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ABSTRACT

Vertex similarity measure is a useful tool to discover the
hidden relationships of vertices in a complex network. We
introduce relation strength similarity (RSS), a vertex simi-
larity measure that could better capture potential relation-
ships of real world network structure. RSS is unique in that
is is an asymmetric measure which could be used for a more
general purpose social network analysis; allows users to ex-
plicitly specify the relation strength between neighboring
vertices for initialization; and offers a discovery range pa-
rameter could be adjusted by users for extended network
degree search. To show the potential of vertex similarity
measures and the superiority of RSS over other measures,
we conduct experiments on two real networks, a biological
network and a coauthorship network. Experimental results
show that RSS is better in discovering the hidden relation-
ships of the networks.

Categories and Subject Descriptors

G.2.2 [Discrete Mathematics]: Graph Theory—Graph al-
gorithms; E.1 [Data Structures]: Graphs and networks

General Terms

Algorithms, Experimentation, Measurement

Keywords

Link Analysis, Link Prediction, Information Retrieval, Web
of Linked Data, Social Network, Complex Network

1. INTRODUCTION
A complex network is a graph with non-trivial topologi-

cal features that occur in actual real world graphs and in
which each vertex acts as a complex object and each edge
corresponds to an interaction between two objects (we use
the terms “node” and “vertex” interchangeably, and “net-
work” and “graph” interchangeably). The nature of the ver-
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tices or relationship between vertices can be inferred by the
graph statistics and measures, such as vertex degree, clus-
tering coefficient, betweenness centrality, and shortest path
length [3]. Among all the graph measures, one important
measure is vertex similarity [16], which measures how sim-
ilar two vertices are. Vertex similarity measure can be ap-
plied in several applications, such as potential web linking
information discovery [1], duplicate object identification [5],
coauthoring behavior inference [20], and knowledge captur-
ing using representational components [8].

The vertex similarity problem can be categorized into two
classes: vertex feature based similarity and network topol-
ogy based similarity. Vertex feature based methods measure
the similarity of two vertices based on their attributes. For
example, two users might be interested in similar topics be-
cause they are both at the same age. Topology based meth-
ods, on the other hand, measure the similarity of two nodes
based on the topology of the graph. For example, we could
intuitively say that two nodes are more similar if they have
more common neighbors.

Here, we investigate topology based vertex similarity. We
introduce Relation Strength Similarity (RSS) [6, 7], a ver-
tex similarity measure that has the following characteristics.
First, it is an asymmetric metric which allows the measure
to be used in more general social network applications. Sec-
ond, it can be employed on weighted networks, in which the
relationship strength between two nodes can be explicitly
expressed using edge weights. Third, we propose a “discov-
ery range” parameter that can be adjusted based on user’s
domain knowledge about the network to explore higher re-
lationships between nodes.

To evaluate and compare RSS with other network topol-
ogy based vertex similarity measures, we conduct experi-
ments on two real networks: a human disease network and
a coauthorship network of Computer Scientists. The hu-
man disease network is provided by Diseasome1, which con-
tains 1, 284 different human diseases. The human disease
network experiment demonstrates the power of vertex sim-
ilarity measures to capture the potential links. The coau-
thorship network is built by a subset of CiteSeerX2 dataset,
which consists of over 1, 300, 000 computer science related
documents and over 300, 000 unique authors. This experi-
ment shows that the vertex similarity analysis helps predict
network evolution. Details of converting these information
into a graph will be addressed later. Experimental results
show that our method outperforms other vertex similarity

1http://diseasome.eu/
2http://citeseerx.ist.psu.edu/
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measures in both networks.
The rest of the paper is organized as follows. In Section 2,

we introduce several well-known vertex similarity measures
as the background. The relation strength similarity measure
is addressed and analyzed in Section 3. In Section 4, we
evaluate and compare the performance of relation strength
similarity with other topology based vertex similarity mea-
sures in terms of their ability to predict the potential links
on networks. Summary and future work appear in Section 5.

