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ABSTRACT 
There are various source code archives on the World Wide Web. 
These archives are usually organized by application categories 
and programming languages. However, manually organizing 
source code repositories is not a trivial task since they grow 
rapidly and are very large (on the order of terabytes). We 
demonstrate machine learning methods for automatic 
classification of archived source code into eleven application 
topics and ten programming languages. For topical classification, 
we concentrate on C and C++ programs from the Ibiblio and the 
Sourceforge archives. We show that a support vector machine 
(SVM) classifier can be trained on examples of a given 
programming language or programs in a specified category.  

1. INTRODUCTION 
Software reuse is the process of creating software systems from 
existing software rather than building software systems from 
scratch. Software reuse is an old idea but for various reasons  has 
not become a standard practice in software engineering [13] even 
thought software reuse should increase a programmer’s 
productivity by reducing the time spent on developing similar 
codes. Seemingly, programmers benefit from a repository where 
pre-written codes are archived since they have reportedly have 
over 100,000 users. However, software reuse does not only mean 
use of existing code [5]; it also involves organization and use of 
conceptual information.  Thus, there should be methods so that 
the programmer locates the code quickly and easily. 

There are various source code archives and open source sites 
throughout the World Wide Web. If the programs in such sites 

are correctly classified and topically components are useful 
classifications, software reuse would be greatly facilitated. But 
how are the software programs categorized? In most archives 
programs are classified according to programming language and 
application topic. A programmer attempting to organize a 
collection of programs would most likely categorize resources 
based on the source code itself, some design specifications and 
the documentation provided with the program. But to understand 
which application category the code belongs to, it is very likely 
the programmer would try to gather natural language resources 
such as comments and README files rather than the explicit 
representation of algorithm itself. Information in natural 
language can be extracted from either external documentation 
such as manuals and specifications or from internal 
documentation such as comments, function names and variable 
names. This seems reasonable since algorithms do not clearly 
reflect human concepts but comments and identifiers do [8]. But 
to identify the programming language, the programmer or 
administrator will look at the code itself and distinguish some of 
the keywords without trying to understand the algorithm.  This 
should be straightforward since almost every language has its 
own reserved keywords and syntax. However, archives can be 
large and are rapidly changing, which makes manual 
categorization of software both costly and time consuming. If our 
goal is automatic categorization, then we believe it is a good idea 
to take advantage not only of the natural language information 
available in documentation but also the code itself. 

Researchers have applied different learning techniques for text 
categorization: bayesian models, nearest neighbor classifiers, 
decision trees, support vector machines (SVMs) and neural 
networks. In text classification, each document in a set is 
represented as a vector of words. New documents are assigned to 
predefined categories using textual content. Recently, SVMs 
have been shown to yield promising results for text 
categorization [6, 7, 11]. Although programming languages are 
written in a manner different from natural languages and have 
some commented information, programming languages have 
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specific keywords and features that can be identified. Using 
these characteristics we show that text categorization techniques 
can also be effective for source code classification.  

To build a classifier our first and maybe most important step is 
the extraction of features. For programming language 
classification, our feature set consists of ‘tokens’ in the source 
code and/or words in the comments. For the topical 
classification, we generate our features from words, bigrams, 
lexical phrases extracted from comments and README files, 
and header file names extracted from the source code. We 
perform feature selection using the expected entropy loss on 
these features. Each program is then represented as a binary 
feature vector. For each specific class, we use these vectors to 
train an SVM classifier. In order to compare the effectiveness of 
our approach, we measure the true-positive and false-positive 
rates for each class and the overall accuracy.  

The rest of the paper is organized as follows. Section 2 
summarizes background information and related work. In Section 
3 we introduce our data set. In section 4 we describe our 
methodology and algorithm. Results are presented in Section 5 
and conclusions are in Section 6. 

2. BACKGROUND 
2.1 Related Work 
Various software identification and reuse problems explained in 
the literature vary in terms of techniques they use and the 
features of programs they take advantage of. 

