguous and may increase the query/document
mismatch rate. Similarly, in TC an instance with few features is often harder to classify correctly.
This is encountered frequently in spam filtering where, for example, spam is often sent in the form
of pictures with minimal accompanying text. Figure 2 shows the receiver operating characteristic
(ROC) curves produced by NB for an example email data set (corresponding to Trec-2006, the
details for which are provided in Section 6). We show the curves for two definitions of short
instances, those for which document length was below 70 and 10 words, respectively. It is clear
that shorter instances are more difficult to classify correctly than longer ones for this data set.
To improve the classification performance over short documents we propose a collaborative

filtering (CF) technique [21] to predict the ‘missing’ terms for training instances with very few
features. CF bears some similarity to query expansion whereby it uses the feature co-occurrence
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Figure 2. Motivation for using collaborative filtering for short instances. In the training set, short instances are
more likely to be misclassified than longer ones. naive Bayes is used for learning here.

information when making recommendations [22]. CF techniques have been used widely in commer-
cial recommender systems. In the context of TC, using CF for augmenting the feature space has
also been observed to have a strong positive effect on the classification performance [23]. It should
be noted that CF techniques are similar to dimension reduction methods (e.g. singular value decom-
position (SVD) [24]) in terms of expanding short instances and shrinking long instances. One major
difference is that by finding the latent (lower) dimension for feature space representation, SVD and
other dimension reduction methods usually modify the original values in the feature vectors, while
CF only suggests new values to the missing terms. The general process of CF consists of two steps:

1. Collaborative: Find instances that are similar to the target instance.
2. Filtering: Use the data from the existing instances to infer the data for the target instance.

The technique used in our approach can be described as follows. We first separate the training
documents into regular and short documents (using document length threshold L0). For the short
documents, CF is then performed within each class. To find similar documents, we first rank all
terms in class c according to a term weighting function f , i.e. f (tc)→ t ′c={t ′c1, . . . , t ′cm}. Then for
each short document x (d) in class c, we find the top g documents that share the top k common terms
{t ′c1, . . . , t ′ck} with x (d), and recommend the terms from these documents to x (d), up to a limit of Lc
terms. In our experiments, we used small k values such as 1 and 2. These augmented documents are
then merged with regular documents before model learning continues. The procedure is outlined in
Algorithm 1. To speed up the training on sparse data, we also indexed documents by their terms,
which is similar to the inverted index method used in information retrieval.
One of the major costs of CF, regardless of the distance metric (e.g. Euclidean distance or cosine

similarity), is the calculation of the weight matrix of all instances, which usually runs in O(nm2)

time, where n is the number of documents and m the total number of features. This calculation is
very expensive hence, it is normally done off-line. In our case, we restrict the number of top features
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Algorithm 1 Class-dependent Collaborative Filtering

1. Input: training data (x(i), y(i))n1, y
(i)∈{1, . . . ,C}

2. length threshold: L0, Lc
3. common term threshold: m
4. Initialize S( f )←∅, f ∈{1, . . . ,C}
5. Begin Pre-processing Phase
6. for each x(d)

7. if length(x(d) < L0)
8. S(y(d))← S(y(d))∪x(d)

9. end if
10. end for
11. Begin Collaborative Filtering Phase
12. for each S( f )
13. for each x f j ∈ S( f )
14. do
15. find the next most similar x ′f j that shares top m common

ranked terms with x f j
16. add term t ′f jk ∈ x ′f j to x f j if t ′f jk �∈ x f j
17. until length(x f j ≥ Lc)
18. end for
19. end for
20. output new training data (x(d)′ , y(d)′)n1

k to a very small number (i.e. k�m and k�n) and the terms are ranked on a class-by-class basis,
which reduces the cost of sorting to O(m logm). In all, the running time of the CF is bounded by
O(n+m logm). Another reason for using only top-ranked features is because those features tend
to be more important than others, e.g. documents of the same spam campaign may contain many
random noise words while still sharing the same key spam words, which are likely to be considered
as top-ranked features.

