
Detecting Research Topics via the Correlation between
Graphs and Texts

Yookyung Jo
Department of Computer

Science, Cornell University
Ithaca, NY, 14850

ykjo@cs.cornell.edu

Carl Lagoze
Computing and Information
Science, Cornell University

Ithaca, NY, 14850
lagoze@cs.cornell.edu

C. Lee Giles
Information Sciences and

Technology, The Pennsylvania
State University

University Park, PA
giles@ist.psu.edu

ABSTRACT
In this paper we address the problem of detecting topics in
large-scale linked document collections. Recently, topic de-
tection has become a very active area of research due to its
utility for information navigation, trend analysis, and high-
level description of data. We present a unique approach
that uses the correlation between the distribution of a term
that represents a topic and the link distribution in the ci-
tation graph where the nodes are limited to the documents
containing the term. This tight coupling between term and
graph analysis is distinguished from other approaches such
as those that focus on language models. We develop a topic
score measure for each term, using the likelihood ratio of
binary hypotheses based on a probabilistic description of
graph connectivity. Our approach is based on the intuition
that if a term is relevant to a topic, the documents con-
taining the term have denser connectivity than a random
selection of documents. We extend our algorithm to detect
a topic represented by a set of terms, using the intuition that
if the co-occurrence of terms represents a new topic, the ci-
tation pattern should exhibit the synergistic effect. We test
our algorithm on two electronic research literature collec-
tions, arXiv and Citeseer. Our evaluation shows that the
approach is effective and reveals some novel aspects of topic
detection.

Categories and Subject Descriptors
H.3.1 [Content Analysis and Indexing]

General Terms
Algorithms, Languages, Measurement

Keywords
topic detection, graph mining, probabilistic measure, cita-
tion graphs, correlation of text and links
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1. INTRODUCTION
The availability of large-scale linked document collections

such as the Web and specialized research literature archives[6,
3] presents new opportunities to mine deep knowledge about
the community activities behind the document collections.
Topic discovery is one example of such knowledge mining
that has recently attracted considerable research interest
[12, 14, 9, 22, 23, 24, 17, 4, 16, 7, 15]. Topics are semantic
units that can function as basic building blocks of knowledge
discovery. Once discovered they can be used in a number of
ways including information navigation, trend analysis, and
high-level descrption of data [22, 15].

In this paper, we present a unique approach to topic de-
tection that uses the correlation between the distribution of
terms representing a topic and the distribution of links in
the citation graph among the documents containing these
terms. This distinguishes our work from other approaches
to topic detection that focus on textual data alone [9, 22,
23, 14] or which detect topics and communities by studying
graph properties without considering text features [10, 19,
11, 20]. Our appoach is based on the intuition that docu-
ments related to a topic should be more densely connected
in the citation graph than a random selection of documents
are connected in the citation graph. We therefore extract
topics from the corpus by examining the structure of the
term citation graph for each term in the corpus. A term
citation graph of a term A is a subgraph of the full citation
graph restricted to the documents that contain the term A
and the edges between these term-specific nodes. If the term
citation graph of a term A shows denser connectivity than a
random subgraph of the full citation graph, it is likely that
the term A represents a topic.

An illustration of our approach to topic detection is as
follows. Let’s imagine that we have a set of all documents
containing a term α: for example “sensor network” or “as-
sociation rule mining”. Intuitively, if α represents a topic,
then the documents containing this term will be intercon-
nected in a relatively dense citation network (Figure 1. a) ).
This contrasts with another term η, for example “practical
examples” or “six months”, that are non-topic terms (i.e.,
general terms) for which the citation links among contain-
ing documents will be relatively sparse (Figure 1. b) ). The
notions of “dense” and “sparse” connectivity are relative to
the connectivity of a citation graph consisting of a random
selection of documents and their citation edges from the full
citation graph.

We develop topic score measures that are log odds ratios
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of binary hypotheses based on a probabilistic description of
graph connectivity. For each term in the corpus, we take
a look at its term citation graph. Our topic score measure
tells, with statistical confidence, whether the connectivity
of the term citation graph is significantly denser than what
is expected from the citation graph of a random selection
of documents. As a first approximation, we assume that a
topic can be represented by a single term. We then extend
our algorithm to detect topics that are not represented by a
single term, but by the relation of a set of terms.

We test our algorithms on two electronic research litera-
ture collections, arXiv and Citeseer. Our experiments pro-
duce a ranked list of terms that on examination by field ex-
perts and based on our observations match prevailing topics
in the corpus. Our evaluation of the lists uncovers a number
of interesting characteristics of the lists of terms, including
the discovery of topics in varying scale, the prevalence and
specificity of topics, and the time evolution of topics.

This paper is structured as follows. Section 2 and Sec-
tion 3 present our algorithm to detect topics represented by
a single term and by a set of terms, respectively. Section
4 shows the results obtained by applying the algorithm to
arXiv and to Citeseer. Section 5 reviews the related work.
Section 6 discusses a few issues raised in the work. Section
7 concludes.

