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Abstract 

We introduce and study methods of inserting synaptic noise into 
dynamically-driven recurrent neural networks and show that ap­
plying a controlled amount of noise during training may improve 
convergence and generalization. In addition, we analyze the effects 
of each noise parameter (additive vs. multiplicative, cumulative vs. 
non-cumulative, per time step vs. per string) and predict that best 
overall performance can be achieved by injecting additive noise at 
each time step. Extensive simulations on learning the dual parity 
grammar from temporal strings substantiate these predictions. 

1 INTRODUCTION 

There has been much research in applying noise to neural networks to improve net­
work performance. It has been shown that using noisy hidden nodes during training 
can result in error-correcting codes which increase the tolerance of feedforward nets 
to unreliable nodes (Judd and Munro, 1992) . Also, randomly disabling hidden 
nodes during the training phase increases the tolerance of MLP's to node failures 
(Sequin and Clay, 1990). Bishop showed that training with noisy data is equivalent 
to Tikhonov Regularization and suggested directly minimizing the regularized error 
function as a practical alternative (Bishop , 1994) . Hanson developed a stochastic 
version of the delta rule which adapt weight means and standard deviations instead 
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of clean weight values (Hanson, 1990). (Mpitsos and Burton, 1992) demonstrated 
faster learning rates by adding noise to the weight updates and adapting the mag­
nitude of such noise to the output error. Most relevant to this paper, synaptic noise 
has been applied to MLP's during training to improve fault tolerance and training 
quality. (Murray and Edwards, 1993) 

In this paper, we extend these results by introducing several methods of inserting 
synaptic noise into recurrent networks, and demonstrate that these methods can 
improve both convergence and generalization. Previous work on improving these 
two performance measures have focused on ways of simplifying the network and 
methods of searching the coarse regions of state space before the fine regions. Our 
work shows that synaptic noise can improve convergence by searching for promising 
regions of state space, and enhance generalization by enforcing saturated states. 

2 NOISE INJECTION IN RECURRENT NETWORKS 

In this paper, we inject noise into a High Order recurrent network (Giles et al., 1992) 
consisting of N recurrent state neurons Sj, L non-recurrent input neurons lie, and 
N 2 L weights Wijle. (For justification ofits use see Section 4.) The recurrent network 
operation is defined by the state process S:+1 = g(Lj,1e WijleSJlD, where g(.) is a 
sigmoid discriminant function. During training, an error function is computed as 
Ep = !f;, where fp = Sb -dp, Sb is the output neuron, and dp is the target output 
value tor pattern p. 

Synaptic noise has been simulated on Multi-Layered-Perceptrons by inserting noise 
to the weights of each layer during training (Murray et al., 1993). Applying this 
method to recurrent networks is not straightforward because effectively the same 
weights are propagated forward in time. This can be seen by recalling the BPTT 
representation of unrolling a recurrent network in time into T layers with identical 
weights, where T is the length of the input string. In Tables 2 and 3, we introduce 
the noise injection steps for eight recurrent network noise models representing all 
combinations of the following noise parameters: additive vs. multiplicative, cu­
mulative vs. non-cumulative, per time step vs. per string. As their name imply, 
additive and multiplicative noise add or multiply the weights by a small noise term. 
In cumulative noise, the injected noise is accumulated, while in non-cumulative 
noise the noise from the current step is removed before more noise is injected on 
the next step. Per time step and per string noise refer to when the noise is inserted: 
either at each time step or only once for each training string respectively. Table 1 
illustrates noise accumulation examples for all additive models (the multiplicative 
case is analogous). 

3 ANALYSIS ON THE EFFECTS OF SYNAPTIC NOISE 

The effects of each noise model is analyzed by taking the Taylor expansion on 
the error function around the noise-free weight set. By truncating this expansion 
to second and lower order terms, we can interpret the effect of noise as a set of 
regularization terms applied to the error function. From these terms predictions can 
be made about the effects on generalization and convergence. A similar analysis was 
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performed on MLP's to demonstrate the effects of synaptic noise on fault tolerance 
and training quality (Murray et. al., 1993). Tables 2 and 3 list the noise injection 
step and the resulting first and second brder Taylor expansion terms for all noise 
models. These results are derived by assuming the noise to be zero-mean white 
with variance (F2 and uncorrelated in time. 