5. A TWO-STAGE CASCADED MODEL

The idea of combining multiple classifiers has been studied for decades. Several successful methods
have been proposed in the literature, including Bayesian model averaging [25], bagging [26],
boosting [27], as well as other ensemble techniques [28]. In most cases, these techniques rely on
building multiple parallel classifiers over the same data set, or several highly related data sets. In
contrast, we consider a cascade arrangement, where data used to train individual models represent
subsamples of the original set, depending in composition on the previous elements of the cascade.
Cascaded models proposed in the literature [9,29] form either a chain or a tree. At each stage

of a chain cascade, an instance can either be classified or passed to the next stage of the chain.
Conversely, in tree cascades, the internal node classifiers direct the instances down the tree, with
the leaf classifiers performing the final classification. In either case, each classifier of the cascade
ensemble is trained using a different distribution of the data. Differences between individual methods
depend to a large extent on how the data are split and what controls the size of the chain/tree. For
example, in [30] a tree of NB models is built, where at each node the training data are further split
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according to the default threshold of the NB corresponding to that node. Splitting continues until
an F-measure-based quality criterion stops improving. A two-stage cascade proposed in [9] sets the
splitting threshold of the first classifier so as to satisfy a certain very low value of the FPR. This
aims to ensure that the overall ensemble performs well in applications requiring low FP rates.
Our approach is motivated by those of Liu et al. [30] and Yih et al. [9]. Specifically, our two-stage

model employs three classifiers, one at the first stage and two at the second stage. The base classifier
C0 is trained using the entire training set. Each training instance is then scored according to how
likely it is to belong to the positive class and the threshold is chosen to split the instances into two
partitions, which are then used to induce classifiers C1 and C2. During classification, a test instance
is first sent to the base classifier that calculates its score and then forwards it to either C1 or C2
based on the score value vis-a-vis the threshold. This resembles the tree structure proposed in [30],
but in our case we deviate from using the default decision threshold as the splitting criterion and,
as in [9], we choose the splitting threshold so as to satisfy certain FPR constraints. The intuition
behind using FPR as the splitting criterion is to keep control of the misclassification cost. Generally,
the goal of model induction is to minimize the expected loss, which with different misclassification
costs for each class, in the context of spam filtering can be expressed as [31,32],

min

⎛
⎜⎝ NFP ∗COSTFP︸ ︷︷ ︸
misclassified good mails

+ NFN ∗COSTFN︸ ︷︷ ︸
misclassified spam

⎞
⎟⎠ (9)

However, given that the exact cost values are unknown, we consider the alternative criterion of
maximizing the TP rate given a low target value of the FP rate. For each possible choice of the
decision threshold of C0, this implies a joint optimization of thresholds of C1 and C2, so as to
maximize the TP s.t. FP≤FPu . Note that locally tuning the thresholds of C1 and C2 does not
necessarily guarantee a global optimum, which can be found efficiently, however, by solving the
following linear programming problem:

Given FPu,

Choose decision threshold of C0

max T P1+T P2

s.t. FP1+FP2≤FPu

where T P1+FP1= P1,T P2+FP2= P2

P1+P2= P,FP1≥0,FP2≥0 (10)

Here, FP1, T P1 and FP2, T P2 denote the FP and negative counts of classifiers C1 and C2,
respectively. Rather than considering all possible splitting thresholds of C0, we instead fix it heuris-
tically such that FP0=FPu . As a result, however, the training data received by C1 and C2 are
likely to be class-imbalanced, when compared with the data seen by C0. For example, Figure 3
shows the imbalance ratio (no. of instances in minority class vs no. of instances in majority class)
of the Hotmail training data after the splitting by the base classifier. All three data sets show a
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Figure 3. The imbalance ratio (no. of instances in the minority class vs no. of instances in the majority class)
of the second-stage classifiers after splitting. Highly skewed distributions of two classes can be observed from

the Hotmail data set (similar observation holds for the other two data sets).

Algorithm 2 Cascaded Binary Classifier

1. Input: training data (x(d), y(d))n1, FPu
2. Begin Training Phase:
3. Train a classifier C0 for the training data, get the score (R(i))n1
4. Decide the cut point r based on FPu
5. Separate the training data into two partitions:
6. 1. R(i) <r : T1=(x( j), y( j))

n1
1

7. 2. R(i)≥r : T2=(x(k), y(k))
n2
1

8. Apply SMOTE sampling with k=5 to T1 and T2
9. Train two classifiers C1,C2 for T1,T2

10. Decide the class boundary r1,r2 based on the criteria:
11. maximize T P1+T P2,
12. subject to: FP1+FP2≤FPu
13. End Training Phase
14. Begin Test Phase:
15. for each test case x(t)

16. 1. Apply C0 to get its score r (t)

17. 2. if r (t) <r then send to C1, otherwise C2
18. 3. get its final label
19. End Test Phase

very high imbalance ratio which could lead to problems during parameter estimation. Previous
work has shown that the class-imbalance problem usually leads to poor performance [33]. The
minorities class(es) are usually underestimated or totally ignored, which may be the major reason
for misclassifying unseen instances in the future. A common solution is to under or over sample the
training data, e.g. via random majority under-sampling, random minority over-sampling, cluster-
based over-sampling, synthetic minority over-sampling technique (SMOTE) [34]. In our case, we
apply SMOTE as our sampling technique. SMOTE first finds the k nearest neighbors for each
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instance in the minority class, then generates artificial instances in the direction of the neighbors.
We use the setting of k=5 as recommended by the original paper.
Details of this cascaded approach are shown in Algorithm 2.

