
Finding a Haystack in Haystacks – Simultaneous Identification of

Concepts in Large Bio-Medical Corpora∗

Ying Liu‡†, Lucian V. Lita†, R. Stefan Niculescu†, Prasenjit Mitra‡, C. Lee Giles‡
College of IST‡

The Pennsylvania State University
University Park, PA 16802

{yliu,pmitra,giles}@ist.psu.edu

Siemens Medical Solutions†

51 Valley Stream Parkway
Malven, PA 19335

{lucian.lita,stefan.niculescu}@siemens.com

Abstract

Since nearly all information is now created digitally,
large text databases have become more prevalent than
ever. Automatically mining information from these
databases proves to be a challenge due to slow pat-
tern/string matching techniques. In this paper we intro-
duce a new, fast multi-string pattern matching method
called the Block Suffix Shifting (BSS) algorithm, which
is based on the well known Aho-Chorasick algorithm.
The advantages of our algorithm include: the ability to
exploit the natural structure of text, perform significant
character shifting, avoid useless backtracking jumps, ef-
ficient matching time and avoid the typical ”sub-string”
false positive errors. Our algorithm is applicable to
many fields with free text, such as the health care do-
main and the scientific document field. In this paper,
we apply the BSS algorithm to health care data and
mine hundreds of thousands of medical concepts from a
large Electronic Medical Record (EMR) corpora simul-
taneously and efficiently. Experimental results show the
superiority of our algorithm when compared with the
top of the line multi-string matching algorithms (the
Aho-Corasick and the Wu-Manber algorithm).

1 Introduction

Recent advances in computer hardware allow ever-
increasing data storage capacity. For example, news
agencies have built their own massive news archives,
hospitals have their own patient databases and scien-
tists collect a slew of genomics and proteomics data.
While storing this data in large databases is now a rel-
atively easy task, efficiently extracting and processing
information from these databases is more than a chal-
lenge.

∗This work is supported by Siemens Medical Solutions and
NSF grant 0535656.

†Partial work done during Siemens internship.

Recently, we see a government-coordinated push to-
wards migrating hospital paper charts into electronic
medical records (EMRs)[5], which are relatively large -
sometimes hundreds of GBs of data - text based med-
ical databases, covering thousands of patient records,
where a full patient record can have a size of few tens of
megabytes. Typically, a patient record contains data in
structured format, including demographics, lab results,
medications, as well as text notes. These include ad-
mission notes, history and physical profiles, operation
reports, progress notes and discharge summaries. Re-
cently, Medicare introduced the Quality Measures ini-
tiative, asking hospitals to provide a record on how well
they treated patients with several prevalent conditions,
including Acute Myocardial Infarction, Heart Failure,
Surgical Infection and Pneumonia. Currently, hospitals
employ a significant number of people who manually go
through the paper charts, trying to answer questions
relevant to these quality measures by tracking specific
text patterns. To address this issue, several companies
have built rule-based expert systems. One of the main
challenges faced by these systems is large performing
efficient pattern matching on the EMRs. Motivated
by this challenge, we propose a fast, simultaneous al-
gorithm to match a large set of patterns in a large text
corpora. The algorithm seeks to identify all (possibly
overlapping) instances of all items in the pattern set
efficiently and to improve upon previous solutions.

Aho-Corasick (AC)[2], Commentz-Walter (CW)[3],
and Wu-Manber (WM)[11] are representative multiple-
string matching algorithms. In practice, they can sel-
dom apply an important shift operation especially when
there are numerous patterns and the text is large. The
shift operation[8] refers to skipping several characters
in the text without having to check against the pattern-
derived data structure specific to an algorithm. The
basic reason for this is that they work at the charac-
ter level and treat both patterns and text as character

668

sequences without considering their natural structure.
In many pattern-matching applications, different

characters can be treated differently. Due to the natural
structure of text and patterns, we can view them as a
set of blocks and separators between the blocks: Each
block is composed of a variable size set of characters. In
these constrained tasks, patterns may only start from
the beginning of a block. When the AC algorithm is used
to deal with the constrained multiple-pattern matching
problem, will spend unnecessary matching time evalu-
ating characters that are not allowed to start a pat-
tern instance. The evaluation involves several com-
parisons and pattern data structure traversals that are
not needed. Moreover, the AC algorithm spends addi-
tional time analyzing scenarios that are easily detectable
as pattern instances that would violate the block con-
straints. To avoid these time-consuming explorations
and to speed up the overall matching process, we in-
troduce a new multi-pattern matching algorithm that
integrates shifting functionality and is better suited for
block constrained tasks.

Among the tasks that follow a natural
block/separator structure, we focus on a frequently
encountered task in the healthcare field. In particular,
we focus on matching medical concepts in free text data
such as: patient medical records and medical articles.
Given patient medical records, several applications are
needed to identify and extract informative features,
process contextual information, and locate relevant
concepts.

In this paper, we present a new online exact multi-
pattern matching algorithm to search for multiple pat-
terns simultaneously, the Block Suffix Shifting (BSS) al-
gorithm. The BSS algorithm implements shifting func-
tionality on segments of text while maintaining an exact
match solution. It is faster than previous character-level
algorithms and is scalable to a very large number of
patterns. The BSS algorithm handles patterns and text
with long blocks well, which is very often the case in
the medical domain. We show that such a method can
lead to efficient pattern matching performance, espe-
cially for free-text environments. Moreover, we present
experiments with this new method in a medical domain
setting and show improvements on real data and real
applications. Besides efficiency, the method is also very
flexible, allowing efficient solutions in different settings.
The pattern data structure needs to be constructed only
once and can be reused for multiple texts, i.e. multiple
hospital patient record databases, medical articles, etc.
The BSS algorithm has the following advantages:

• exploits the natural structure of text;

• allows significant character shifting;

• avoids backtracking jumps that are not useful;

• has efficient, overall less matching time;

• avoids the typical “sub-string” false positive errors;

• has multilingual applicability, such as alphabetic
languages and ideographical languages.