2. DETECTING TOPICS IN LINKED
TEXTUAL CORPUS

The problem statement of this paper is “How do we detect
topics in a linked textual corpus, such as a collection of
research papers?”. We address this research problem by
producing a ranked list of terms where terms are ordered
according to how likely a term represents a topic and how
significant the topic represented by a term is. To accomplish
this goal, we look at the citation graph of the corpus at the
resolution of an individual term level.

Definition 1. In this paper, a “term” is defined as an n-
gram phrase that consists of any n consecutive words from
a document, where n is any positive integer. For example,
“network”, “for the”, “association rule mining” are all valid
examples of a term.

Conventionally, the citation graph of a corpus is a directed
graph with nodes being the documents or research papers
in the corpus, and with edges being the hyperlinks or the
citation links. In this paper, we only consider the undirected
version of the citation graph. We denote the undirected
citation graph of the entire corpus as Gall.

The term citation graph of a term A, GA, refers to a sub-
graph of the entire citation graph Gall with nodes restricted
to the documents that contain the term A and the links
between these documents. Precisely,

Definition 2. GA, the term citation graph of a term A, is
defined by

V (GA) = {d|document d contains a term A, d ∈ V (Gall)}

E (GA) = {e (di, dj) |di, dj ∈ V (GA) , e (di, dj) ∈ E (Gall)}

where V (G) denotes the set of vertices in G, E (G) denotes
the set of edges in G, and e (di, dj) is an edge between the
nodes di and dj .
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Figure 1: The term citation graphs. a) α : a term
representing a topic. (e.g. “sensor network”, “as-
sociation rule”), b) η : a term not representing a
topic. (e.g. “practical examples”, “six months”)

Given a term, we want to make a binary decision with
statistical confidence about whether the term is relevant to
a topic or not. We use the following intuition. If a term
represents a topic, then the document nodes in its term ci-
tation graph will be well-connected by citations. On the
other hand, if a term does not represent a topic, the doc-
uments in its term citation graph are not related to each
other, thus their distribution is random with respect to ci-
tation patterns. Figure 1 shows this intuition. Figure 1 a)
is the term citation graph for a topic term α showing dense
connectivity. Figure 1 b) is the term citation graph of a
non-topic term η showing sparse connectivity comparable
to that of a random selection of documents.

We formalize this notion by setting up two hypotheses.
Given a term A, hypothesis H1 says that A is relevant to a
topic, and hypothesis H0 says A is not. We make an obser-
vation O (GA) about the connectivity of the term citation
graph of A, GA. We compute the loglikelihood of the ob-
servation O (GA) under hypothesis H1 and the loglikelihood
of O (GA) under hypothesis H0. The difference of the two
loglikelihoods becomes the topic score for the term A.

TopicScore (A)

= log (P (O (GA) |H1)) − log (P (O (GA) |H0))

= log

„

P (O (GA) |H1)

P (O (GA) |H0)

«

(1)

The topic score represents how well hypothesis H1 explains
the connectivity observation, compared to hypothesis H0.

We take the observation O (GA) to indicate, for each node
in GA, whether the node has at least one link to the rest of
the graph or not. Under hypothesis H1, it is very likely
that a node in the graph is connected to the rest of the
graph by at least one link. The document either cites or is
cited by another document that shares the topic. We use
the parameter pc, with a value close to 1, to denote this
probability of a node in GA having at least one link to any
other node in GA. We present the result with pc set to
0.9 in Section 4. 1 Then, the loglikelihood of O (GA) with

1Our experiment with several values of pc shows that the
result is not sensitive to a particular choice of values for pc,
as long as the value is close to 1.
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Figure 2: The term citation graphs from arXiv. a)
for a topic term “black hole”, b) for a stop phrase
“we show”

hypothesis H1 is given as follows.

log (P (O (GA) |H1))

= log

 

Y

i

P (Oi (GA) |H1)

!

=
X

i

log (P (Oi (GA) |H1))

= nc,A log (pc) + (nA − nc,A) log (1 − pc) (2)

where nA is the number of nodes in GA, and nc,A is the
number of nodes in GA that have at least one link that
points to another node within GA, and Oi (GA) is the per-
node observation for node i.

The loglikelihood of O (GA) with hypothesis H0 is more
interesting. Under the null hypothesis H0 that a term A
is not relevant to a topic, the documents in GA are not
related to each other. Thus, given a node i in GA and one
of its citation links, the probability that the other end of
this link points to any node within GA is nA−1

N−1
, where nA

is the number of nodes in GA and N is the number of nodes
in the entire corpus. That is, determining which node a
citation link of a node i connects to can be considered as a
random process with respect to GA, where any node in the
entire corpus is equally likely to be the destination of the
link. Then, the probability that a node i in GA is connected
to any other nodes in GA by at least one link is given as,

1 −
“

1 − nA−1
N−1

”li
, where li is the number of all links of a

node i.
The loglikelihood of O (GA) with hypothesis H0 is given

as follows.

log (P (O (GA) |H0))

=
X

i

log (P (Oi (GA) |H0))

=
X

i∈Vc(GA)

log

 

1 −

„

1 −
nA − 1

N − 1

«li
!