Rosson and Carroll [18] examined the reuse programming for 
Smalltalk language and environment. They presented empirical 
results of the reuse of user interface classes by expert Smalltalk 
programmers. They observed extensive reuse of uses and that the 
programmers searched implicit specifications for reuse of the 
target class and evaluated the contextualized information 
repeatedly. The programmers used and adapted a code when the 
information provided matched their goals.  Etzkorn and Davis [8] 
designed a system called Patricia, which automatically identifies 
object-oriented software components through understanding 
comments and identifiers. They find object-oriented code more 
reusable than functionally oriented. Patricia uses a heuristic 
method deriving information from linguistic aspects of comments 
and identifiers and from other non-linguistic aspects of object-
oriented code such as a class hierarchy. Merkl [16] suggested 
organizing a library of reusable software components by using 
self-organizing neural networks. Their approach is based on 
clustering the software components into groups of semantically 
similar components. They use keywords automatically extracted 
from the manual of software components. Each component is 
represented by this set of keywords, which does not include stop 
word lists. These representations are then utilized to build the 
keywords-components matrix or the vector space model of the 
data. Each column of the matrix, which corresponds to the 
software components, is used to train the artificial neural 
network. Search tools for source code are also important for 
software reuse. Chen et.al. [4] build a tool called CVSSearch that 
uses fragments of source code using Concurrent Version Systems 
(CVS) comments and makes use of the fact that CVS comments 
describe the lines of code involved. Evaluations of their 

technique show that CVS comments provide valuable 
information that complements content based matching. 
Henninger [10] also studied software components. Their 
approach investigates the use of a retrieval tool called 
CodeFinder, which supports the process of retrieving software 
components when information needs are not well defined and the 
users are not familiar with vocabulary used in the repository. 

2.2 Expected Entropy Loss 
How do we decide which features to select? Expected entropy 
loss is a statistical measure that has recently been successfully 
applied to the problem of feature selection for information 
retrieval [8]. Expected entropy loss is computed separately for 
each feature. It ranks the features that are common in both the 
positive set and the negative set lower and ranks the features 
effective discriminators for a class higher. Glover et. al. used this 
method for feature selection before training a binary classifier 
[9].  We use the same technique. Feature selection increases both 
effectiveness and efficiency since it removes non-informative 
terms according to corpus statistics [19]. A brief description of 
the theory is as follows [1]. 

Let C be the event that indicates whether a program is a member 
of the specified class and let f be the event that the program 
contains the specified feature. Let  C and  f  be their negations 
and  Pr( ) their probability. 

The prior entropy of the class distribution is  
( ) ( ) ( ) ( )CCCCe PrlgPrPrlgPr −−≡  

The posterior entropy of the class when feature is present is  
( ) ( ) ( ) ( )fCfCfCfCfe PrlgPrPrlgPr −−≡  

likewise, the posterior entropy of the class when the feature is 
absent is  

( ) ( ) ( ) ( ).PrlgPrPrlgPr fCfCfCfC
f

e −−≡  

Thus the expected posterior entropy is  
( ) ( )f

f
effe PrPr +  

and the expected entropy loss is 
( ) ( )f

f
effee PrPr +−  

Expected entropy loss is always nonnegative, and 
higher scores indicated more discrimininitory features. 

2.3 Support Vector Machines 
We use SVMs for a binary classification task. Due to space 
restrictions, see [2,3] for more details. Support Vector Machines 
can be robust and generally applicable for text categorization 
problems and outperform other methods [11]. Its ability to handle 
high dimension feature vectors, to reduce problems caused by 
over-fitting and its robustness makes it a well-suited technique 
for text classification tasks [15]. We choose a SVM classifier 
because our problem is similar to text classification.  

3. DATA AND FEATURE SETS 
We gathered our sample source code files and projects from 
different archives on the Internet including the Ibiblio Linux 



Archive1, Sourceforge2, Planet Source Code3, Freecode4 and from 
pages on the web that include code snippets. 