In this paper, Section 2 discusses the related work.
Section 3 elaborates the detailed state machine con-
struction and the matching process of the BSS algo-
rithm. Section 4 analyzes the algorithm complexity.
Section 5 shows the improvements of the BSS algorithm
comparing with the AC algorithm with an example. We
analyze the experimental results in Section 6 and con-
clude in Section 7.

2 Related Work

Aho-Corasick (AC)[2], Commentz-Walter (CW)[3], and
Wu-Manber (WM)[11] are representative multiple-
string matching algorithms. They are widely used in
several notable application areas including text process-
ing, speech recognition, information retrieval, network
security, and computational biology. The AC algorithm
serves as the basis for the UNIX tool fgrep[1] while the
WM algorithm is used in glimpse [9]. However, these
algorithms seldom apply a shift operation in practice for
numerous patterns and large text.

The AC algorithm is a linear-time algorithm based
on an automata approach. It combines automata
with an extension of the Knuth-Morris-Pratt (KMP)
algorithm[6] by a method that includes an automaton
based approach using suffix tree-like links. The AC
algorithm constructs a state machine using the pattern
set, successively reading individual characters in the
text and concomitantly traversing the state machine
through predefined goto and failure functions, and
occasionally emitting outputs.

The AC algorithm scans one character at a time
from text T and compares it with the current state
in the pattern-built state machine. The reason for the
impossibility of a shift is that the AC algorithm works
at the character level: it treats both patterns and text
as character sequences without considering their natural
structure. The underlying alphabet is considered to be
some small set of characters, such as ASCII or a DNA
alphabet. Each edge of the AC state machine is labeled
with a character. This provides a natural way to apply
the AC algorithm and the small alphabet size can take
advantage of the simple byte operations implemented at
the machine level. As part of the matching process, the
AC algorithm checks each character successively, that
all the characters in the text are treated equally and

669

the assumption is that pattern instances can start from
any character in the text. If we encounter a mismatch
of a character ci in the text T , AC still needs to check
the next character ci+1 since it can start a new pattern
instance, regardless of the location of ci+1.

The Commentz-Walter (CW) algorithm combines
the Boyer-Moore (BM) [4] method with the Aho-
Corasick algorithm. The CW algorithm is only faster
than the AC algorithm on small pattern sets and long
minimum pattern lengths.

The Wu-Manber(WM) algorithm presents a differ-
ent approach that is also based on the idea of the Boyer-
Moore algorithm. The WM algorithm only uses the
bad-character shift of the Boyer-Moore algorithm and
considers the characters in the text to be separated in
blocks of size B instead of one by one. In order to pre-
serve the size of the alphabet, B cannot be large. In
practice, they use either B=2 or B=3. As we increase
the number of patterns, each block in the text will have
multiple patterns that match it and the performance of
the WM algorithm is heavily constricted by the length
of the shortest pattern.

Although The WM algorithm claims a capability
to shift due to its derivation from the Boyer-Moore
algorithm, with increasing pattern size the possibility
that the current block in the text matches some patterns
increases dramatically and the shift does not happen
(shift value=0). For the WM algorithm, the shift value
was zero 5% of the time for 100 patterns, 27% for 1000
patterns, and 53% for 5000 patterns [11]; Moreover,
when a block of size B in the text matches with the
suffixes of some patterns, the WM algorithm has to
check these patterns one by one and the advantage of
shifting can not be shown.

3 Block Suffix Shift (BSS) algorithm

Formally, the multi-pattern-matching problem can be
presented as follows:

• Let
∑

be a fixed alphabet, |∑ | = σ whose
elements we will refer to as characters – in practice
very often the elements of σ are actual characters.

• Let P = {p1, p2, ..., pk} be a finite set of patterns,
which are arbitrary strings of characters from

∑
.

• Let m =
∑k

i=1 |p|. We assume that any two
patterns may partially overlap. We define m as
the total size of the pattern set P.

• Let T = t1, t2, ..., tn be a large text, again consisting
of characters from the same alphabet

∑
. n refers

to the total size of the text T.

b1 s1 b2 s2 s3b3 …... bisi-1Text

Figure 1: Text in the block/seperator property.

• The goal is to locate and identify all occurrences of
all the patterns of P in T . The matched substrings
in T may also overlap with one another.

3.1 Approach The BSS algorithm is derived from
the AC algorithm because the AC algorithm is very
robust and works well for large text and many patterns.
The most important improvement is that the BSS
algorithm shifts over the text T on many segments to
heavily reduce the matching time without missing any
result.

We propose this idea based on an interesting obser-
vation: both the text and the patterns can be viewed
as a sequence of blocks (b1, b2, ...) and the separators
between the blocks (s1, s2, ...) (see Figure 1). We call
it the “block/separator” property. The blocks can be in
variable lengths and the separators can be in different
ways. This property is applicable to many applications.
In this paper we focus on an medical domain task: effi-
cient massive parallel medical concept extraction from
large patient record corpora.

Instead of the character sequences, we view the
text and patterns as block/separator -structured data.
According to the nature of the free text, each block
is a word. The separators can be space characters,
punctuation as well as user-specified text, and even
null for the equal-length blocks, which are not rel-
evant to the task at hand. In order to identify
blocks, the document tokenization may need to be per-
formed. There are two main tokenization categories:
orthography-oriented tokenization and dictionary-based
tokenization[7]. Dictionary-based tokenization tech-
nique uses a dictionary to look for possible word strings/
combinations. It is normally used for tokenizing ideo-
graphical languages such as Chinese, Japanese, and Ko-
rean. Through tokenization we can detect the bound-
ary of each word using orthographical clues, such as
space,punctuation marks, etc. In this paper we focus
on searching patterns in the English free-text and use
orthography-oriented tokenization techniques. We de-
fine the separator as space character. In the prepro-
cessing stage we remove the punctuation as well as the
redundant spaces.