+
X

i∈(V (GA)−Vc(GA))

li · log

„

1 −
nA − 1

N − 1

«

(3)

where Vc (GA) denotes the set of nodes in GA that has at
least one link to any other node in GA.

It should be noted that our null hypothesis H0 is based on
the randomness of the citation connectivity, not on the ab-
solute sparseness of the connectivity. This enables our topic
score to effectively filter out high-frequency common phrases
as non-topic terms. This is illustrated in Figure 2. 2 Figure
2 a) shows the term citation graph derived from arXiv for a
prevalent topic term “black hole” and Figure 2 b) for a stop
phrase “we show”. As shown, it is not easy to discern from
the graph visualization that the topic relevance of “black
hole” is much greater than that of “we show”. However, as
will be seen in Section 4, our topic score measure assigns the
highest score to “black hole”, and the lowest score to “we
show”. This is because, for the term “we show”, the random
connectivity assumption of the null hypothesis H0 defaults
to the dense connectivity as shown in Figure 2 b), while the
hypothesis H1 assumes even denser connnectivity.

If we generate the topic scores in Eq.1 for all possible
terms in the corpus and order them, we get a ranked list
of terms, where terms are ranked according to how likely
they represent the topics of the corpus. The terms at the
top ranks are the terms representing the topics prevalent
in large scale. This is because the term citation graphs of
the topics prevalent in large scale have many instances of
per-node observations that support the hypothesis H1 over
H0.

As hinted above, the bottommost ranked terms have clear
intuitive interpretation as well. These terms are the stop
words or common phrases, as their term citation graphs ex-
hibit the large scale statistical evidence that can be better
explained by H0 than by H1.

3. DETECTING TOPICS REPRESENTED BY
A SET OF TERMS

Some topics are not detectable by a single term but by
the appearance of a set of terms. This may occur, for ex-
ample, when a new term is not coined for a topic, but the
topic is represented by the relation between a few general
terms. For example, let’s consider a topic M represented by
the co-occurrence of two terms “quantum computer” and
“quantum dot”. This is a research topic in physics about
using “quantum dot” as a hardware device for “quantum
computer”. However, each individual term “quantum dot”
or “quantum computer” represents a much broader research
topic than the given topic M . The term “quantum com-
puter” represents any topic related to quantum computing:
examples are quantum computer algorithms, fault tolerant
quantum computing, and many kinds of hardware devices
for quantum computer. “quantum dot” is a nano-scale semi-
conductor material. The term “quantum dot” represents a
broad research topic including material property study, and
using quantum dot to make applications such as laser, quan-
tum computer logic gate, etc. Thus, looking at a single term
is not going to reveal the topic M .

The problem of detecting a topic represented by a set of

2 To aid the visualization, the term citation graphs from
arXiv are illustrated in the following ways. The vertical
axis is a time scale where time follows downward. The hor-
izontal axis spans 7 research fields of arXiv. A paper at a
particular time and a field is placed in the small rectangle
at the corresponding position. The darkness of a rectangle
represents the number of papers contained in the rectangle.
The links between rectangles are the citation links between
the papers in the rectangles.
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Figure 3: The term citation graphs of terms α and
β, and their intersection

terms but not by an individual term is different from finding
the co-occurrence counts of terms. The mere high count of
co-occurrence is not what we want. The co-occurrence count
of two stop words might be high, but it does not carry topic
information. Also, the normalized co-occurrence, defined as
the co-occurrence count divided by the occurrence count of
a single term, is not what we want either. At the extreme,
we may think of terms A and B that always occur together
with high frequency. But this topic is detectable by looking
at a single term A or B by the method explained in Section
2. Finally, it should be noted that our goal is different from
association rule mining [1]: the above example of terms A
and B co-occurring with high frequency qualifies for an as-
sociation rule, but not for detecting a topic represented by
a set of terms. Then, how do we detect topics represented
by a set of terms?

We again look at the term citation graphs and use the
following intuition that is illustrated in Figure 3. In Figure
3, a small rectangle containing α is a document containing
a term α. Similarly, a small rectangle containing β is a doc-
ument containing a term β. A small rectangle containing
both α and β is a document containing both terms. A link
connecting two documents is a citation link. The left big
circle encloses the term citation graph of the term α, which
is Gα. The right big circle encloses Gβ. The documents
and links within the intersection of the two circles consti-
tute the citation graph for the documents containing both
terms, which we denote as Gα∩β. Figure 3 shows that the
documents containing both terms α and β are significantly
more densely connected than Gα or Gβ. This indicates that
there is a nontrivial topic represented by the co-occurrence
of α and β, but not by one of them. On the other hand,
if there is no significant topic represented by the marriage
of α and β then the occurrence of the term β within Gα

or the occurrence of the term α within Gβ will not be cor-
related to the citation pattern. In this case, Gα∩β should
have the link connectivity comparable to that of the same
size random subgraph of Gα or Gβ .