2. VERTEX SIMILARITY MEASURES
We introduce several well-known topology based vertex

similarity measures, i.e., the similarity score between two
vertices determined by the topology of the network. Several
topology based approaches, such as Jaccard similarity [23]
and cosine similarity [22], is based on the intuition that two
vertices are more similar if they share more common neigh-
bors. Adamic and Adar [2] refined the measures by assigning
more weights to the vertices with fewer degrees. However,
Adamic-Adar’s measure cannot be normalized because in
theory the maximum similarity values between two nodes
could be infinity. Preferential attachment [4] is based on
the likelihood that a high degree node is more likely to ac-
quire new links. The phenomenon was observed in several
large scale networks, such as World Wide Web [4], citation
network [21], and protein network [10]. Based on empirical
observation, Newman [19] proposed that the probability of
a new edge established between two vertices is proportional
to the product of their degree. Zhou et al. did a compre-
hensive empirically study on the local topology based simi-
larities [25].

Instead of using local neighborhood information, the global
topology can also be used for vertex similarity calculation.
Katz [15] proposed a measure based on the total number of
simple paths between vertices with lower weights to longer
paths. Instead of calculating all the simple paths, the mea-
sure can be directly calculated by (I − aC)−1

− I , where I
is the identity matrix, a is a parameter to decide the impor-
tance ratio between direct neighbors and indirect neighbors,
and C is the adjacent matrix. Several other global topol-
ogy based measures, such as SimRank [14], Leicht-Holme-
Newman (LHN) [16], and P-Rank [24] defined the similarity
measures recursively: two vertices are similar if their im-
mediate neighbors in the network are themselves similar.
Although these methods bear some similarity to each other,
they have an important difference. SimRank and LHN re-
gard two vertices similar if they are referenced by similar
vertices, whereas P-Rank considers both in-link and out-
link relationships. In addition, SimRank and P-Rank in-
cludes only paths of even length, which could make a sub-
stantial difference for the final similarity score. Several of
these methods were compared in [20].

Although global topology based measures offer a boarder
picture of the whole network, they are usually computa-
tionally very expensive. Several approximations for global
topology based measures are have been proposed. Gou et
al. approximated LHN by clustering the social network into
virtual nodes to reduce the graph size [12, 13]. Li et al. ap-
proximated SimRank by incremental updating [17], but this
measure allows only link updating, i.e., it assumes that the
total number of vertices in a graph is fixed.

3. RELATION STRENGTH SIMILARITY

Among all the introduced measures in last section, only
part of them can be used with unweighted networks. More-
over, none of them is an asymmetric measure. Our Relation
Strength Similarity [6, 7] is an asymmetric measure that can
be applied on a weighted network.

3.1 Relation Strength Similarity Calculation

Algorithm 1: Calculating the RSS score from a start
vertex to all other vertices
Input: N : the target network, a: start vertex; r:

discovery range
Output: S(a, ∗): RSS score from a to all the other

vertices
1 if a not in N then
2 return ERROR;
3 end
4 valid paths ← GetValidPaths(a,r);
5 foreach p in valid paths do
6 b← the end vertex of path p;
7 Calculate R∗

p(a, b) by Equation 2;
8 S(a, b)← S(a, b) +R∗

p(a, b);

9 end

Relation strength similarity permits users to explicitly as-
sign the weights to every edge for initialization. If users
are unsure about the relative importance of the edges, they
can näıvely assign the same weight to all of them. Relation
strength similarity is calculated based on relation strength,
a normalized edge weighting score defining the relative de-
gree of similarity between neighboring vertices. The relation
strength from a vertex A to another vertex B is calculated
as follows.