The free text structure imposes an important con-
straint: Any pattern instance may only start with the
beginning of a block. In another sentence, it is impossi-
ble to start a new pattern in the middle of a block.

For the example in Section 2, if ci+1 is not the first

670

character of a word wj , there is no need to compare
ci+1 with the pattern data structure. Moreover, the
constraint provides the opportunity to shift over all the
entire suffix of wj (from ci+1 to the last character of wj)
and start a new matching iteration from the beginning
of the next word wj+1. This novel view of the data can
speed up the entire pattern matching process for a more
efficient performance. The BSS algorithm enables to
skip over many segments in the text T without missing
any matches. For the free-text, the skipped segments
are the suffixes of all the mismatched words. Most often,
the probability to mismatch is heavily larger than the
probability to match, and therefore the amount of such
segments in T is large. Besides being fast, the method
is also very flexible, allowing efficient solution for many
text variation as long as both the text and pattern share
the block/separator property.

Similar to the AC algorithm, the behavior of the
BSS algorithm is dictated by three functions: a goto
function g, a failure function f, and an output function
output. Both failure function and goto function map a
state into a state. Failure function is enacted whenever
the goto function reports fail. The output function
associates the patterns (possibly empty) with every
state. Comparing with the AC algorithm, the BSS
algorithm makes important modifications in the state
machine construction and the matching stage.

3.2 Goto Function At beginning, the BSS algo-
rithm determines the states and the goto function. In
order to take advantage of the simple byte operations,
the BSS algorithm determines the states and constructs
the goto functions at the character level using the ex-
actly same method as that of the AC algorithm. We
begin with the goto graph consisting of one vertex that
represents the root state: state 0. We then get a pat-
tern pi from P and add it into the graph by inserting a
directed path that begins at the state 0. Initially, i=1.
In this directed path, each edge is labeled with a char-
acter and there is a new state node between every two
edges. The pattern pi is added to the output function
of the state at which the path terminates. From the
root state to the end of this directed path, we can spell
out the pattern pi. In the second round, we do the same
thing to the next pattern pi+1. The BSS algorithm adds
new edges to the graph only when necessary (no existing
edges to share).

The Figure2 shows the process of the goto function
construction for the pattern set P in Example 1:

• p1=”painless”;

• p2=”pain of eye”;

• p3=”acute pain”;

0p

a

i

n

l

e

s

s

o

f

e

y

e

a

c

u

t

e

p

a

i

n

(a) (b) (c) (d)

r

m

a

c

u

t

e

p

a

i

n

1

2

3

4

5

6

7

8

0p

a

i

n

l

e

s

s

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

o

f

e

y

e

0p

a

i

n

l

e

s

s

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

a

c

u

t

e

p

a

i

n

o

f

e

y

e

0p

a

i

n

l

e

s

s

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

Figure 2: The process of the goto function construction
for the Example 1 based on the BSS algorithm

• p4=”arm acute pain”.

• T =”experience acute pain of ear together stomach
acute pain after painkiller currently feel painless”

The graph is a rooted directed tree. To complete
the construction of the goto function, we add a loop
from state 0 to state 0 on all input other than p or a.
This pattern matching machine consists of thirty-nine
states totally. Each state is represented by a number
from 0 to 38. State 0 is designated as the start state.

3.3 Failure Function Defining and specifying fail-
ure functions is a critical part of the BSS algorithm.
Before elaborating on the algorithmic details, we show
reasons for the low performance of the AC algorithm,
which does not work well for the medical application.
We present several examples, analyze algorithm perfor-
mance, and identify desirable modifications.

3.3.1 When should we shift? Consider Example
2: p1=‘eel’, T=‘heel eye’.

According to the AC algorithm (Figure 3a), we have
an occurrence of p1 in the T=‘heel eye’. However, it is
not a real occurrence. ‘eel’ is an independent word in
p1. If we find a match in T, the matched ‘eel’ should
also be an independent word, instead of a substring of
a word. For these cases, the BSS algorithm makes the
first modification:

• Modification 1: for each mismatch (e.g., h 6= e), if
there is no path to continue in the state machine,

671

3

2

1

0

e

e

l
3

2

1

0

e

e

l

0

3

1

p

a
2

4

5

a

i

d

(a) (b) (c) (d)

3

3

i

n

0

3

1

p

a
2

4

5

a

i

d3

3

i

n

Figure 3: Sample state machines generated by the AC
algorithm (a,c) and the BSS algorithm (b,d)

the failure function of the current state points to
the root state (f(s0, h) = s0). BSS then aborts the
matching process for the current word (‘heel’) in T,
shifts the reminder word suffix (‘eel’), and jumps
to the beginning of the next block/word (‘eye’).

3.3.2 Failure functions connecting characters
with different character index number (CIN)
Consider Example 3: p1=‘eel’, T=‘ear eeel’.

AC will generate another “substring matching”
result for Example 3 (Figure 3a): T=‘ear eeel’. For the
first word ‘ear’ in T, there is a mismatch (a 6= e) and
f(s1) = s0. We stop the matching process for the word
‘ear’, skip the reminder word suffix (‘r’) and jump to the
beginning of the next word. For the second word ‘eeel’,
the failure functions of AC in Figure 3a (f(s2) = s1)
breaks the block boundary constraint: if a pattern
matches a section of the text, every matched character
pair from both the pattern and the text sections should
have the same corresponding character index number
(CIN). However, in Figure 3a, the CINs connected by
the failure function are 1 and 2 (16=2). Figure 3c
and Figure 3d show such failure functions between two
patterns ‘pain’ and ‘aid’ with both AC and BSS.

In order to avoid such mismatches, the BSS algo-
rithm makes the second modification based on the AC
algorithm (see Figure 3b and Figure 3d):

• Modification 2: the BSS algorithm deletes such
failure functions and reset them to the root state
s0 directly.