We formalize this notion as follows. Given a term A and
a term B, we want to detect whether the connectivity of
GA∩B is significantly higher than what we could normally
expect from the connectivity of GA or GB . To account for
the connectivity of any term citation graph G, we use an ob-
servation 3 that considers, for each citation link of each node

3Note that this observation O(G) is different from the ob-

in G, whether the link ends with a node within G or outside
G. If for each link of a node in G the probability that it ends
with another node within G is p, then the loglikelihood of
the connectivity observation on G is,

ln (P (O (G) |p)) =
X

i

(ci (G) ln (p) + (li − ci (G)) ln (1 − p)) (4)

where li is the total number of citation links of a node i,
and ci (G) is the number of citation links of a node i that
fall within G. Let p∗ (G) be the value of p that maximizes
Eq.4. With the number of nodes in G fixed, p∗ (G) tends to
increase, as the connectivity of G gets denser.

Let’s consider GA and GA∩B under the hypothesis that
the co-occurrence of terms A and B does not represent a new
topic. Under this null hypothesis, the generative process
of determining which document in GA contains the term
B is an independent random process with respect to the
distribution of the citation links of GA. Thus, if we let
p0A be our guess for p∗ (GA∩B) under the null hypothesis,
our best guess for p0A is the probability that maximizes the
average loglikelihood of the following subgraphs of GA. The
subgraphs we consider are any subgraphs of GA that have
the same number of nodes as that of GA∩B , and the citation
links between them. Formally, p0A is given as follows.

p0A = argmax
p

1

nCk

X

Gσ

ln (P (O (Gσ) |p)) (5)

where n is the number of nodes in GA, k is the number of
nodes in GA∩B , and the summation over Gσ runs over any
graph Gσ that satisfies the following

V (Gσ) ⊂ V (GA) ,

|V (Gσ) | = |V (GA∩B) |,

E (Gσ) = {e (vi, vj) |e (vi, vj) ∈ E (GA) ,

vi, vj ∈ V (Gσ)} (6)

p0A can be analytically obtained to be

p0A =
(k − 1)

P

i∈V (GA) ci (GA)

(n − 1)
P

i∈V (GA) li
(7)

Now, we think of the alternative hypothesis that says the
co-occurrence of terms A and B represents a new topic. Un-
der this hypothesis, our guess for p∗ (GA∩B), which we de-
note as p1A, should be significantly higher than p0A. We set
it as p1A = m · p0A, where m is a mulplicative parameter
greater than 1.

The following score TA (A, B) is our confidence about how
likely the co-occurrence of terms A and B represents a new
topic, with respect to a term A.

TA (A, B) = ln

„

P (O (GA∩B) |p1A)

P (O (GA∩B) |p0A)

«

(8)

Note that our guess for p1A need not be exactly p∗ (GA∩B)
nor even close to it. The actual value of p∗ (GA∩B) only
needs to be relatively closer to p1A than to p0A to make
TA (A,B) positive. In particular, if the actual p∗ (GA∩B) is
significantly larger than p0A, TA (A, B) will be positive for

servation O(G) for a single term topic detection in Section
2. The choice is made so that the new observation O(G) can
account for graph connectivity in a continuous spectrum.
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a wide range of m. Thus, with large m, we could filter false
positives, while we may only lose false negatives with weak
confidence. We experimented on several values for m in the
range of [2, 10]. While the result does not sensitively change
over a wide range of m, the choice of m = 6 seems to provide
a good balance between false positives and false negatives.
In Section 4, we present the result with m = 6.

We then get TB (A, B) in the similar way by looking at
GA∩B and GB . Our final score for judging whether the co-
occurrence of terms A and B represents a new topic or not
is given by taking the minimum of TA (A, B) and TB (A, B),
reflecting our belief that the link density of GA∩B should
show a significant departure from that of both GA and GB .

TopicScore (A,B) = min (TA (A, B) , TB (A, B)) (9)

4. EVALUATION
We use arXiv and Citeseer for evaluation.

We restrict the terms we consider to all possible bigrams in
the corpus. We choose bigram as our term unit, because bi-
grams typically convey more concrete ideas than unigrams,
yet higher grams might suffer from the explosion of the num-
ber of terms and sparseness of data for each term. But, it
is only a choice of convenience and our algorithm can be
applied to any n-grams. We further restrict the terms by
pruning out low frequency terms that appear in less than 5
documents in the corpus and by pruning out 35 stop words.

4.1 Evaluation on arXiv Data
arXiv is an actively maintained online repository of re-

search papers in physics. We take papers from year 1991 to
year 2006 that span 7 major arXiv areas. This is in total
214,546 papers and 2,165,170 citation links between them,
which amounts to 10.09 per-document citations. For each
paper, we use its abstract as its document.

We perform the following experiments. First, for all pos-
sible terms appearing in the corpus, we compute the single
term topic score measure of Eq.1, and get a ranked list of
topics. Second, for all possible term pairs in the corpus, we
compute the topic score of two terms as in Eq.9, and get a
ranked list of topics.

The running time is reasonable. We used a pentium IV
PC with 2GB memory. It took 45 minutes to generate the
term citation graphs for all terms and their inverted index.
It took 4 minutes to compute the single term topic scores
for all terms. It took about 10 hours to compute the topic
scores of two terms for all possible term pairs.

To consider all pairs of terms for two term topic scores
could be prohibitive as there are a huge number of terms.
But, we need to consider a pair of terms only when the
two terms appear together in at least one paper. This co-
occurrence matrix is pretty sparse when a document is an
abstract. Thus we achieve a reasonable running time for the
two term topic score experiment.