Ibiblio archives over 55 gigabytes of Linux programs and 
documentation freely available for download via FTP and/or 
WWW access. The Ibiblio archive includes binary files, images, 
sound and documentation as well as the source files of programs. 
It also archives different versions of the same project. The 
primary programming languages of the projects in the archive are 
C and C++. The projects are not classified into programming 
languages. The Ibiblio1 archive is organized hierarchically into 
the following categories: applications, commercial, development 
tools, games, hardware and drivers, science and system tools. 
SourceForge.net2 is owned by Open Source Development 
Network, Inc. and claims to be the world's largest open source 
development website. At the time of our study SourceForge 
hosted 33,288 projects and had 346,328 registered users. The 
Sourceforge archive is categorized under 43 different 
programming languages and 19 topics.  Programming languages 
include both popular languages such as C/C++, Java, Fortran and 
Perl, and less popular ones such as Logo and Zope.  Users also 
have the capability of browsing Sourceforge projects by 
development status, environment, intended audience, license, 
natural language and operating system. Planet Source Code3 
claims to be the largest public programmer database on the web. 
During our analysis it had 4,467,180 lines of code. The code files 
are not organized by application area. They have 9 programming 
language categories. Free Code4 is also owned by Open Source 
Development Network. The Free Code archive is organized 
under 10 topical categories and includes the programming 
language information for each project.  

To train the topic classifier we downloaded examples from the 
Ibiblio and the Sourceforge archives, and concentrated on C/C++. 
For programming language classification we downloaded files 
from all of the resources.  For our analysis, we select ten popular 
programming languages: ASP, C/C++, Fortran, Java, Lisp, 
Matlab, Pascal, Perl, Python and Prolog. These popular 
languages are used in a wide range of applications. For each 
class we randomly grouped our samples into two sets for training 
and testing.  The training data consist of 100 source code files 
and test data consist of 30 source code files from each category. 
Our experiments include those with comments included in the 
files and without comments. Although comments are used for 
giving contextual information about the program, we speculate 
that they might also be helpful in finding out the programming 
language of the code. As far as the topics are concerned, we 
selected categories/subcategories that contain sufficient number 
of projects in both resources (Ibiblio and Sourceforge) and 
eliminated the ones with a few projects or with no source code 
files in them. Another reason that we chose a different 
categorization was to evaluate the chance of mis-classification, 
making the task more difficult. Thus, we have category pairs that 
are well separated (e.g., "database" and "circuits") as well as 
category pairs that are quite similar (e.g., "games" and 
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"graphics"). Table 1 lists our categories and the number of 
software programs we used for each from 2 resources.  

Table 1. Number of programs used from each topic 

CATEGORY IBIBLIO  SOURCEFORGE 

CIRCUITS 30 25
DATABASE 31 33
DEVELOPMENT 75 30
GAMES 209 31
GRAPHICS 190 36
MATHEMATICS 30 30
NETWORK 270 30
SERIAL COMMUNICATION 40 30
SOUND 222 31
UTILITIES 245 31
WORD PROCESSORS  11 24 

 

4. METHODOLOGY 
Our system consists of three main components; the feature 
extractor, vectorizer and the SVM classifier. There are also four 
supplementary modules, which are necessary for topical 
classification of programs: the text extractor, filter, phrase 
extractor and the stemmer. Our system works in two distinct 
phases: training and testing. Each of the components and phases 
are explained in the sections below.  

4.1 Feature Extractor 
Examples in each category are considered as the positives and 
the rest of the examples are counted as negatives. We compute 
the probabilities for the expected entropy loss of each feature as 
follows: 

( ) =CPr  

( ) ( )CC Pr1Pr −=  

( ) =fPr   

( ) ( )ff Pr1Pr −=  

( ) =fCPr  

( ) ( )fCfC Pr1Pr −=   

( )=fCPr   

( ) ( )fCfC Pr1Pr −=  

The feature extractor indexes each file and computes the 
expected entropy loss for each feature. Then the features are 
sorted by descending expected entropy loss. Some features that 
appear more frequently in the negative set might also have high 
expected entropy loss values. We call these features “negative 
features”. Thus, a feature that has a higher frequency in the 
negative set can also be distinguishing for a category. Our feature 
extractor does not eliminate stop words and can take bigrams 
into account. It can also consider lexical phrases as features 
using the output of the phrase extractor module. By default, the 
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feature extractor module removes the features that only appear in 
a single file. It is also capable of eliminating features that occur 
below a given threshold of positive and negative examples.  