3.1 Predictions on Generalization 

One common cause of bad generalization in recurrent networks is the presence of 
unsaturated state representations. Typically, a network cannot revisit the exact 
same point in state space, but tends to wander away from its learned state repre­
sentation. One approach to alleviate this problem is to encourage state nodes to 
operate in the saturated regions of the sigmoid. The first order error expansion 
terms of most noise models considered are capable of encouraging the network to 
achieve saturated states. This can be shown by applying the chain rule to the 
partial derivative in the first order expansion terms: 

(1) 

where e~ is the net input to state node i at time step t. The partial derivatives 
g~ favor internal representations such that the effects of perturbations to the net 
inputs e: are minimized. 

Multiplicative noise implements a form of weight decay because the error expansion 
terms include the weight products Wt~ijk or Wt ,ijk Wu,ijk' Although weight decay 
has been shown to improve generalization on feedforward networks (Krogh and 
Hertz, 1992) we hypothesize this may not be the case for recurrent networks that 
are learning to solve FSA problems. Large weights are necessary to saturate the 
state nodes to the upper and lower limits of the sigmoid discriminant function. 
Therefore, we predict additive noise will allow better generalization because of its 
absence of weight decay. 

Noise models whose first order error term contain the expression a~rb . attSb 
i , l,k ",'mn. 

will favor saturated states for those partials whose sign correspond to the sign of 
a majority of the partials. It will favor unsaturated states, operating in the linear 
region of the sigmoid, for partials whose sign is the minority. Such sign-dependent 
enforcement is not optimal. 

The error terms for cumulative per time step noises sum a product with the expres­

sion v a:.rSb . a:Sb ,where v = min(t + 1, U + 1). The effect of cumulative noise ,.". .tlm" 
increases more rapidly because of v and thus optimal generalization and detrimental 
noise effects will occur at lower amplitudes than non-cumulative noise. 

For cumulative per string noise models, the products (t+ l)(u+ 1) and Wt,ijk Wu,lmn 

in the expansion terms rapidly overwhelm the raw error term. Generalization im­
provement is not expected for these models. 

We also reason that all generalization enhancements will be valid only for a range 
of noise values, above which noise overwhelms the raw error information. 
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3.2 Predictions on Convergence 

Synaptic noise can improve convergence by favoring promising weights in the begin­
ning stages of training. This can be demonstrated by examining the second order 
error expansion term for non-cumulative, multiplicative, per time step noise: 

When fp is negative, solutions with a negative second order state-weight partial 
derivative will be de-stabilized. In other words, when the output Sb is too small 
the network will favor updating in a direction such that the first order partial 
derivative is increasing. A corresponding relationship can be observed for the case 
when fp is positive. Thus the second order term of the error function will allow 
a higher raw error fp to be favored if such an update will place the weights in a 
more promising area, i.e. a region where weight changes are likely to move Sb in 
a direction to reduce the raw error. The anticipatory effect of this term is more 
important in the beginning stages of training where fp is large, and will become 
insignificant in the finishing stages of training as fp approaches zero. 

Similar to arguments in Section 3.1, the absence of weight decay will make the 
learning task easier and improve convergence. 

From this discussion it can be inferred that additive per time step noise mod­
els should yield the best generalization and convergence performance because of 
their sign-independent favoring of saturated states and the absence of weight decay. 
Furthermore, convergence and generalization performance is more sensitive to cu­
mulative noise, i.e. optimal performance and detrimental effects will occur at lower 
amplitudes than in non-cumulative noise. 