5.1. All-in-one classifier

The three strategies we proposed, i.e. correlation-based term weighting, class-dependent CF, and
cascaded classification, attempt to improve the result of classification from three different perspec-
tives. It is thus natural to expect that combining them might lead to a stronger classifier. We propose
the following framework that leverages these three techniques:

1. Use ACR (Equation (8)) as the term weighting function (assuming L1 document
normalization).

2. Apply the CF technique (Algorithm 1) to predict missing terms for short training instances,
with ACR used for scoring terms.

3. Train a cascaded model (Algorithm 2) on the augmented training data.
4. Use the resulting model for classifying new instances.

6. EMPIRICAL ANALYSIS

6.1. Data sets

In order to evaluate the techniques proposed in this paper, we chose two benchmark data sets as
well as a real-world email data set from Hotmail. The two benchmark data sets come from the
2005 and 2006 TREC Spam Filtering Track [35,36]. The Hotmail data were collected from about
100 000 users, who labeled each message as either good or spam. Statistics of these three collections
can be found in Table I. While the two benchmark data sets are relatively noise free, the Hotmail
data suffers from approximately 3–5% class noise due to labeling errors. Only subject lines and
message bodies of the emails were used during the feature extraction process. The messages were
represented as bags of words and, following [17], in-document feature frequency was ignored since
binary feature representation tends to be more beneficial in spam filtering [37].

6.2. Methodology

ROC curve [38] has been widely used to visualize classifier performance, with the area under the
curve (AUC) providing a figure of merit capturing the quality of a classifier under all possible
operating conditions. Since we are particularly interested in the results at very low FPRs, we focus
on the FPR range of [0,0.14] and use the measurement AUC0.1 as in [17], which corresponds to
the area in the ROC plot

{(FPR,TPR) :FPR∈[0,0.1],TPR∈[0,1]} (11)

For each data set three sets of experiments are performed:

1. We compared the ACR termweighting function (Equation (8)) with the best performer reported
in [17], as well as with several other functions, including hybrids, all of which are listed in
Table II. Following [17], the performance of NB was also compared with that of a linear
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Table II. Term weighting functions and their hybrids.

Function Denoted by Mathematical form

Inverse Doc Frequency I DF(xk) log((2+maxDF)/(1+DF(xk)))

Information Gain IG(y, xk) − ∑
c∈C,C̄

P(c)
n∑

i=1
P(xi |c) log P(xi |c)

Correlation ACR(y, xk) log(DF(xk)) ·|�(y, xk)|
Absolute Log-Odds ALO(xk)

∣∣∣log P(xk |c)
P(xk |c̄)

∣∣∣
Hybrid-1 ALO ∗ I DF |ALO(xk)∗I DF(xk )|∑

j

∣∣ALO(x j )∗I DF(x j )
∣∣

Hybrid-2 I DF ∗ACR |I DF(xk )∗ACR(y,xk )|∑
j

∣∣I DF(x j )∗ACR(y,x j )
∣∣

Hybrid-3 I DF ∗ IG∗ALO ∗ACR |I DF(xk )∗IG(xk ,yi )∗ALO(xk )∗ACR(y,xk )|∑
j

∣∣I DF(x j )∗IG(x j ,y)∗ALO(x j )∗ACR(y,x j )
∣∣

SVM [39] using binary features. The optimal parameters of SVM were chosen by performing
a 5-fold cross validation on the training data set.

2. The proposed CC technique was applied to the training set prior to NB model induction and
its impact on the test set performance was measured.

3. Finally, the two-stage cascaded model was created and compared with the other models as
well as to the cascaded model proposed by Yih et al. [9].

In all our experiments, L1 document length normalization was applied to both training and test
data [15,17].