4.1.1 Programming Language Feature Extractor 
Features correspond to tokens in the code and words in the 
comments. We define a “token” to be any alphabetical sequence 
of characters separated by non-alphabetical characters. We do not 
consider any numeric values or operators as tokens. Tokens are 
gathered by splitting the source code text at any non-alphabetical 
character such as white space. For example, in an expression like 
“if (topicClass10 = ’network’)”, the tokens will be “if”, 
“topicClass” and “network”.  

The top 20 features selected by expected entropy loss from each 
of 10 classes were used to generate a set of 200 features. We 
excluded features that occurred in less than 10% of both the 
positive and negative set in the vocabulary.  

4.1.2 Application Topic Feature Extractor 
The feature extractor for topic classification uses 3 different 
resources: comments, README files and the code. The 
extraction of comments from the source code files and 
identification of README files for each program is performed 
by the text extractor module. We do not run the feature extractor 
directly on the output of the text extractor but preprocess the data 
by filtering, stemming and phrase extraction modules. The filter 
module is written to eliminate data that are uninformative for 
identification of an application category, such as license and 
author information, which appear in any program. Although the 
expected entropy loss technique is likely to rank these features 
very low, filtering decreases the size of our files and improves 
the speed of our algorithms.  

We used KSTEM for grouping morphological variants. KSTEM 
uses lexicon and morphological rules to determine which word 
forms should be grouped together. It is designed to avoid 
grouping word forms that are not related in meaning [13]. 
Stemming is useful because, for example, "colors" and "color", 
which typically refer to the same concept, are merged into one 
feature. Lexical phrases are important because they reduce 
ambiguity (they are usually less ambiguous than the component 
words in isolation). In addition, sometimes terms are only 
meaningful as phrases (i.e. “work station”). That is, sometimes a 
phrase is essentially a word with an embedded space. 

We combine the README files and the comments for each 
program separately and pull out single words, bigrams and 
lexical phrases.  From the code itself we just include the header 
file names.  The top 100 features from each 11 categories are 
combined to generate a set of 1100 features. We believe 100 
features would be sufficient for a good classification. We have a 
selection threshold of 7.5% for application topic classification.  

4.2 Vectorizer 
The vectorizer generates feature vectors for each program/source 
code file. We do not consider the frequency of the features. The 
elements of the vectors consist of 1s and 0s. A ‘1’ in a feature 
vector means that the corresponding feature exists in the 
corresponding example and a ‘0’ means that it does not. The 

vectorizer module uses the features extracted from the training 
data for creating vectors for both the test and the training set.  

4.3 SVM Classifier 
The SVM classifier is trained by vectors generated from the 
training set in which each document has a class label. SVM 
classifies the test data, which are again represented as vectors. It 
returns the overall accuracy of the classification, which is the 
percentage of programs that are categorized correctly.  

We use “LIBSVM – A Library for Support Vector Machines” by 
Chang and Lin [3], which is an integrated software for support 
vector classification, regression and distribution estimation. 
LIBSVM is capable of performing cross validation, multi-
categorization and using different penalty parameters in the SVM 
formulation for unbalanced data. LIBSVM uses the “one-against-
one” approach [12] for multi-class classification. In the one-
against-one approach, k(k-1)/2 classifiers are constructed where 
k is the number of classes.  Each classifier trains data from two 
different classes. Chang and Lin [3] utilize a voting strategy 
where each example is voted against a class or not in each binary 
classification. At the end the program is assigned to the class 
with the maximum number of votes. In the case that two classes 
have the same number of votes, the one with the smaller index is 
selected. There is also another approach for multi-class 
classification called “one-against-all“. In this technique, the 
number of SVM models as many as the number of classes are 
constructed. For each class, the SVM is trained with all the 
examples in that class as positives and the rest of the examples 
as negatives. Previous research has shown that one-against-one 
approach for multi-class categorization outperforms the one-
against-all [17].   