3.3.3 The redundant failure functions and
matchings Consider Example 4: p1=”ab”, p2=”e ab”,
T=”e at”.

For those failure functions that connect two char-
acters with the same CINs in the AC algorithm, should
we keep all of them? The answer is no because we no-
tice that some of them generate useless backward jumps
and waste time on worthless matching operations with-
out possibility to get any result. The BSS algorithm can
avoid such wastes and jump to the next word earlier.

0

3

1

a

b

2

4

5

e

a

b

(a) 5

0

3

1

a

b

2

4

5

e

a

b

(b) 5

0

7

1

a

b

2

4

5

e

a

b

(c) 5

3

d

0

7

1

a

b

2

4

5

e

a

b

(d) 5

3

d

Figure 4: Examples of the redundant failure functions
of the AC algorithm (a, c) and the modification of the
BSS algorithm (b, d)

According to the Aho-Corasick algorithm, Example
4 has two failure functions between p1 and p2 (see
Figure4). The matching process of the T over the
trie is as following: goto(s0, e) = s2, goto(s2, “ ”) =
s4, goto(s4, a) = s5. Because t 6= b, f(s5) = s1; Because
t 6= b, f(s1) = s0; Because t 6= e and t 6= a, f(s0) = s0.
We stop at the root state s0. Neither p1 nor p2 is found.

Although the AC algorithm does not generate any
wrong result, there are redundant backward jumping
and matching actions by doing the r 6= b judgement
twice: when we fail at s5 with the input “t” over
the goto function “b”, it is unnecessary to jump to
s1 because the only goto function of s1 is also ”b”.
Using the Aho-Corasick algorithm, we do two useless
operations: f(s5) = s1 and t 6= b. If we do not fix this
problem, with the increasing of the size of T , suppose
we fail at s5 10, 000 times, this will waste a lot of time
on 10, 000 × 2 = 20, 000 useless operations. Suppose
s1 has another child besides b (see Figure4c), the BSS
algorithm should keep the failure function f(s5) = s1

(see Figure4d) because the new child does not equal to
b, if we fail at s5, we may can continue at the new child.
To deal with such problems, our BSS algorithm does the
following change:

• Modification 3: ∀sα, sβ , f(sα) = sβ , if sβ has
different goto function as that of sα, and both of
them have the same CINs, BSS keeps this failure
function (see Figure4d).

3.3.4 The propagated failure functions Using
Example 1 we see in Figure 5 as the state machine
generated by the AC algorithm.

Based on above examples, can we make the follow-
ing statement? For any failure function in the AC al-
gorithm f(sα) = sβ , if both sα and sβ have the same
CINs and the same goto functions, should we reset this
failure function of sα to the root state f(sα) = s0, in or-
der to reduce the redundant jumping and match? The
answer is no because we should consider the possible
match through the propagated failure functions.

The propagated failure function is defined such that

672

r

m

a

c

u

t

e

p

a

i

n

a

c

u

t

e

p

a

i

n

o

f

e

y

e

0p

a

i

n

l

e

s

s

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

Go-to-the-root-state Failure function
Failure function BSS will keep
Failure function BSS will reset

Figure 5: Aho-Corasick State machine and goto func-
tion for Example 1

there are a set of non-zero states S = s1, s2, ..., si, i ≥ 3,
which satisfy the condition: f(si) = si−1, f(si−1) =
si−2, ..., f(s2) = s1.

In Figure 5, there are four triples that construct the
propagated failure functions: (s1, s22, s35), (s2, s23, s36),
(s3, s24, s37), and (s4, s25, s38). For the last triple,
although s25 and s38 have the same goto function (null),
we keep the failure function f(s38) = s25, because
f(s25) = s4 enables us to reach s4 and s4 has different
goto functions: goto(s4, ”l”) = s5, and goto(s4, ””) =
s9. Suppose T=”arm acute painless”, we can arrive
at s8 to get an output along the propagated failure
functions from s38 to s25 to s4.

In order to find all the possible matches, the BSS
algorithm do the following modification comparing with
the AC algorithm:

• Modification 4: ∀sα and sβ , f(sα) = sβ , both of
them have the same CINs. If sβ has the same goto
function as that of sα, but f(sβ) 6= s0, the BSS
algorithm keeps this failure function f(sα) = sβ .

3.3.5 Setting failure functions in the BSS algo-
rithm For all the failure functions of the AC algorithm,
we classify them into two groups: go-to-the-root-state
failure functions, and do-not-go-to-the-root-state failure
functions. The BSS algorithm modifies a subset of the
second group and leaves the first group intact.

For each state sα (sα 6= s0), according to the AC

algorithm, f(sα) = sβ . If sβ = s0, we allow this failure
function or else we will have to decide whether allow it
or reset it.

For a better understanding, we summarize the
failure function settings of the BSS algorithm using the
following concrete modification and adaptation of the
AC algorithm. We only keep the failure functions that
satisfy the condition:

1. sα and sβ have the same character index numbers
(CINs); and

2. sβ has different goto function that sα does not
have, OR although sβ and sα have the same goto
functions, the failure function of sβ i is not the root
state s0.

For all the others, the BSS algorithm resets to the
root state s0. If we arrive at s0 through a failure
function, it follows that a mismatch occurred in the text,
allowing the BSS algorithm to shift. The pseudocode of
the BSS trie construction is shown in Algorithm 1.