R(A,B) :=







αAB
∑

∀X∈N(A) αAX

if A and B are adjacent

0 otherwise,

(1)
where αAB can be explicitly specified by users based on
known conditions or their best knowledge, and N(A) is the
set of A’s neighboring vertices. The value of relation strength
is normalized between 0 and 1.

For any two vertices A and C, if A could reach C through
a simple path pm, we define the generalized relation strength
from A to C through path pm as

R∗
pm(A,C) :=

K−1
∏

k=1

R(Bk, Bk+1), (2)

where B1 is vertex A, BK is vertex C, path pm is formed by
K vertices B1, B2, . . ., BK−1, and BK .

The above equation requires computing all the paths be-
tween two vertices. So far, an exhaustive search is still the
only way to solve the problem [18]. To make the calculation
tractable, we propose a new discovery range parameter, r,
to control the maximum degree of separation for an general-
ized relation strength calculation, i.e., we only look for paths
at most r hops away. Thus, Equation 2 becomes

R∗
pm(A,C) :=

{

∏K

k=1 R(Bk, Bk+1) if K ≤ r.
0 otherwise.

(3)
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This way the discovery range for the social network can
be based on the domain knowledge of the problem of inter-
est. In our experiments, as discussed in Section 4, we found
that even with a small discovery range RSS still outperforms
other vertex similarity measures.

Assuming that there are M distinct simple paths p1, p2,
. . ., pM from A to C with path length shorter than discovery
range r, the relation strength similarity from a vertex A
to another vertex C is defined as the summation of all the
generalized relation strengths, as defined in Equation 4.

S(A,C) :=
M
∑

m=1

R∗
pm(A,C). (4)

The procedure of calculating the RSS for two given ver-
tices is shown in Algorithm 1. The GetValidPaths(a,b,r)
function at line 4 returns all the simple paths with lengths
no longer than r between vertices a and b. In practice, we
use depth-first search to get these paths.

3.2 Analysis of Relation Strength Similarity
Here we first show that the value of RSS is always between

0 and 1. Next, we study and compare several characteris-
tics of RSS with other similarity measures. We explain why
introducing a discovery range parameter is a good idea. Fi-
nally, we finish the section by analyzing the time complexity
of RSS.

Although normalization seems to be a straightforward step
in defining a new measure, several vertex similarity mea-
sures, such as Adamic-Adar [2], preferential attachment [19],
and Katz [15], cannot be normalized because their maximum
possible value could be infinity. We show that the value of
RSS is always between 0 and 1 by rewriting Equation 4 as
follows.

S(A,C) :=

M
∑

m=1

R∗
pm (A,C) (5)

=

M
∑

m=1

[

K−1
∏

k=1

R(B
(m)
k , B

(m)
k+1)

]

(6)

≤

M
∑

m=1

R(A,B
(m)
2 ) (7)

≤
∑

∀X∈N(A)

αAX
∑

∀X∈N(A) αAX

(8)

= 1, (9)

where B
(m)
1 , B

(m)
2 , . . . B

(m)
K form pm, the mth path between

A and C, A = B
(1)
1 = B

(2)
1 = . . . = B

(M)
1 since B

(m)
1 is the

starting vertex of path pm, C = B
(1)
K = B

(2)
K = . . . = B

(M)
K

since B
(m)
K is the ending vertex of path pm, and N(A) is the

set of neighboring vertices of A.
Equation 7 holds because the generalized relation strength

of any two vertices through a simple path pm is less or equal
to the relation strength of any two adjacent vertices along pm
by Equation 2. If C is a neighboring vertex of A, Equation 8

applies since vertices C, B
(1)
2 , B

(2)
2 , . . . , B

(M)
2 form a sub-

set of N(A) and therefore
∑

X∈{C,B
(1)
2 ,...,B

(M)
2 }

R(A,X) ≤
∑

∀X∈N(A) R(A,X). If C is not adjacent to A, R(A,C) be-
comes 0 by Equation 1 and contributes nothing to the final

measure. Equation 8 still applies because vertices B
(1)
2 , B

(2)
2 ,

. . . , B
(M)
2 form a subset of N(A).