5. EXPERIMENTAL RESULTS 
5.1 Programming Language Classification 
For programming language classification, we performed our 
experiments both with the comments included in the code and 
without comments to ascertain the impact of comments. The 
feature extraction step gives us a list of words that best describes 
a programming language class.  

Table 2. Top 10 features for each class  
CLASS COMMENTS ARE INCLUDED COMMENTS ARE EXCLUDED 

ASP asp, dim, vbscript, td, head asp, vbscript, dim, td, 
language 

C\C++ struct, void, sizeof, include, 
unsigned

struct, void, ifdef, sizeof, 
include 

FORTRAN subroutine, pgslib, logical, 
implicit, dimension

subroutine, logical, pgslib, 
dimension, implicit

JAVA throws, jboss, java, ejb, lgpl jboss, throws, java, package, 
util 

LISP defun, lisp, setq, emacs, progn defun, let, setq, prong, defvar 
MATLAB zeros, -type, denmark, 

veterinary, -license
zeros, -name, -type, -string, 
plot 

PASCAL unit, sysutils, procedure, 
synedit, mpl

implementation, unit, luses, 
procedure, sysutils

PERL speak, voice, my, said, print my, speak, voice, said, print 
PYTHON def, moinmoin, py, jhermann, 

hermann
def, moinmoin, py, copying, 
rgen 

PROLOG prolog, predicates, diaz, descr, 
fail

-if, fail, built, bip, atom 



Table 2 lists only the top 5 words when comments are used with 
the code and when comments are filtered. A minus sign indicates 
the negative features (ones that are more frequent in the negative 
set compared to the positive set). We generated a set of 200 
features by taking the top 20 features from each class. Our 
training data consist of 100 source code files and test data consist 
of 30 source code files from each language class.  

Table 3 lists the true-positive rates and false-positive rates for 
each language class and the overall accuracy of our classifier.  

Table 3. TP rate, FP rate and the accuracy of the classifier 
 COMMENTS ARE INCLUDED COMMENTS ARE  EXCLUDED 

CLASS TP RATE  FP RATE TP RATE FP RATE
ASP   100.00% 0.34% 90.00% 1.75% 
C\C++  93.33% 0.00% 93.33% 0.00% 
FORTRAN 81.48% 0.68% 95.24% 0.35% 
JAVA  70.00% 0.00% 63.33% 0.00% 
LISP  93.33% 0.00% 83.33% 0.00% 
MATLAB  96.30% 7.53% 100.00% 8.39% 
PASCAL  86.21% 0.00% 86.66% 0.00% 
PERL  100.00% 1.03% 93.33% 1.05% 
PHYTON 96.66% 0.00% 89.65% 1.05% 
PROLOG 72.41% 1.37% 82.14% 0.00% 

ACCURACY  89.041% 87.41% 
 

We think that the performance of each class highly depends on 
the programming language that is being classified and the 
overlap between the tokens in source code files. For this reason, 
we explored the intersections between the top 100 features of 
each class and presented the results in Table 4.  

Table 4. Overlap of features between categories. The 
upper triangle shows the overlap rates when comments are 

included. The lower triangle shows when comments are 
excluded. 