Algorithm 1: BSS Trie Construction Pseudo
Code

begin
P = (p1, p2, ..., pk), p = (a1, a2, ..., am), m∈

∑
;

/*AC-Construct-GOTO()*/;
for each pk ∈ P do

for ci ∈ p; i=1,..,m do
trie.add(ci);

/*BSS-build-NFA()*/;
for each a∈

∑
such that (s=goto(0,a))6=0 do

s→Queue; fail(s)←0;

while (r←Queue)6= ∅ do
for each a∈

∑
such that (s=goto(r,a))6=fail do

s→Queue; state←fail(r);
while (next=goto(state,a))=fail do

state←fail(state);

/*BSS reset fail function*/;
if next6=0 and next.cin=s.cin then

if ∀a∈
∑

, goto(next,a)=goto(s,a) and

fail(next)=0 then
fail(s)←0;

else
fail(s)←next;

else
fail(s)←0;

/*AC-Convert-NFA-DFA()*/;
end

3.4 Output Function The BSS algorithm has a
similar output function to that of the AC algorithm:
we associate the output p1, p2, p3, p4 with state 2, 15,
25, 38 respectively in Figure 5. The path from state 0

673

to each output state defines a pattern: the path from
state 0 to state 8 spells out the pattern 1, the path from
state 0 to state 15 spells out the pattern 2, the path
from state 0 to state 25 spells out the pattern 3, and
the path from state 0 to state 38 spells out the pattern
4.

3.5 The Matching Stage – Shifts After the BSS
algorithm constructs the three functions based on the
pattern set, the matching stage is ready to begin. All
the shifts occur in this stage. The larger the average
length of the words is, the more mismatches there are,
the earlier the mismatches happen, the more segments
in the text T the BSS algorithm can shift, and the
more performance improvement the BSS algorithm can
make, thus increasing the practical performance gap
when compared to the AC algorithm.

For the text T , the BSS algorithm traverses it char-
acter by character to take advantage of the simple byte
operation of the computer for the efficient performance.
For each input character, the BSS algorithm checks the
goto function of the current state: if fail, it follows the
failure function to the new state. If the new state is
the root state s0, the BSS algorithm skips the reminder
suffix of the current word, shifts to the beginning of the
next word, and restarts the matching process from s0.
The go-to-the-root-state failure function means that no
possible pattern in P can match with the current word
in T . In other words, when the failure function goes to
s0, the shift value is greater than zero. Otherwise, the
shift value is zero. The value reflects the length of the
suffix to be shifted.

4 Complexity Analysis

In this section, we analyze the time complexity of our al-
gorithm. As the BSS algorithm encounters mismatches,
the advantage of the algorithm becomes apparent. In a
practical setting of a multi-pattern matching problem,
generally the probability for a mismatch is considerably
larger than the probability for a match, especially when
the text is large.

4.1 Best Case Scenario The best case scenario for
the BSS algorithm occurs when the blocks are of equal
length t and when mismatches are encountered on the
first character in each block. Thus, the time complexity
is O(m+ (n/t) + z), as compared with 0(m + n + z) of
AC, where z is the number of pattern occurrences in T .
Although the complexity is still linear, since most of the
time n À m and n À z, the matching time is decided by
n – which is the target of the BSS algorithm. Moreover,
because of the equal-length blocks, it becomes trivial
to skip entire blocks without identifying separators,

yielding a considerable speedup.

4.2 Worst Case Scenario The AC algorithm can be
viewed as the worst case scenario of the BSS algorithm
since the former has to check and match every character
in the text. For the BSS algorithm, this scenario
appears in the following two cases. However, in free-
text contexts, due to word diversity, these boundary
cases are very infrequent.

(1)There is no mismatched block in the text. Every
block in the text belongs to at least one pattern. In this
case, the BSS algorithm must traverse the entire text
and evaluate every character in the same fashion as the
AC algorithm;

(2)If a mismatch exists, the mismatch happens in
the last character of a block/word.

Table 1: The failure function of the Aho-Corasick
algorithm for Example 1

state s 0 1 2 3 4 5 6 7 8 9
f(s) 0 0 16 0 0 0 0 0 0 0

state s 10 11 12 13 14 15 16 17 18 19
f(s) 0 0 0 0 0 0 0 0 0 0

state s 20 21 22 23 24 25 26 27 28 29
f(s) 0 0 1 2 3 4 0 0 0 16

state s 30 31 32 33 34 35 36 37 38
f(s) 17 18 19 20 21 22 23 24 25

Table 2: The goto function and the output function of
the Aho-Corasick algorithm for Example 1

input e x p e r i e n c e
state 0 0 1 0 0 0 0 0 0 0 0
output

input a c u t e p a i n
state 16 17 18 19 20 21 22 23 24 25 9
output p3

input o f e a r t o g e
state 10 11 12 13 16 0 0 0 0 0 0
output

input t h e r s t o m a c
state 0 0 0 0 0 0 0 0 0 16 17
output

input h a c u t e p a i
state 0 0 16 17 18 19 20 21 22 23 24
output

input n a f t e r p a i
state 25 9 16 0 0 0 0 0 1 2 3
output p3

input n k i l l e r c u r
state 4 0 0 0 0 0 0 0 0 0 0
output

input r e n t l y f e e l
state 0 0 0 0 0 0 0 0 0 0 0
output

input p a i n l e s s
state 0 1 2 3 4 5 6 7 8
output p1

674

experience acute pain of ear together … …
b1 b2 b3 b4 b5 b6 b7

s1 s2 s3 s5 s6s4

Text

Figure 6: The text T of the Example 1 in the Block and
Separator View

5 Example

In this section, we use Example 1 to explore the
difference between the BSS algorithm and the AC
algorithm.

In Example 1, the alphabet
∑

={a, c, e, f, h, i, l,
m, n, o, p, r, s, t, u, x, y} and σ=17. Both patterns
and text are processed as a sequence of characters, see
Figure 6.

5.1 Match With the Aho-Corasick Algorithm
Table 1 shows the failure function of the example as
well as Table 2 shows the goto function and the output
function. Both failure and goto function map a state
into a state. Failure function is enacted whenever
the goto function reports fail. The output function
associates the patterns (possibly empty) with every
state.