Compared to other vertex similarity measures, a signifi-
cant advantage of RSS is its asymmetry, i.e., S(A,B) may
not equal S(B,A). This is because R(A,B), the relation
strength from A to B, may not be the same as R(B,A), the
relation strength from B to A, as shown in Equation 1. The
asymmetric property is true for several real world scenarios
where a social actor knows someone but is not known by
that actor. Most of previous vertex similarity measures [2,
14, 15, 16, 19, 22, 23, 24] are symmetric by nature.

In addition, unlike many other similarity methods, RSS
can be used on weighted graphs. Much previous work has
treated neighboring vertices equally important and the edges
have only binary values [2, 16, 19, 22, 23] and neglect the
fact that neighboring vertices may have different strengths.
Different from these approaches, the initial setting of our
method allows users to explicitly specify the known rela-
tion strength between objects based on domain knowledge.
Consider the coauthorship network for example where the
weights of edges could be used to represent the number of
coauthored papers between two authors. For a gene pro-
moter network, weighted edges could stand for bp-sharing
between promoters.

Users can adjust the discovery range of how complex a
relationship between nodes can be explored to n degrees of
separation. Compared with previous work [2, 22, 23], the lo-
cal topology based measures are too restrictive in the sense
that they only look for vertices with two degrees of separa-
tion. The global topology based measures [14, 15, 16, 24] are
not computationally feasible for the large or dynamic net-
works. Our algorithm allows a user to control the discovery
range to achieve balance between the two. Although intro-
ducing a discovery range parameter disregards the effect of
long paths between vertices, the approximation is reason-
able because once the path length is too long, the product
form in Equation 2 would make R∗

pm very small, and there-
fore contributes little to the final similarity measure score
(Equation 4).

Let’s consider the required time complexity of RSS with
discovery range r for a network with n vertices, e edges, and
average degree d. Referring to Algorithm 1, the first three
lines are to check whether both the start and end vertices
are in the network. It requires O(n) to examine through
all the vertices. The GetValidPath(a, b, r) function at line
4 is essentially a depth-first search algorithm with the early
termination condition: disregard a path when the length is
longer than r. To get all the valid paths from the starting
vertex a requires O(dr). Line 5 to line 9 calculate the RSS
score S(a, ∗) by looping through all the valid paths, which
requires O(ddr) = O(dr+1) time in average. Thus, the time
complexity to calculate all the RSS scores from a vertex a
is O(n) + O(dr) + O(dr+1) ∼ O(dr+1). Since there are n
vertices in the network, the time complexity to compute the
RSS between any two vertices in the network is O(ndr+1) ∼
O(n) because in practice d≪ n and r ≪ n.

4. EXPERIMENTS
Evaluating similarity measures is difficult because vertex

similarity results usually lack interpretability [9]. We con-
duct two experiment to compare RSS with other measures.
In the first experiment, we aim to use known topology of
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Table 1: Statistical measures of the training network
for the human disease network.

Statistical Measure Value

Number of Nodes 867
Number of Edges 1, 231
Average Degree 2.84

Average Clustering Coefficient 0.37
Average Shortest Path Length 7.83

Diameter 19

the network to capture the exist but unknown relationship
among the vertices. We use Diseasome dataset to build a
human disease network for this experiment. In the second
experiment, the snapshot of a growing network is utilized to
infer how the network evolves over time. A subset of the
CiteSeerX dataset is used to build a coauthorship network
for experiments.

4.1 Capturing Unknown Relationship of Net-
works

The human disease network information is built from Dis-
easome, a bipartite graph with two disjoint sets of vertices [11].
One set contains all known genetic disorders, and the other
set includes all known disease genes in the human genome.
A disorder and a gene are connected if the mutation of the
gene would cause the disorder.