CAT ASP C\C++ FORT JAVA LISP MATL PAS PERL PHYT PRO 

ASP - 1% 1% 1% 0% 3% 0% 1% 0% 1% 
C\C 1% - 1% 4% 1% 0% 1% 0% 0% 20%
FOR 2% 2% - 4% 0% 22% 0% 23% 1% 5% 
JAVA 0% 7% 0% - 1% 3% 1% 5% 2% 1% 
LISP 0% 1% 1% 0% - 0% 1% 1% 0% 1% 
MATL 1% 2% 18% 6% 0% - 0% 36% 1% 7% 
PAS 1% 1% 2% 1% 1% 1% - 0% 2% 1% 
PERL 1% 2% 9% 6% 2% 23% 0% - 2% 6% 
PHYT 0% 2% 3% 5% 1% 5% 0% 6% - 0% 
PRO 1% 1% 13% 3% 0% 18% 1% 13% 2% - 

 

The upper triangle of the table lists the overlaps when features 
are extracted from both the code and the comments. The lower 
triangle, on the other hand, lists the overlaps when features are 
gathered only form the code. We observe that in both cases, 
Matlab class has the highest overlap percentages with other 
language classes (especially with Perl) and it is also the class 
with the highest false positive as well. It is also true that most of 
the examples that are not correctly classified are assigned to the 
Matlab class. On the other hand the effect of the use of 
comments in programming language classification depends on 

the language. Although comments help to increase the overall 
accuracy of classification, they have a bad effect on identification 
of Fortran, Matlab, Pascal and Prolog classes. 

5.2 Application Topic Classification 
To test our method for topical classification we performed five 
different experiments on different data sets using combinations 
of the three types of features: single words, lexical phrases and 
bigrams.  In each experiment, we chose 100 features from each 
of 11 categories and generated a set of 1100 features. Features 
were selected according to their expected entropy loss. Table 5 
lists the abbreviations of experiments and the feature types used 
in each experiment. These sets were generated from both the 
Sourceforge and the Ibiblio archive. 

Table 5. Types of features used in each experiment 
EXP. TOP TEN FEATURES EXTRACTED 
SW Top 100 features from single words  
LP Top 100 features from lexical phrases  
2G Top 100 features from bigrams  
SW2G Top 100 features from single words and bigrams 
SWLP Top 100 features from single words and lexical phrases  

 

The outputs of the feature extractor were promising for each 
category. We were able to select the features, from which one 
can easily guess the corresponding category. For example, Table 
6 tabulates the top five words and lexical phrases extracted from 
the Ibiblio Archive. It is not surprising that we have “calculator” 
for the mathematics class, “high score” for the games class and 
“database” for the database class. On the other hand, some of the 
features are shared among the categories since they have 
multiple meanings for example “play” appears in both the sound 
and the games classes.  Another observation is that the utilities 
category has more negative features than positive ones. This 
means that the words like “play” and “client” are unlikely to 
appear in the utility programs and the “socket.h” library is not 
included in most of them.  

To evaluate our classifier and to be able to find the appropriate 
penalties for training, we first applied 5-fold cross validation to 
each data set (Sorceforge and Ibiblio) separately and to the 
combined sets. In 5-fold cross validation, the data is divided into 
5 subsets and each time one subset is used as the test set and the 
4 subsets are used for training. We did not use the same archive 
for both training and testing because the number of examples in 
some of the categories in an archive were not sufficient. Another 
factor about our data is that it is unbalanced. For example the 
number of programs in the word processors category is 11 where 
it is 270 in the network category. Thus, we used the weighted 
version of the SVM and changed the penalty parameters (C) for 
categories. Penalty for each category is computed by multiplying 
the weights by the specified cost C. We chose the linear kernel 
function and assigned 100 to C.  

Table 7 lists the accuracies of the cross validations performed on 
the Sourceforge, the Ibiblio archive and the on the combined sets 
for each experiment. We have 2 experiments for the combined 
sets because one set uses the features extracted from the Ibiblio 
Linux and the other uses the features extracted from Sourceforge. 