Initially, the current state of the machine is the
start state state 0. The first input character in T is
”e”. Because ”e” is neither ”p” nor ”a”, we consult
the failure function in Table 2 and the new current
state is still the state 0. According to the Aho-Corasick
algorithm, we should continue the operating cycle on
the next character ”x” because it is possible to match
with a pattern that starts with the character ”x”. It
fails again and the new input character is ”p”. This
time the goto function works (see Table 2), we arrive
at state 1. The next input character ”e” makes us fail
again and return to the state 0. The matching process
continues like this until we finish the last input character
in T . Along the whole matching process, we found two
occurrences for p3 and one occurrence for p1.

5.2 Match With the BSS Algorithm Still use
the Example 1, we show the BSS pattern matching
machine (trie) in Figure7. Table 3 shows the updated
failure function based on the BSS algorithm while Table
4 displays the corresponding goto function and output
function.

In the text T , the underlined characters
are the segments the BSS algorithm can shift
in the matching stage: T =”experience acute
pain of ear together stomach acute pain
after painkiller currently feel painless”

Comparing with the Aho-Corasick algorithm, the
BSS algorithm skips 51/97 = 52.577% of the text T .

r

m

a

c

u

t

e

p

a

i

n

a

c

u

t

e

p

a

i

n

o

f

e

y

e

0p

a

i

n

l

e

s

s

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

Go-to-the-root-state Failure function
Failure function BSS keeps
Failure function BSS reset

Figure 7: BSS algorithm state machine and goto func-
tion

Comparing the Table 2 with the Table 4, we notice that
for the same patterns and text, the BSS algorithm only
need to walk through the trie states in 36 times while
the Aho-Corasick algorithm has to do it in 97 times.

Table 3: The updated failure function of the BSS
algorithm for Example 1

state s 0 1 2 3 4 5 6 7 8 9
f(s) 0 0 0 0 0 0 0 0 0 0

state s 10 11 12 13 14 15 16 17 18 19
f(s) 0 0 0 0 0 0 0 0 0 0

state s 20 21 22 23 24 25 26 27 28 29
f(s) 0 0 0 0 0 4 0 0 0 16

state s 30 31 32 33 34 35 36 37 38
f(s) 0 0 0 0 0 0 0 0 25

6 Experimental results

In this section, we present experiments comparing the
BSS algorithm with two famous multi-pattern matching
algorithms (the AC algorithm and the WM algorithm)
on real data. In addition to compare the matching
performance in terms of speed, we also investigate
the impact of algorithm in terms of the following
parameters: the size of the pattern set P – m, the size of
the text T – n, the diversity of the pattern length, the
average mismatch location in the blocks, the diversity
of the block length in T , the size of the shortest pattern,
the alphabet size σ, and modification steps of the BSS
algorithm. We are interested in quantifying the average

675

1000 5000 10000 20000 30000 40000 50000
Number of Pattern (m)

0

5

10

15

20

25

30

35

40

M
B

yt
es

/S
ec

on
d

Aho
BSS+4

(a)

10 30 50 100 150 200
Size of Text (MB)

0

5

10

15

20

25

30

35

40

M
B

yt
es

/S
ec

on
d

Aho
BSS+4

(b)

1-2 3 4 5 6+
Pattern Length in Words (T=200MB, m=3500)

0

5

10

15

20

25

30

35

40

M
B

yt
es

/S
ec

on
d

Aho
BSS+4

(c)

Figure 8: Text scanning speed of the BSS algorithm as a function of the size of the pattern set m, the size of the
text m, and the pattern length

Table 4: The updated goto function and the output
function of the BSS algorithm for Example 1

input e a c u t e p a i
state 0 16 17 18 19 20 21 22 23 24
output

input n o f e a t s a
state 25 9 10 11 12 13 16 0 0 16
output p3

input c u t e p a i n
state 17 18 19 20 21 22 23 24 25 9
output p3

input a f p a i n k c f p
state 16 0 1 2 3 4 0 0 0 1
output

input a i n l e s s
state 2 3 4 5 6 7 8
output p1

text scanning speed (MB/s) on the test data and the
average number of the shifted characters per block. For
each experimental setting, we randomly select text and
pattern set from the test data, and we perform twelve
separate runs and averages are given.

6.1 Test environment All the experiments were
conducted on a computer with Intel Core Due 1.83GHz
CPU, 1 Gigebytes of RAM. The operation system is
Windows XP. The classic AC and WM algorithms adopt
the code presented in SNORT1[10] and are implemented
in JAVA. We implement the BSS algorithm by modify-
ing the AC algorithm.

6.2 Test data In order to investigate performance of
each algorithm as well as its advantages and disadvan-
tages, our experiments were performed on test data with
two different alphabet sizes: the English free text and
the alphabet of size |∑ |=σ=4.

English alphabet: The English free texts come

1http://www.nersc.gov/

from two sources: the electronic medical records (EMR)
and the scientific chemistry papers (Royal Chemistry
Society2). The size of the alphabet σ is 96 (all visible
characters). For the EMR data, the total text size
is above 640MB. For the overall medical text, we
use a database of 71, 140 patterns that fall under
three categories: (i) signs and symptoms, (ii) diseases,
and (iii) clinical drugs. The total size of the second
data source is 500 MB and we randomly select 50, 000
chemical names to construct the pattern set.

DNA alphabet(σ=4): All test data comes from
the DNA data set3 in gcg format. The alphabet is∑

= {A, C,G, T}. The total size of the text is 250MB
and the the total number of patterns we used is 50, 000.

6.3 Effect of m on the Match Performance
Figure 8(a) shows the results of the performance of
the BSS algorithm vs. the AC algorithm on the free
text EMR, against six different sizes of the pattern sets:
m = {1000, 5000, 10000, 20000, 30000, 50000}. For
each set, we randomly select the patterns with diverse
lengths. We apply the algorithms on the same text
T (50MB) for each pattern set. On the real medical
data, the BSS algorithm maintains a high performance
over AC for every m: the improvement rates of the BSS
algorithm are 100%, 65.8%, 40.3%, 40.1%, 40.2%, and
35.1% respectively.