6.3. ACR vs ALO

Figure 4 presents the results of applying different term weighting functions for the three data sets
considered. ACR clearly outperforms IDF-based methods for all cases (AUC). For the Hotmail
data, NB with both ACR and IDF achieved better results than the SVM.
It is worth noting that NB with ACR performs particularly well in the very low-FP region of

(0, 0.02). It either clearly outperforms SVM (for Trec-2006 and Hotmail data), or has very close
results to SVM (for Trec-2005 data).

6.4. ACR vs Hybrids

Figure 5 presents the results of ACR as well as five other term weighting functions listed in Table II.
ACR always outperforms others, followed by Hybrid 1 (ACR+IDF). The combination of all term
weighting functions (Hybrid 4), however, does not show clear improvement over the simple ACR
approach. The IG method, on the other hand, always behaves the worst.
The results can be interpreted as follows. First of all, the proposed hybrid methods generally

perform better than a purely supervised term weighting function, i.e. IG, which shows the effec-
tiveness of the combination of two or more functions. Second, ACR outperforms other hybrids
in most of the scenarios. We believe that this can be explained by the orthogonal mixture of two
functions, i.e. the unsupervised DF and the supervised correlation method, the first of which counts
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Figure 4. Comparison of two term weighting methods, ACR and ALO+IDF, used for naive Bayes. The latter
showed the best performance in previous work using L1 normalization. SVM results are also included for

reference: (a) Trec-2005; (b) Trec-2006; and (c) Hotmail.
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Figure 5. Comparison of different hybrid methods. Our correlation-based method shows very competitive results
and outperforms others especially in very low-FP regions. (a) Trec-2005; (b) Trec-2006; and (c) Hotmail.

only to the occurrences of features, while the other one considers labels from the training set.
This result indicates that exhaustively combining term weighting functions may not lead to optimal
performance in practice.

6.5. The impact of CF

In this section we evaluate the impact of using CF. Based on the results thus far, we use ACR
(Equation (8)) as the term weighting function. Figure 6 shows the results with and without applying
collaborative filtering to the training data. It is clear that after ‘recovering’ the missing terms for
short instances, the ROC curves improve for all three data sets. We also tuned parameters L0, Lc,
and m over a range of values. Specifically, we chose L0∈[5,30], Lc∈[20,100], and m∈[1,10].
Empirically, we found that setting L0=10, Lc=30, and k=3 (i.e. finding instances with less than
10 terms and augmenting them to 30 terms, where the top 3 ranked terms are used to calculate the
weight matrix for finding similar instances) lead to the optimal results. However, other combinations
of values did not decrease the performance significantly.
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Figure 6. Collaborative filtering results on the: (a) Trec-2005; (b) Trec-2006; and (c) Hotmail data sets. The
optimal parameters are L0=10, Lc=30 and k=3. The bottom bar charts demonstrate the relative improvement

after applying collaborative filtering.
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Figure 7. Comparison of cascaded models. The cascaded model from Yih et al. [9] is also
compared in the Hotmail data. C-ACRCF indicates the best performance among all in most

cases: (a) Trec-2005; (b) Trec-2006; and (c) Hotmail.

6.6. Comparison between cascaded models

The ROC curves of the cascade models considered are shown in Figure 7, while Table III lists their
corresponding AUC0.1 scores (with the score of 1 indicating the optimum). We found that Yih
et al.’s model [9] does not improve obviously over a simple L1 normalized NB method on either
Trec-2005 or Trec-2006 data, and was therefore excluded from the comparison.
Overall, it can be seen that C-ACRCF outperforms other models in most scenarios. It gains a

13 and 1% improvement in AUC0.1 over SVM for Trec-2005 and Hotmail, respectively. While
it can be observed that the two-stage cascaded model does show an advantage over the simple
naive Bayes, NB with either ACR or IDF as the term weight function beats SVM in most cases.
SVM shows better results for Trec-2006 data, but only in the FP region of [0.01, 0.09], and its
AUC0.1 score (0.9738) is almost the same as the two cascaded models (0.9704 and 0.9711). For
Hotmail, the model of Yih et al. performs the best among all in the region of [0.07,0.12]. However,
its true positive rate drops dramatically when the FPR falls below 0.05. And its AUC0.1 is similar
to a single ACRCF approach without applying the cascaded model.
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Table III. AUC0.1 scores within false positive region [0,0.1].