4.1.1 Detecting Topics Represented by a Single Term
Computing the topic scores for each term in the corpus ac-

cording to Eq.1 gives a ranked list of topics. The ranked list
of terms has 137,098 entries (terms), where top entries con-
stitute topic terms and bottom entries constitute non-topic
terms. Table 1 shows the top 15 entries from the ranked list.
The first 2 columns represent the rank and the topic term
respectively. The third column labeled as < n, nc, |E| > is

an information about the term citation graph of the topic
term: n is the number of nodes in the citation graph of a
topic term, nc is the number of nodes that has at least one
link connecting to any other node within the graph, |E| is
the number of edges in the graph.

An objective and quantitative evaluation of the result is
difficult due to the lack of standard formal measures for topic
detection tasks. However, when the results were examined
by the domain experts, they recognized the topics presented
in Table 1. Also, we have an informal evidence that these
top ranked terms do represent highly prevalent topics in the
physics literature. When we typed in each topic term of
the top 20 ranks as a search query to www.google.com, 19
of them returned Wikipedia entries within the top 5 of the
google search results. The inspection of the Wikipedia arti-
cles reveals that most of them have serious physics research
oriented contents. The one topic term that did not return
the Wikipedia entry was “heavy quark”. But, the second
rank entry of its google search result is “The 5th interna-
tional workshop of heavy quark physics”, indicating that it
also is a prevalent research topic in physics.

The topic terms at the top ranks are topics in large scale,
as we can see from the term citation graph information of
< n, nc, |E| > column. The topic term entries down to a few
thousand’th level of the ranked list still present meaningful
topics. Table 2 shows a few entries of topic terms around
100’th, 500’th, 1000’th, 2000’th ranks. There is an appar-
ent trend of topic scale getting smaller as we go down to
lower ranked topic terms, as seen from < n, nc, |E| > col-
umn. Topics discovered at these levels could be more inter-
esting as they tend to represent more specific ideas than the
more generic and prevalent top ranked topic terms. Figure 4
shows the term citation graphs of the topic terms at 100’th,
990’th, 1971’th ranks, respectively (Refer to Footnote 2 for
how to read the graphs). We see the scale difference of the
topic terms at different ranks. Figure 4 c) suggests that even
at 1971’th rank, there is still a meaningful topic that binds
the papers in the term citation graph.

As explained in section 2, the bottommost entries of the
ranked list are stop words or common phrases, whose term
citation graphs are much better explained by hypothesis H0
than by hypothesis H1. Table 3 shows the bottommost 15
terms of the ranked list.

It should be noted that the topics discovered by our al-
gorithm have a varying degree of prevalence and specificity,
that are natural in the given corpus. This is because we
do not assume a predefined number of topics to discover,
as language model approaches or graph-based clustering ap-
proaches do. Fixing the number of topics to discover has
the effect of determining the scale of topics in advance.

To see the overall property of the entire ranked list, we
present two plots, Figure 5 and Figure 6. Figure 5 is a
plot of term rank vs. the log size of the term citation graph
averaged over 100 consecutive terms. It shows that the term
frequency gets higher, as the rank gets close to either the
highest or the lowest ranks. This is because in a large-scale
term citation graph one hypothesis is strongly preferred over
the other due to many instances of per-node observations
that support the hypothesis.

To show the connectivity of term citation graphs, we de-
vise the following measure and use it in the plot of Figure 6.
Given a term citation graph GA, ci (GA) denotes the num-
ber of links of a node i that falls within GA, li denotes the
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top topic (term) < n, nc, |E| >
rank
1 black hole < 4978, 4701, 38952 >
2 quantum hall < 1863, 1493, 4862 >
3 black holes < 3131, 2896, 22824 >
4 higgs boson < 2079, 1896, 12607 >
5 renormalization group < 3738, 2920, 8490 >
6 quantum gravity < 2014, 1724, 9693 >
7 standard model < 7848, 7145, 53829 >
8 heavy quark < 1671, 1473, 6570 >
9 cosmological constant < 2141, 1815, 7134 >
10 quantum dot < 1366, 1031, 2926 >
11 chiral perturbation < 1132, 1050, 5578 >
12 form factors < 1578, 1354, 5616 >
13 lattice qcd < 1425, 1265, 5240 >
14 string theory < 3818, 3539, 26250 >
15 hubbard model < 1702, 1167, 2678 >
. . . . . . . . .