We notice that the BSS algorithm has a
performance-decreasing trend comparing with the sta-
ble curve of AC, along the growth of the number of
patterns. This trend is not surprising in that m in-
creases, the number of states in the finite state ma-
chine increases, which provide more chances for T to
traverse. The ratio of the matched segments in T will
be increased and less block suffixes the BSS algorithm

2http://www.rsc.org/
3ftp://genome-ftp.stanford.edu/pub/yeast/

676

can shift. When m reaches a very large value that all the
blocks in T match with P , it results in a worst case sce-
nario for the BSS algorithm and its performance curve
will meet with the curve of AC in the figure.

6.4 Effect of n on the Match Performance We
performed similar experiments in order to investigate
the effect of n on the run time. The six value of n are:
10M , 30M , 60M , 100M , 200M , and 300M . Figure 8(b)
shows the graph of the run time of the BSS algorithm
versus the run time of AC with the same pattern size
m = 10000. The results confirm that the performance
improvement of the BSS algorithm is steady as the
increasing of the text size n.

6.5 Effect of the Pattern Length on the Match
Performance In order to investigate the distribution
of the pattern length and its effect on the match
performance, we further divide the 71, 140 patterns from
the Unified Medical Language System (UMLS) into four
groups according to the pattern length in term of words:
one-word patterns (6,176), two-word patterns (16,866),
three-word patterns (21,221), and four-and-above-word
patterns (26,877). This distribution shows that in the
health care field, there are many multiple-word patterns,
and a considerable number of medical concepts is four
words or more (e.g. “pain in the lower right leg”).

To study the effect of pattern length on matching
performance, we randomly select 1000 patterns from
each group and apply both the BSS algorithm and the
AC algorithm on the same text (50MB). The results are
shown in Figure 8(c). For all the four groups covering
both short and long pattern lengths, the performance
gain for the BSS algorithm over AC is 32.25%, 35.56%,
20.99%, and 28.99% respectively.

Although the patterns in other fields may not
contain multiple words, they share a similar property:
many patterns are long in terms of the number of
characters. Figure 9 shows detailed statistics on
the pattern length of the 50, 000 patterns from the
chemistry domain.

6.6 Effect of the Block Size on the Match
Performance We believe that the larger the average
block size is, on average, the more characters in T the
BSS algorithm can shift and the more significant the
performance improvement that the BSS algorithm can
achieve. In order to test our conjecture, we investigate
the distribution of the block length first (see Figure 10)
based a randomly selected 350MB scientific chemistry
papers.

We divided all the 34.54 millions of blocks in the
T into four categories according to their block size:

0 10 20 30 40 50 60 70 80 90 100
Pattern Length in Bytes

0.0

2.5×10
2

5.0×10
2

7.5×10
2

1.0×10
3

1.2×10
3

1.5×10
3

1.8×10
3

2.0×10
3

2.2×10
3

2.5×10
3

N
um

be
r

of
 P

at
te

rn
s

Figure 9: The Distribution of pattern length

0 5 10 15 20 25 30
Block Length in Bytes

0

1×10
6

2×10
6

3×10
6

4×10
6

5×10
6

6×10
6

7×10
6

N
um

be
r

of
 B

lo
ck

s

block size (1-3)
block size (4-7)
block size (8-10)
block size (10 above)

Figure 10: Block size distribution over text

between 1 − 3, between 4 − 7, between 8 − 10, and
above 10. The block size is defined as the number
of the characters in a block. We randomly select
blocks from each category to construct the test data.
Within the same testing environment, we evaluate
the improvement of the BSS algorithm by calculating
how many characters in T are shifted by the BSS
algorithm. Figure 11 shows both the average block
length of each category and the average number of the
shifted characters the BSS algorithm achieves. The
fifth column represents the results for the DNA data
with equal block length (10). In addition to figure 11,
detailed experimental setting and results are listed in
Table 5.

Table 5: The average block length and the character
number shifted by BSS for each block

1-3 4-7 8-10 > 10
Size of P - m 4500 4500 4500 4500
Size of T – n (MB) 50 50 50 50
Average block length in T 2.5 5.4 8.6 12.3
Chars/block BSS shifts 0.19 1.6 3.9 5.8

Our experimental result confirms our conjecture
that as the increasing of the block length, the BSS algo-
rithm makes more performance improvement comparing
AC: for the four categories, the BSS algorithm shifts

677

7.6%, 29.3%, 45.3%, and 47.1% respectively over the
whole text. We notice that the BSS algorithm has a
performance-increasing trend, along the growth of the
average block size in T (see Figure 12). It is not surpris-
ing because as the increasing of the block size, with the
same text size m, we have less blocks. With the same
mismatch possibility, there are much larger segments in
T that the BSS algorithm shifts.

b-size (1-3) b-size (4-7) b-size (8-10) b-size (10 above) b-size (10)

Groups of Different Block Size

0

2

4

6

8

10

12

14

N
um

be
r

of
 B

yt
es

average shifted bytes
average bytes of blocks

Figure 11: Average character shift of the BSS algorithm
as a function of the block size

b-size (1-3) b-size (4-7) b-size (8-10) b-size (10 above) b-size (10)

Groups with Different Block Size (m=4500)

0

2

4

6

8

10

12

14

16

18

20

22

M
B

yt
es

/S
ec

on
d

Aho
BSS+4

Figure 12: Text scanning speed of the BSS algorithm as
a function of the length of the shortest pattern

6.7 Effect of the length of the shortest pattern
We pay attention to this parameter because it is heav-
ily related to the performance of the Wu-Manber algo-
rithm. The shift value can not be larger than the length
of the shortest pattern. However, we believe that the
performance of the BSS algorithm is not restricted by
the shortest pattern.