Table 6. Top ten words and lexical phrases from each category of Ibiblio archive 
CLASS TOP  FIVE  WORDS TOP  FIVE  LEXICAL PHRASES 
CIRCUITS circuit, spice, pin, simulator, transistor standard cell, transfer curve, circuit interface, cell library, short channel 
DATABASE sql, database, query, postgresql, libpq the database, database system, database server, sql statement, method code 
DEVELOPMENT class, thread.h, new.h, iostream.h, malloc class library, first item, class hierarchy, global function, header file 
GAMES game, games, play, score, xlib.h high score, new game, new level, computer player, the map 
GRAPHICS image, jpeg, gif, ppm, pixel an image, independent jpeg, jpeg library, jpeg software, image file 
MATH calculator, mathematics, exponent, math, fractal,  plot function, radix mode, real numbers, palette change, complex numbers 
NETWORK socket.h, netdb.h, in.h, ip, inet.h ip address, security fix, error output, backup copy, libc version 
SERIAL COMM. modem, zmodem, voice, fax, serial serial port, modem device, script language, voice modem, incoming data 
SOUND soundcard.h, sound, audio, mixer, soundcard sound driver, cd player, sound card, audio device, the track 
UTILITIES -game, -netdb.h, -socket.h, -client, floppy floppy disk, illegal value, block device, other locale, appropriate system 
WORD PROCES. tex, dvi, latex, lyxrc, tetex latex command, style sheet, dvi driver, default value, vertical scale 

 

Table 7. Cross validation accuracies. In the third data set 
features used are extracted from Sourceforge and in the 

fourth data set features used are extracted from the 
Ibiblio Archive. 

DATA SET ACCURACY 

 SW  LP 2G SW2G SWLP 

SOURCEFORGE 43.20% 19.64% 27.79% 38.37% 41.39% 

IBIBLIO 72.51% 49.96% 56.24% 72.36% 72.58% 
COMBINED  
(SOURCEFORGE) 64.13% 33.73% 36.10% 56.77% 60.22% 

COMBINED 
 (IBIBLIO) 64.55% 46.50% 50.53% 67.34% 66.80% 

 

Table 8. TP, FP rates and the overall accuracies for each 
experiment using the features from Ibiblio 

CLASS SW 2G LP SW2G SWLP 

 TP % FP % TP % FP % TP % FP % TP % FP % TP % FP %

CIRCUIT 18.51 2.08 28.57 14.02 21.43 2.46 28.57 1.60 28.57 1.11 

DATAB.  60.60 1.11 38.71 3.21 19.35 2.96 45.16 1.11 75.16 0.99 

DEVEL. 40.38 4.05 50.94 5.84 26.41 11.55 54.72 5.58 50.94 5.84 

GAMES 71.66 4.58 69.17 4.02 60.83 6.24 80.83 3.88 80.00 4.02 

GRAPH. 64.60 5.63 56.64 8.24 50.44 9.20 72.57 10.16 70.80 8.79 

MATH 30.00 1.11 6.67 2.34 30.00 3.45 26.67 1.36 30.00 1.85 

NET.  82.66 7.38 59.33 4.48 52.57 3.91 84.00 4.34 82.00 5.21 

SERIAL.  31.43 1.48 11.43 1.61 25.71 6.45 42.86 0.87 34.28 0.50 

SOUND 77.95 2.66 65.08 4.33 49.21 5.03 82.54 2.24 83.33 2.94 

UTIL. 67.15 10.94 34.53 4.13 40.29 7.55 52.52 6.84 54.68 6.84 

WORD P. 5.55 0.12 23.53 2.55 29.41 2.79 17.65 0.36 23.53 0.97 

ACCUR. 64.25% 50.24% 44.65% 66.39% 65.80% 

 

When we compare the two data sets, Ibiblio performs better than 
the Sourceforge. Although we apply cross validation, the reason 
for the poor performance appears to be the number of examples 
in the Sourceforge data. For most of the categories, we used 
fewer examples from the Sourceforge than the Ibilio archive. As 
far as the types of features are concerned, single words together 
with lexical phrases are the most helpful feature group in  
classification. Although, lexical phrases alone do not perform 
well, they increase the accuracy of the cross validation on Ibiblio 
archive when used with the single words. Single words with 

bigrams are also useful and outperform the other techniques for 
the last data set.  