Table 1: The topic terms of top 15 ranks from arXiv

total number of links of a node i, nA denotes the size of
GA, and N denotes the size of the full citation graph. We
call

P

i ci (GA) /
P

i li as edge containment. It reflects how
clustered GA is with respect to the rest of the full citation
graph. We normalize the edge containment by the relative
size of the term citation graph. We call the resulting quan-

tity
P

i
ci(GA)/

P

i
li

nA/N
as normalized edge containment. The

normalized edge containment should default to 1 if the ci-
tation pattern of GA is random. Figure 6 shows a plot of
term rank vs. the normalized edge containment. As ex-
pected, the topic terms at high ranks show high normalized
edge containment, while the non-topic terms at low ranks
show low normalized edge containment. What is interesting
to note is that the graph is not monotonically decreasing:
up to the top few thousand ranks, the normalized edge con-
tainment keeps increasing. This agrees with our observation
that the middle rank topics are more specific than the top
rank topics.
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Figure 5: A plot of term rank vs. log(size of term
citation graphs)

4.1.2 Detecting Topics Represented by a Set of Terms
By computing the term pair topic scores of Eq.9 for all

possible pairs of terms in arXiv corpus, we get a ranked list

top topic (term) < n, nc, |E| >
rank
. . . . . . . . .
95 fractional quantum < 552, 381, 729 >
96 qcd corrections < 597, 500, 1175 >
97 mass matrix < 742, 606, 2627 >
98 string field < 505, 465, 5708 >
99 entangled states < 634, 472, 1014 >
100 potts model < 426, 321, 718 >
101 electroweak symmetry < 673, 559, 2052 >
. . . . . . . . .
497 vacuum expectation < 713, 443, 696 >
498 higgs doublets < 280, 205, 384 >
499 boundary state < 168, 147, 529 >
500 spin polarization < 494, 261, 406 >
501 abelian gauge < 537, 319, 837 >
. . . . . . . . .
989 matrix string < 76, 69, 222 >
990 charmed baryons < 77, 61, 104 >
991 geometric phases < 102, 67, 87 >
992 kerr black < 189, 115, 229 >
993 kp hierarchy < 90, 62, 95 >
994 pseudoscalar mesons < 272, 164, 201 >
. . . . . . . . .
1968 traversable wormholes < 42, 35, 94 >
1969 b-meson decays < 90, 61, 71 >
1970 penguin operators < 53, 44, 87 >
1971 two-dimensional qcd < 42, 34, 43 >
. . . . . . . . .

Table 2: The topic terms at various ranks from
arXiv

bottom topic (term) < n, nc, |E| >
rank
1 we show < 26906, 19479, 53311 >
2 has been < 9992, 4231, 5528 >
3 we find < 21474, 15187, 42792 >
4 we present < 16898, 10808, 24410 >
5 we study < 19976, 14192, 37322 >
6 we have < 8396, 3411, 3773 >
7 we also < 15983, 11074, 33095 >
8 have been < 6636, 2422, 2686 >
9 we discuss < 12837, 8410, 18755 >
10 we consider < 11551, 7079, 13647 >
11 does not < 6155, 2488, 2814 >
12 our results < 6224, 2815, 3144 >
13 we investigate < 8437, 4585, 5788 >
14 into account < 4910, 1952, 2521 >
15 we propose < 6387, 3127, 4325 >
. . . . . . . . .

Table 3: The terms with the lowest topic scores from
arXiv

where each entry is a pair of terms that might represent a
topic. Since we are looking at the intersection citation graph
of two terms, we get a sparser graph to look at. In order
to alleviate the sparseness, we stemmed our corpus. Table 4
shows the top 12 entries of the ranked list. These entries are
the topics that are represented not by a single term, but by
the relation involving a set of terms. For example, the rank
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Figure 4: The term citation graphs of topic terms at various ranks from arXiv
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Figure 6: A plot of term rank vs. normalized edge
containment

1 entry has “phase transit(ion)” and “standard model” as its
topic terms. “phase transition” is a general term meaning a
change in macroscopic state of a large-scale system. “stan-
dard model” is a prevalent theory of particle physics that de-
scribes the fundamental interactions of elementary particles.
It turns out that the papers at the intersection of the two
terms talk about the “phase transition” occuring in “stan-
dard model” or the “phase transition” occuring in minimal
supersymmetric “standard model” which is an extension of
“standard model”. The individual term “phase transition”
or “standard model” has a much broader research context
than the topic identified. The rank 2 entry has “gauge the-
ory” and “matrix model” as its topic terms. It turns out that
there was a heavily cited paper that started the whole idea
of analyzing “gauge theory” using the computational tech-
niques from “matrix model”, and the majority of papers in
the intersection graph talk about the further development of
this idea. As explained in the previous section 3, the papers
of the rank 7 entry talk about using “quantum dot” as a
hardware implementation of “quantum computer”.

The last three columns of table 4 show the citation graph
information < n, nc, |E| > for term A, term B, and their in-
tersection, respectively. They show that the connectivity of
the intersection graph GA∩B exhibits significant departure
from the same size random subgraph of GA or GB.

4.2 Evaluation on Citeseer Data
Our Citeseer data contains 716,771 papers, with 1,740,326

citations. This amounts to 2.43 citations per paper. For
each paper, we use its title and abstract combined as its doc-
ument. The number of bigrams in the corpus after pruning
out the low-frequency bigrams and 35 stop words is 631,839.
The majority of papers are from year 1994 to year 2004.
We divided the documents into two different document sets.
One set contains all the documents up to year 1999, and the
other set contains all the documents since year 2000.