In this section, we still use the four data sets
prepared in the Section 6.6, which the length of the
shortest pattern are 3, 4, 8, and 11 respectively. In
order to confirm our conjecture, we manually reduce the
length of the shortest pattern in each data set to 3 by
adding a 3-character pattern “DNA” to each pattern

set. The experimental results show that with such a
small pattern, the BSS algorithm still keep the same
average number of the shifted characters for each block
as displayed in Figure 11 and the same performance
improvement over AC in Figure 12.

6.8 Effect of the mismatched location We be-
lieve that the earlier the mismatches happen, the more
shifts the BSS algorithm can do and the more improve-
ments the BSS algorithm achieves. Figure 13 shows
the performance difference between the BSS algorithm
and the AC algorithm over three different mismatch lo-
cations: the end of each block, the middle of each block,
and the beginning of each block.

For the first location, the BSS algorithm should scan
every characters in the text without the capability to
shift. This is the worst scenario and the performance
of the BSS algorithm is equal to that of the AC
algorithm. Because of the diversity of the free text,
we treat our previous experiments as the second case –
mismatches happen in the middle of blocks on average.
To experiment with a realistic scenario for the third
mismatch location, we artificially enhance the test data
by adding a special character in the beginning of each
block in T . When the BSS algorithm reads such
character, it fails and shifts to the beginning of the
next block. The same thing happens until the end of
T . Figure 13 confirms our conjecture.

10MB 30MB 60MB 100MB 150MB 200MB 300MB
Length of Text

0

5

10

15

20

25

30

35

40

M
B

yt
es

/S
ec

on
d

mismatch at the end of blocks
mismatch at the middle of blocks
mismatch at the begin of the blocks

Figure 13: Text scanning speed of the BSS algorithm as
a function of the mismatched location

6.9 Experiment on equal-length blocks We get
the DNA data from Stanford University4. The alphabet
size is four (A, C, T, G) and each block is with the
fixed length 10. Because of the fixed block length,
we can calculate the shift value for each state in the
state machine and store the value in advance. Such

4ftp : //genome−ftp.stanford.edu/pub/yeast/data download/
sequence/genomicsequence/chromosomes/gcg/

678

operation can make the BSS algorithm more efficient
by avoiding the time to judge where is the beginning
of the next block in the match stage. With the same
text size (n=10MB), we test the BSS algorithm and the
AC algorithm in six different values of m: 1,000, 5,000,
10,000, 20,000, 30,000, 50,000. The text scanning
speeds of AC are 10.21, 8.18, 7.5, 6.72, 5.35, 4.33
(MB/second) while the text scanning speeds of the BSS
algorithm are 18.25, 15.04, 13.83, 12.48, 11.64, 8.98
(MB/second). respectively.

1000 5000 10000 20000 30000 50000
DNA Pattern Set Size (m)

0

5

10

15

20

M
B

yt
es

/S
ec

on
d

Aho
BSS+4

Figure 14: Text scanning speed of the BSS algorithm
on DNA dataset

6.10 Effect of each modification step in the BSS
algorithm In order to see the detailed effect of each
modification the BSS algorithm implemented, we test
it in two versions: the BSS algorithm with only the
first two modification steps (Section 3.3.1 and 3.3.2,
see the curve “BSS+2” in Figure 15), and the BSS
algorithm with all the four modification steps (Section
3.3, see the curve “BSS+4” in Figure 15). We also
compare these two versions with the AC algorithm and
the WM algorithm. The results show that the first two
modification steps increase AC by 30% on average, and
the last two modification steps increase AC by 5% more.

7 Conclusion

We present a new online exact multi-pattern match-
ing algorithm to search for multiple patterns simultane-
ously, the Block Suffix Shifting (BSS) algorithm. The
BSS algorithm is faster than previous character-level al-
gorithms and is scalable to a very large number of pat-
terns. The most important improvement of the BSS al-
gorithm is the significant shifting functionality on seg-
ments of text which exploits the natural structure of
text itself. In addition, the BSS algorithm avoids the
typical ‘substring’ false positive errors. We apply the
BSS algorithm on healthcare data. Our experimental

1000 5000 10000 20000 30000 50000
Pattern Set Size (m)

0

5

10

15

20

25

30

35

40

M
B

yt
es

/S
ec

on
d

Aho
BSS+4
Wu_Manber
Multi-HashTable

Figure 15: Comparison of the text Scanning speeds of
the BSS algorithm as a function of modification steps

results show significant improvements in text scanning
speed and reduce redundancy failure functions which
lead to useless backward jumping.

References

[1] http://www.unet.univie.ac.at/aix/cmds/aixcmds2/
fgrep.htm.

[2] C. M. Aho AV. Efficient string matching: an aid to
bibliographic search. In Communications of the ACM
18, pages 333–340, June 1975.

[3] C.-W. B. A string matching algorithm fast on the
average. In Proc. 6th International Colloquium on
Automata, Languages, and Programming, pages 118–
132, 1979.

[4] M. J. Boyer RS. A fast string searching algorithm. In
Communications of the ACM20, pages 762–772, 1977.

[5] D. W. Catharine W. Burt, Esther Hing. Electronic med-
ical record use by office-based physicians. In National
Center for Health Statistics, 2005.

[6] V. P. Donald Knuth; James H. Morris, Jr. Fast pattern
matching in strings. In SIAM Journal on Computing,
pages 323–350, 1977.

[7] K. Fredriksson. On-line approximate string matching
in natural language. In Fundamenta Informatica, pages
Volume 72, Issue 4, 453–466, 2006.

[8] N. Horspool. Practical fast searching in strings. In
Software Practice and Experience, page 10, 1980.

[9] U. Manber. Agrep, an approximate grep. In
http://www.tgries.de/agrep/, 2005.

[10] M. Roesh. Snort: Lightweight intrusion detection
for networks. In in Proceedings of the 13th Systems
Administration Conference, 1999, USENIX.

[11] U. M. Sun Wu. A fast algorithm for multi-pattern
searching. In Technical Report TR 94-17, University
of Arizona at Tuscon, May 1994.

679