4 SIMULATION RESULTS 

In order to perform many experiments in a reasonable amount of computation 
time, we attempt to learn the simple "hidden-state" dual parity automata from 
sample strings encoded as temporal sequences. (Dual parity is a 4-state automata 
that recognizes binary strings containing an even number of ones and zeroes.) We 
choose a second-order recurrent network since such networks have demonstrated 
good performance on such problems (Giles et. al., 1992). Thus our experiments 
consist of 500 simulations for each data point and achieve useful (90%) confidence 
levels. Experiments are performed with both 3 and 4 state networks, both of which 
are adequate to learn the automata. The learning rate and momentum are set to 
0.5, and the weights are initialized to random values between [-1.0, 1.0]. The data 
consists of 8191 strings of lengths 0 to 12. The networks are trained on a subset of 
the training set, called the working set, which gradually increases in size until the 
entire training set is classified correctly. Strings from the working set are presented 
in alphabetical order. The training set consists of the first 1023 strings of lengths 0 
to 9, while the initial working set consists of 31 strings of lengths 0 to 4. During 
testing no noise is added to the weights of the network. 
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Figure 1: Best Convergence/Generalization for Additive and Multiplicative Noises. 
(a) multiplicative non-cumulative per time step; (b) additive cumulative per time 
step. 

4.1 Convergence and Generalization Performance 

Simulated performance closely mirror our predictions. Improvements were observed 
for all noise models except for cumulative per string noises which failed to converge 
for all runs. Generalization improvement was more emphasized on networks with 
4 states, while convergence enhancement was more noticeable on 3-state networks. 
The simulations show the following results: 

• Additive noise is better tolerated than multiplicative noise, and achieves 
better convergence and generalization (Figure 1) . 

• Cumulative noise achieves optimal generalization and convergence at lower 
amplitudes than non-cumulative noise. Cumulative noise also has a nar­
rower range of beneficial noise, which is defined as the range of noise am­
plitudes which yields better performance than that of a noiseless network 
(Figure 2a illustrates this for generalization). 

• Per time step noise achieves better convergence/generalization and has a 
wider range of beneficial values than per string noise (Figure 2b). 

Overall, the best performance is obtained by applying cumulative and non­
cumulative additive noise at each time step. These results closely match the pre­
dictions of section 3.1. The only exceptions are that all multiplicative noise models 
seem to yield equivalent performance. This discrepancy between prediction and 
simulation may be due to the detrimental effects of weight decay in multiplicative 
noise , which can conflict with the advantages of cumulative and per time step noise. 

4.2 The Payoff Picture: Generalization vs. Convergence 

Generalization vs. Convergence results are plotted in Figure 3. Increasing noise 
amplitudes proceed from the left end-point of each curve to the right end-point. 
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Table 1: Examples: Additive Noise Accumulation. ~i is the noise at time step ti 

NOISE MODEL t1 
per time step non-cumulative W+~l 
per time step cumulative W+~l 
per sequence non-cumulative W+~l 
per sequence cumulative W+~l 

1 
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Figure 2: (I) Best Generalization for Cumulative and Non-Cumulative Noises: a) 
cumulative additive per time step; b) non-cumulative additive per time step. (II) 
Best Generalization for Per Time Step and Per String Noises: a) non-cumulative 
per string additive; b) non-cumulative per time step additive. 
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Figure 3: Payoff: Mean Generalization vs. Convergence for 4-state (I) and 3-
state(lI) recurrent network. (I a) Worst i-state - non-cumulative multiplicative per 
string; (Ib, Ic) Best 4-state - cumulative and non-cumulative additive per time step, 
respectively; (lIa) Worst 3-state - non-cumulative multiplicative per string; (lib) 
Best 3-state - cumulative additive per time step. 
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Table 2: Noise injection step and error expansion terms for per time step nOIse 
models. v = min(t + 1, U + 1). W'" is the noise-free weight set . 
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These plots illustrate the cases where both convergence and generalization are im­
proved. In figure 311 the curves clearly curl down and to the left for lower noise 
amplitudes before rising to the right at higher noise amplitudes. These lower re­
gions are important because they represent noise values where generalization and 
convergence improve simultaneously and do not trade off. 

5 CONCLUSIONS 

We have presented several methods of injecting synaptic noise to recurrent neural 
networks. We summarized the results of an analysis of these methods and em­
pirically tested them on learning the dual parity automaton from strings encoded 
as temporal sequences. (For a complete discussion of results, see (Jim, Giles, and 
Horne, 1994) ). Results show that most of these methods can improve generaliza­
tion and convergence simultaneously - most other methods previously discussed in 
literature cast convergence as a cost for improved generalization performance. 
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