4.1.1 Experimental Setup

We use Diseasome to build the human disease network
(HDN), which contains 1, 284 vertices and 1, 527 edges. Each
vertex represents a human disease. An edge attaches two
vertices if there are one or more genes that are implicated in
both. Edge weights correspond to the number of common
genes between the two disorders.

Instead of conducting the expensive biological experiments
to verify the results, we imitate the supervised learning tech-
nique by separating the known information into training
and testing data set to show the potential of vertex sim-
ilarity measures. Specifically, for the 1, 527 known links
in the HDN, each link has a probability p to be included
in the training network and (1 − p) in the testing network
(0 < p < 1). The expected numbers of links in the training
network and testing network are 1, 527p and 1, 527(1 − p)
respectively. In addition, among the 1, 284 vertices in HDN,
417 of them are singletons, i.e., the the vertices have no
links attached to it. The singletons are removed because
the similarity score between a singleton and any other ver-
tices is always zero by vertex similarity measures. Thus, the
training network of HDN contains 867 vertices.

We apply the vertex similarity measures on the training
network to get the similarity scores of each non-neighbor
vertex pair. The potential links are predicted by claiming
the top-n most similar pairs should be connected. The cor-
rectness of the prediction is validated by the testing network.
The procedure is repeated 20 times independently. Table 1
shows the important statistical measures of the training net-
work for one of the twenty trials.

Unlike the coin flip guessing problem which has 50% pre-
cision by näıve random guessing, link prediction is much
harder because the precision of a random guess is very low.
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Figure 1: Average performance ratio and preci-
sion of various vertex similarity measures for HDN.
(baseline measure: random select)

When the training network contains p = 80% of the edges
of the original network, the training network of HDN would
have 867 vertices and 1, 222 edges. Randomly picking two
vertices and claiming the two should be connected gives
(

867
2

)

= 375, 411 possible combinations. Since 1, 222 of them
are already connected in the training network, there are
375, 411−1, 222 = 374, 189 non-neighbor pairs. Only 1, 527(1−
p) = 305 of them are the correct pairs. Thus, the precision
of a näıve random pick for the HDN is only 305/374, 189 =
0.0815%.

To demonstrate the effectiveness of vertex similarity mea-
sures, we show both the precision and performance ratio for
each measure. The performance ratio P (Sm, n) is defined in
Equation 10 as:

P (Sm, n) :=
Prec(Sm, n)

Prec(Sr, n)
, (10)

where Sm is the given vertex similarity measure, Sr is a
näıve random select measure, Prec(Sm, n) is the precision
of Sm by claiming the top-n similar vertex pairs should be
connected. A larger performance ratio score is preferred.

4.1.2 Experimental Results

Figure 1 shows the average precision of 20 independent
trials for different vertex similarity, including the baseline
method random select, one local topology based approach
Jaccard similarity, one global topology based approach Sim-
Rank, RSS with discovery range 2, and RSS with discovery
range 3.

As shown, Jaccard similarity is good when n is smaller
than 10. When n is between 11 and 100, RSS outperforms
all other measures for both r = 2 and r = 3. While SimRank
considers the global topology, it seems to have no advan-
tage over other methods. However, even the worst SimRank
measure is more than 300 times better than random select
in most cases. This demonstrates the potential of vertex
similarity measures as the non-expensive indicators for the
genetic diseases sharing common genes.

4.2 Network Evolution

4.2.1 Experimental Setup
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sures in G2 (between 2001 and 2003)
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Figure 2: The performance ratio of different similarity measures for top-n returns. (baseline measure: random
select similarity)

Table 2: Statistical measures of the training network
for the coauthorship network.

Statistical Measure Value

Number of Nodes 26, 082
Number of Edges 59, 742
Average Degree 4.58

Average Clustering Coefficient 0.48
Average Shortest Path Length 10.99

Diameter 36

We retrieve the papers published between 1995 and 1997
from the CiteSeerX dataset and build a training set of a
coauthorship network, G0, from the authors of the papers.
The statistical measures of the training network is shown in
Table 2.