We performed the single term topic score measure of Eq.1
to each set. The top 25 topic entries of each set are shown
in parallel in Table 5. We see that the top rank topics have
changed significantly between the two time periods. We
see that many top rank topics of the time frame since 2000
carry recent trends that were not significant before. Ex-
amples are “sensor networks”, “(ad) hoc networks”, “wire-
less sensor”, “intrusion detection”, “semantic web”, “xml
data”, and “image retrieval”. “support vector (machine)”
was ranked 35th in the document set up to 1999, and it has
risen to the rank 5 in the document set since 2000. “conges-
tion control” more or less maintains its topic rank through
the different time periods. We observe the fall of many top
ranked topics of the document set up to 1999, in the time
period since 2000. The ranked list of topic terms is quite in-
structive as well: initially, we did not recognize the 7th rank
“interior point” of the time frame up to 1999 as a topic.
But, it turns out “interior point” represents an important
family of algorithms in linear programming.

As in the case of arXiv evaluation, we see that the ranked
list of topic terms from Citeseer has meaningful topics even
around a thousand’th level with the apparent trend of topic
scale getting smaller as we go down the ranks. Due to the
space limitation, however, we do not present the result.

In order to see the time evolution of topics more clearly,
we performed the following experiment. We ran the single
term topic score measure for the entire Citeseer document
collection. Then, for each term in top 70, we generated a
plot where x-axis is years spanning from 1994 to 2004 and y-
axis is the number of documents of the term citation graph
in a particular year normalized by the total number of doc-
uments in that year. Figure 7 shows the plots for 12 such
topic terms out of top 70 terms. We see a sharp recent rise of
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rank term A term B < n, nc, |E| >
for term A for term B for A ∩ B

1 phase transit standard model < 6862, 4693, 15535 > < 7901, 7168, 54029 > < 200, 159, 816 >

2 gaug theori matrix model < 5907, 5186, 35446 > < 1332, 1217, 9187 > < 168, 138, 1055 >

3 form factor sum rule < 2444, 2139, 10205 > < 2120, 1702, 7775 > < 285, 252, 1014 >

4 dirac oper random matrix < 618, 523, 3206 > < 633, 450, 2475 > < 88, 88, 714 >

5 black hole cross section < 6491, 6168, 64085 > < 5188, 4411, 20358 > < 84, 66, 280 >

6 heavi quark sum rule < 2047, 1817, 8556 > < 2120, 1702, 7775 > < 186, 151, 470 >

7 quantum comput quantum dot < 1975, 1768, 8652 > < 2328, 1898, 7593 > < 137, 118, 400 >

8 gaug theori spin chain < 5907, 5186, 35446 > < 828, 591, 2299 > < 56, 54, 330 >

9 cross section dark matter < 5188, 4411, 20358 > < 1618, 1388, 8326 > < 131, 120, 424 >

10 black hole planck scale < 6491, 6168, 64085 > < 709, 554, 1523 > < 92, 64, 310 >

11 boundari condit scalar field < 3300, 2113, 5510 > < 4405, 3496, 10927 > < 229, 134, 287 >

12 cross section standard model < 5188, 4411, 20358 > < 7901, 7168, 54029 > < 611, 483, 1232 >

. . . . . . . . . . . . . . . . . .

Table 4: The top 12 entries of two term topic scores from arXiv

“sensor networks” and “semantic web”, a significant rise of
“support vector” and “energy consumption”, a rise of “xml
data” in a smaller scale, the fall of “logic programs”, “petri
nets”, “interior points”. “congestion control”, “association
rules”, and “genetic programming” show less dramatic dy-
namics.

5. RELATED WORK
Our work is distinguished from previous work on topic

detection in two ways. First, we look at the correlation

rank topic (term) topic (term)
up to 1999 since 2000

1 logic programs sensor networks
2 model checking hoc networks
3 semidefinite programming logic programs
4 inductive logic image retrieval
5 petri nets support vector
6 genetic programming congestion control
7 interior point model checking
8 kolmogorov complexity decision diagrams
9 automatic differentiation wireless sensor
10 complementarity problems ad hoc
11 congestion control instrusion detection
12 complementarity problem vector machines
13 conservation laws mobile ad
14 linear logic binary decision
15 timed automata sensor network
16 situation calculus energy consumption
17 real-time database content-based image
18 motion planning semantic web
19 duration calculus fading channels
20 volume rendering xml data
21 chain monte source separation
22 association rules timed automata
23 term rewriting signature scheme
24 posteriori error volume rendering
25 active database xml documents
. . . . . . . . .

Table 5: The top 25 topic terms of two different time
periods from Citeseer

between the term distribution and the citation link distri-
bution for a topic. Second, we use for a topic measure the
log odds ratio of binary hypotheses based on a probabilistic
description of graph connectivity.

Previous work on topic detection can be largely divided
into two groups. The majority of papers take a language
model based approach. This approach tends to focus on
text, but a few papers extend the model to incorporate links.
Another group of work is based on studies of graph prop-
erties. Most of these papers address a problem related to
topic detection: community detection. They tend to use
the non-probablistic aspects of graph properties. There are
also related papers that share some of the ideas used in this
paper. Specifically, these ideas are examination of patterns
at individual term level, usage of log odds ratio to detect
patterns, and investigation of the notion of term informa-
tiveness.