IDF IG Hybrid-1 Hybrid-2 Hybrid-3 ACR

Hotmail 0.5740 0.4977 0.5769 0.5772 0.5770 0.5865
Trec-2005 0.9312 0.7977 0.9450 0.9453 0.9452 0.9468
Trec-2006 0.9517 0.7643 0.9516 0.9528 0.9526 0.9531

ACRCF C-IDFCF C-ACRCF Yih SVM

Hotmail 0.5912 0.6013 0.6129 0.5864 0.4833
Trec-2005 0.9494 0.9500 0.9561 — 0.9482
Trec-2006 0.9535 0.9704 0.9711 — 0.9738

Higher score indicates better performance, where 1 is optimal. Hybrid-1 corresponds to ALO+IDF. Hybrid-2
corresponds to IDF+ACR. Hybrid-3 combines all functions, i.e. IDF+IG+ALO+ACR. ACRCF is the result
after applying CF. C-IDFCF and C-ACRCF indicate the cascaded models, with IDF and ACR the weight
functions, and used CF to augment the feature space.

Noticeably, our cascaded model performs extremely well in the very low FP region. It can be seen
that when the FPR drops to nearly 0 for the Trec-2005 and Trec-2006 data sets, our two cascaded
models C-IDFCF and C-ACRCF are still able to achieve fairly good results (i.e. TPR>70%).
Interestingly the results achieved by our best model combination, i.e. C-ACRCF , are comparable

to the best reported results for the TREC data sets, namely those achieved by an online SVM
classifier ROSVM [40], while our results required significantly less training time‖.

6.7. Statistical significance tests

Finally, we rigorously conduct significance tests between all classifiers to report whether they
perform equally.We are also interested to see whether our best proposedmethod C-ACRCF performs
significantly better than the others. The most appropriate framework for multiple-classifier multiple-
data set significance testing was proposed in [42]. In our setting, we train 9 classifiers for each of
the three data sets. We compare the difference of true positive rates achieved by the 9 classifiers
in the FP region of [0,0.14]. We follow the Friedman test in [42] which states that all classifiers
perform equivalently as the null hypothesis. The statistic is calculated as

�2F=
12N

c(c+1)

(∑
j
R2
j−

c(c+1)2
4

)
, R j = 1

N

∑
i
r j
i (12)

with N denoting the number of data sets, c the number of compared classifiers, and r j
i the rank of

the j th classifier on the i th data set. An alternative test was proposed by Iman and Davenport [43]
to overcome the conservativeness of the Friedman test. Our results reject both null hypotheses with
p-values less than 0.05 and we therefore concluded that the 9 classifiers do not behave equally.
Consequently, we compare the performance of C-ACRCF with every other classifier by using

‖For Trec-2005 and Trec-2006 data, our algorithm runs 76 and 43 s, respectively, on a single PC with 3 GB memory and
2.66GHz CPU, comparing with the reported 24 720 and 18 541 s in [40]. For Hotmail, a linear SVM takes more than
14 h to train, while our model only requires less than 5min. It should be noted though that using one of the new fast
implementations of linear SVM [41] would have reduced the SVM time quite a bit.
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Table IV. Ranks of 9 classifiers on the three test data sets.

Trec-2005 Trec-2006 Hotmail Aver rank

IG 9 8 9 8.67
IDF 8 9 8 8.33
Hybrid-1 7 6 7 6.67
Hybrid-2 5 7 6 6
Hybrid-3 6 5 5 5.33
ACR 4 4 4 4
ACRCF 3 3 3 3
C-IDFCF 2 2 2 2
C-ACRCF 1 1 1 1

Table V. p-values for significance tests of the classifiers. C-ACRCF significantly outperforms IG, IDF and
Hybrid-1. p-values that are significant (i.e. p< 0.05) are shown in bold fonts.

IG IDF Hybrid-1 Hybrid-2

C-ACRCF > p=0.002 p=0.009 p=0.013 p=0.120
Hybrid-3 ACR ACRCF C-IDFCF

p=0.152 p=0.200 p=0.255 p=0.550

the Bonferroni-Dunn test [44], which states that the performance is significantly different if the
difference between the average ranks of two classifiers is greater than the critical difference (CD):

CD=q�

√
c(c+1)
6N

(13)

where q� is calculated by dividing the Student’s t statistic with
√
2. In our case, the value of the

CD is 6.09 for 2-tailed test and 5.59 for 1-tailed test, at the 95% significance level.
Table V presents the p-values for all pairwise comparisons between C-ACRCF and the other

algorithms. It can be read as ‘classifier C-ACRCF outperforms’, with each column corresponding
to the classifier that C-ACRCF compares with. It can be observed that C-ACRCF is significantly
better than IG, IDF, and Hybrid-1. Meanwhile, Table IV lists the ranks of the 9 classifiers. Notice
the consistency of the ranks of our proposed methods. By applying CF, our methods top the others
for all three data sets. The three hybrid methods, however, do not exhibit small enough p-values
that could also be used to conclude which one is the best among three.