Secondly, we split our combined data set to two subsets and used 
one subset for training and the other for testing. We used the 
features extracted from the Linux archive in this experiment. 
Table 8 shows the true positive and false positive rates and the 
overall accuracy of the SVM classifier trained by the features 
from the Ibiblio Archive and tested on the combined set. Similar 
to the programming language classification, single words when 
used with bigrams and lexical phrases perform the best on 
overall. This is also true for each category but the utilities. 
Between the categories, the database, games, graphics, network 
and the sound classes performed much better than the other 
classes. This is again related to the few examples we have in the 
other classes and the fuzziness of the utilities class. We observe 
that the utilities class always has a high false positive rate. 

Table 9. TP, FP rates and the overall accuracies for 
each experiment using the features from Sourceforge

CLASS SW 2G LP SW2G SWLP 

 TP % FP % TP % FP % TP % FP % TP % FP % TP % FP %

CIRCUIT 17.86 1.48 25.00 12.80 21.43 3.81 32.14 2.95 25.00 1.84 
DATAB. 41.93 0.86 19.35 1.48 16.13 2.83 51.61 1.48 38.71 0.99 
DEVEL. 50.94 5.46 26.41 6.98 20.75 6.34 54.71 1.05 37.74 4.95 
GAMES 74.17 4.30 39.17 1.32 37.50 12.62 77.50 4.58 71.67 6.10 
GRAPH. 82.30 14.29 35.40 8.24 38.05 12.91 70.80 15.80 73.45 16.08
MATH 43.33 1.48 36.67 3.33 23.33 1.48 36.67 1.36 43.33 1.23 
NET.  80.00 2.60 22.67 1.01 22.00 1.30 46.67 1.44 68.67 2.75 
SERIAL. 22.86 1.61 20.00 5.71 22.86 5.46 25.71 1.61 25.71 1.36 
SOUND 86.51 4.61 47.62 1.97 57.14 25.59 73.02 7.69 75.40 7.41 
UTIL. 38.13 3.70 16.55 2.99 12.95 4.42 23.02 3.28 40.29 4.70 
WORD P. 17.65 1.21 23.53 2.55 23.53 2.67 29.41 2.06 0.00 1.09 

ACCUR. 64.60% 30.05% 30.88% 52.97% 57.48% 

 

In the third step, the classifier was trained with features from the 
Sourceforge archive and tested on the combined data set. Table 9 
shows the accuracy of the SVM classifier for each category.  This 
time experiments on single words have the highest performance.  
The classes that perform the best do not change for this 
experiment but the false positive rate of the graphics category is 
worse than the others. When the two data sets are compared, not 



surprisingly the accuracy is higher when we train our classifier 
with features from the Ibiblio archive. Please note that we used 
the same penalties in each method of the experiments to be able 
to compare the feature types. However, weights can be different 
for each feature type to increase the overall accuracy. 

6. CONCLUSIONS AND FUTURE WORK 
Our experiments show that source code can be accurately 
classified with respect to programming language and application 
category. However the accuracy of this classification depends on 
many factors. The variance of our data, the application categories 
in concern, the selection of features to use, the information 
retrieval techniques and the programming language can affect 
performance.  

We demonstrate an SVM based approach to programming 
language and topic classification of programs. We train our 
classifier with automatically extracted features from the code, 
comments and the README files. For programming language 
classification, these features are tokens in the code and words in 
the comments. For topical classification, we use words, bigrams 
and lexical phrases in the comments and README files, and the 
header file names in the code as features. We perform feature 
selection by expected entropy loss values. We train an SVM 
classifier using these features. Though our work shows 
promising results, there is much to explore, including the choice 
and number of feature vectors. Using values such as term 
frequency in the vectors, instead of binaries can improve the 
performance of our classifier. Our work for programming 
language classification can also be extended by adding more 
syntactic features together with the words. We believe that other 
properties of programming languages such as the way comments 
are included, or the tokens used for arithmetic or logical 
operations, will help in identifying the programming language. 

These results imply that large archive collections of mixed data 
such as text and source code can automatically be effectively 
classified and categorized. We believe this will lead to more 
effective use of such archives and a reduction in duplication of 
programmer effort. 
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