The language modeling approach [9, 22, 23, 24, 7, 16] as-
sumes a multi-stage generative process where semantically
meaningful modalities such as topics or authors are chosen
as an intermediate step, and then the words are drawn from
the multinomial distribution conditioned on these modali-
ties. These papers differ in the design choice for the gener-
ative process. Examples of design decisions are the choice
of modalities or the final features that will be produced. [9]
uses the document generation process conditioned on topic
distributions. [22] uses authors as distribution over topics as
additional modalities. [23] detects topics over time by let-
ting the generative process produce the timestamps of words
as well as the words themselves. A number of papers extend
the model to incorporate links. [7] treats the reference list
of a paper as another final feature to produce, in addition
to the bag of words. [16, 24] apply the language model
approach to social network analysis where documents are
the communication links such as e-mail messages between
people. [4] aims to overcome the inability of latent dirich-
let allocation used in the papers above for describing the
correlation of topics, by including the correlation matrix of
topics in the generative process. [17] computes the themes
of a document collection by the mixture model using the
EM algorithm.

Graph properties are used to study community structures
by [10, 8, 11, 20, 19, 13, 2]. As a distance metric [10] uses
the similarity of citation patterns, [8, 11] use the notion that
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Figure 7: The topic evolution over time in Citeseer. a) ”logic programs”, b) ”sensor networks”, c) ”sup-
port vector”, d) ”congestion control”, e) ”petri nets”, f) ”association rules”, g) ”genetic programming”, h)
”semantic web”, i) ”energy consumption”, j) ”xml data”, k) ”image retrieval”, l) ”interior point”

nodes have more links to the members of the same com-
munity than to other nodes, [20] introduces the concept of
edge betweenness, and [19] uses the measures from bibliom-
etry and graph theory. Some papers in this group combine
the information from text as well. [13] extracts storylines
for a query by identifying densely connected bipartites from
the document-term graph of the search results. [2] improves
the document categorization performance by starting from a
text-based categorization result and then iteratively relabel-
ing the documents to further satisfy the constraints imposed
by the link proximity relation.

Our approach of looking at citation patterns at an indi-
vidual term level and using the loglikelihood to explain the
observation is inspired by [12]. [12] detects a topic as a
burst of activities represented by the state transition in a
markov chain. In an experiment on paper titles and pres-
idential speeches the paper shows that topics can be effec-
tively detected as time bursts in a single term level. The
idea of anomaly detection by log odds ratio is used in a
number of papers related to topic detection. [18] uses the
log odds ratio of event frequencies to detect space-time clus-
ters. [14] discovers a set of words as topic signature in a
supervised learning setting by comparing the log odds ratio
of word frequency in topic documents and non-topic docu-
ments. The ranked list of terms for topics produced by our
algorithm shows a continuous spectrum of term informative-

ness in representing topics. The notion of term informative-
ness is explored in a number of related contexts. [5] detects
the terms informative about the citation links to use them
as features for document categorization. For this purpose,
they use the expected entropy loss measure, which resem-
bles the one used in the decision tree feature selection. [21]
detects the informative terms for named entity detection,
using the idea that informative terms are better modeled
by a mixture of two unigram models while non-informative
terms are better modeled by a single unigram model.

6. DISCUSSIONS
It is worthwhile to note that graph connectivity observa-

tions used in our algorithms are pluggable. One can plug
in an observation that best suits one’s need. As different
observations may represent different aspects of graph con-
nectivity, the choice of an observation affects the topic score
result. For example, the observation used in Section 2 for
a single term topic score concerns whether a node has a
connection to the rest of the graph or not, but it does not
distinguish how many connections a node has. Thus, the
observation is generous on loosely connected topics. As a
result, the highest topic scores are given to the large-scale
prevalent topics even though these topics are not as tightly
connected as the more specific smaller scale topics.

Another point to note is that because our algorithms dis-
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cover topics without imposing any constraint on the relation-
ship among topics such as restricting the number of topics to
be discovered or assuming implicit mutual exclusion among
topics, the topics discovered are suitable for expressing the
complex relationship among topics. Specifically, with our
topics, a single document can be involved in multiple topics,
and topics could have hierarchical covering relations or non-
hierarchical overlapping relations among themselves. Un-
derstanding the structure of the relationship between the
topics is left as future work.

7. CONCLUSIONS
In this paper, we presented algorithms to detect topics

from a linked textual corpus based on the unique approach
of using the correlation between the term distribution and
the link distribution for topics. Our algorithms produce a
ranked list of terms for topics represented by a single term
and for topics represented by a set of terms. Our evalua-
tion on arXiv and Citeseer data show that the method is
effective. Topics discovered by our algorithms reveal novel
aspects of topic detection. The ranked list shows a continu-
ous spectrum of topics of varying prevalence and specificity
that are natural in the given corpus. The relations among
the terms that represent topics are revealed by the two term
topic score measure. As an interesting by-product, our algo-
rithm can discern common phrases without the prior knowl-
edge of stop word notion. The possibility of discovering
complex topic relations and the pluggable characteristic of
graph connectivity observations are discussed.
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