To generate the testing network, we build a coauthorship
network from authors who have publications between 1998
and 2000. The authors who have publications in interval
[1998, 2000] but not in [1995, 1997] are disregarded since they
are not presented in the training network. We repeat the
same procedure to produce two more testing coauthorship
networks in interval [2001, 2003] and interval [2004, 2006].
The three testing coauthorship networks are labeled as G1,
G2, and G3 respectively.

We use the number of coauthored papers as the weight of
each edge. Therefore, the relation strength from author A
to author B becomes

R(A,B) :=
nAB

nA

, (11)

where nAB is the number of A and B’s coauthored papers,
nA is number of A’s published papers.

We calculate different vertex similarity measures among
vertices on the training network G0 and use the information
to infer future collaboration behavior.

Similar to the last experiment, we rank all the node pairs
by their similarity scores from the highest to the lowest and
claim the top-n node pairs as the authors who will collabo-
rate in the future. Compared with the test network of actual
collaborations that occurred, we could calculate each simi-
larity measure’s precision, which is used as a proxy of the
performance of all the similarity measures. In addition, for

this experiment we only care about new collaboration behav-
ior. For two authors who have publications in the training
network, their collaboration behavior in the testing network
is excluded in the performance evaluation.

4.2.2 Experimental Results

As shown in Figure 2, two RSS results (with discovery
range equals 2 and 3 respectively) both outperform the local
structure based Jaccard similarity and the global structure
based SimRank. Note that the y-axis is in logarithmic scale
for better visualization.

Figure 2(a) shows the link prediction results for the test
graph G1. The two RSS results are slightly better than
Jaccard similarity in general. Even the worst SimRank is
more than 100 times better than random select. This shows
the potential of vertex similarity measures as a powerful tool
to predict the network evolution.

While G1 is the coauthoring behavior of the near future,
G2 and G3 represent a further future. Thus, the coauthor-
ing behavior in G2 and G3 should be less predictable. RSS
shows the superiority in the sense of the stable performance
from the near future G1 to the further future G2 and G3.
Jaccard similarity performs well in the near future G1, but
the performance is barely satisfactory in the further future
G2 and G3. This is because Jaccard similarity can only look
for nodes at most two hops away. Although the new col-
laborating behavior of the near future shrink the distance
between an author and other non-neighboring people, the
training network G0 cannot be aware of these updates. On
the other hand, the global topology based similarity Sim-
Rank performs steady compared to Jaccard similarity in
the further future G2 and G3 because SimRank considers
the global topology of the network.

5. CONCLUSION AND FUTURE WORKS
We introduce relation strength similarity, an asymmetric

vertex similarity measure that can be applied on weighted
networks. The performance is measured in terms of 1) their
ability to capture the hidden relationship among vertices,
and 2) the power of predicting network evolution. Con-
ducting experiments on the human disease networks and
the coauthorship networks, we discover the followings. First,
vertex similarity measures has the potential of capturing the
network’s missing links, which are used to represent the hid-
den or unknown relationship among objects. Second, RSS
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is a stable and superior vertex similarity measure compared
to the local topology based Jaccard similarity and global
topology based SimRank. Third, while the local topology
based measures are good at predicting the new established
relationship of near future, global topology based measures
are better the further in the time we go.

For future work, we plan to investigate the influence of
new links and old links in terms of their ability to discover
the missing links and a deeper investigation of the role of
distance to non-neighbor vertices. We speculate that RRS
could be used to predict and capture other social network
knowledge such as what friends will share information with
others and better predict information spreading in social
media.
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[25] T. Zhou, L. Lü, and Y.-C. Zhang. Predicting missing
links via local information. The European Physical
Journal B-Condensed Matter and Complex Systems,
71(4):623–630, 2009.

143