7. RELATED WORK IN CASCADED MODELS FOR NB

Combining multiple classifiers for performance boosting traces back to the mid 1990s. Among these
methods, Bayesianmodel averaging [25], bagging [26], boosting [27] and ensemble methods [28,45]
have shown substantial performance improvements. Although ensembles of non-linear models (e.g.
AdaBoost) usually outperform others [28], the high computational demand has yet prevented them
from being used in large-scale real-world applications. Alternatively, ensembles of linear models
and linear cascaded models [9] have earned much attention due to their efficiency and flexibility.
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Linear cascaded models work by sequentially combining a set of classifiers, each of which classifies
a subset of the original data at different steps [46–50]. Particularly for NB, the Tree Augmented
NB [51], which uses a simple Bayesian network structure, outperforms NB and C4.5 decision tree
[52] on a large number of benchmark data sets. In the following, we present the related work on
two recent improvements for the NB classifier and compare them with our model.
Wu’s refinement model: A tree-based framework was proposed by Wu et al. [29] to handle

the issue of model misfit in TC. Their model first trains a base classifier for the training set and
classifies the data as either positive or negative. Their method then retrains a classifier using training
examples from each of the predicted classes. By recursively repeating this procedure for a number
of times, their model is capable of building a refinement tree to better fit the training data. Their
procedure stops once the F-score of the training data stops improving. The resulting model may
potentially include a substantial number of classifiers, whose performances are determined by the
default threshold of the base classifier.
Yih’s cascaded model: Rather than trying to combine several parallel classifiers to improve the

performance [28], Yih et al. [9] advocated a two-stage cascaded model specifically for classifier
improvements at a very low FPR. The first-stage classifier is used to remove instances that are
either very evidently positive or very hard-to-classify negative. Past the first stage, only moderately
hard and easy positives (spam), and moderately hard and very hard negatives (legitimate mails) are
left, and the second-stage classifier is trained specifically to deal with these instances. To improve
the performance, artificial examples are generated by sampling with replacement from the minority
class. Two different learning algorithms were applied for this approach: logistic regression and NB.
In comparison with the baseline classifiers, the proposed method gained 20 and 40% performance
improvement, respectively.
Our proposed cascaded model differs from Liu, Wu and Yih’s models in the following senses:

• Wu’s model focuses on optimizing the F-score of the training data, which has no guarantee to
work well for problems with highly asymmetric cost like spam filtering. Their method does
not choose an optimized threshold for the base classifier, so that the model could be very
complex with a large number of nodes grown from the root. Furthermore, their model may
only achieve sub-optimal results since the sub-nodes could suffer from the class-imbalance
problem with the growth of the tree, which usually leads to poor performance. Our model
explicitly addresses these three issues.
• In Yih’s model, the first classifier chooses a threshold that results in a low FPR but the instances
above that threshold are left alone. While the base classifier in our model can choose any
threshold for splitting the data, the two second-stage classifiers will automatically optimize
the objective function based on this threshold.

Table VI summarizes the differences between these three models.

Table VI. Comparison of cascaded models.

No. of classifiers Splitting criteria Optimization Scalable? Extensible?

Wu’s model Varies Classifier-based F-score No No
Yih’s model 2 FP rate None Yes Yes
Our model 3 FP rate TP rate Yes Yes

Our model is similar to Yih’s model in terms of the number of classifiers used and the splitting criteria. Both
our model and Wu’s use a optimization method that Yih’s does not.
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8. CONCLUSIONS

In this paper we proposed several improvements to the NB classifier that make it well suited
to applications requiring high precision, such as spam filtering. We introduced a term-weighting
function based on the correlation measure, which was demonstrated to perform very well both on
its own and as an alternative to the typical multiplicative aggregation of several term weighting
functions. To address the problem of feature sparsity for short documents a class-dependent CF
technique was proposed to expand their attribute vectors. This was shown to improve the classifier
performance in the low-FP region. Finally, a novel two-stage NB cascade was introduced, which
combines the ability to tackle the potential non-linearity of the decision boundary with an algorithm
that jointly optimizes the decision thresholds of the terminal components of the cascade so as to
achieve the best performance at a specified FP rate. Although the proposed techniques have been
shown to be quite effective for NB, they are also applicable to other learners. Further investigation
of their utility will be the subject of future work.

APPENDIX
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