
What’s the code?
Automatic Classification of Source Code Archives

Secil Ugurel1, Robert Krovetz2, C. Lee Giles1,2,3, David M. Pennock2,

Eric Glover2, Hongyuan Zha1

1Department of Computer Science

and Engineering
The Pennsylvania State University
220 Pond Lab., University Park, PA

16802

{ugurel, zha} @cse.psu.edu

2NEC Research Institute
4 Independence Way, Princeton, NJ

08540

{krovetz, dpennock,
compuman}

@research.nj.nec.com

3School of Information Sciences and
Technology

The Pennsylvania State University
001 Thomas Bldg, University Park,

PA, 16802

giles@ist.psu.edu

ABSTRACT
There are various source code archives on the World Wide Web.
These archives are usually organized by application categories
and programming languages. However, manually organizing
source code repositories is not a trivial task since they grow
rapidly and are very large (on the order of terabytes). We
demonstrate machine learning methods for automatic
classification of archived source code into eleven application
topics and ten programming languages. For topical classification,
we concentrate on C and C++ programs from the Ibiblio and the
Sourceforge archives. We show that a support vector machine
(SVM) classifier can be trained on examples of a given
programming language or programs in a specified category.

1. INTRODUCTION
Software reuse is the process of creating software systems from
existing software rather than building software systems from
scratch. Software reuse is an old idea but for various reasons has
not become a standard practice in software engineering [13] even
thought software reuse should increase a programmer’s
productivity by reducing the time spent on developing similar
codes. Seemingly, programmers benefit from a repository where
pre-written codes are archived since they have reportedly have
over 100,000 users. However, software reuse does not only mean
use of existing code [5]; it also involves organization and use of
conceptual information. Thus, there should be methods so that
the programmer locates the code quickly and easily.

There are various source code archives and open source sites
throughout the World Wide Web. If the programs in such sites

are correctly classified and topically components are useful
classifications, software reuse would be greatly facilitated. But
how are the software programs categorized? In most archives
programs are classified according to programming language and
application topic. A programmer attempting to organize a
collection of programs would most likely categorize resources
based on the source code itself, some design specifications and
the documentation provided with the program. But to understand
which application category the code belongs to, it is very likely
the programmer would try to gather natural language resources
such as comments and README files rather than the explicit
representation of algorithm itself. Information in natural
language can be extracted from either external documentation
such as manuals and specifications or from internal
documentation such as comments, function names and variable
names. This seems reasonable since algorithms do not clearly
reflect human concepts but comments and identifiers do [8]. But
to identify the programming language, the programmer or
administrator will look at the code itself and distinguish some of
the keywords without trying to understand the algorithm. This
should be straightforward since almost every language has its
own reserved keywords and syntax. However, archives can be
large and are rapidly changing, which makes manual
categorization of software both costly and time consuming. If our
goal is automatic categorization, then we believe it is a good idea
to take advantage not only of the natural language information
available in documentation but also the code itself.

Researchers have applied different learning techniques for text
categorization: bayesian models, nearest neighbor classifiers,
decision trees, support vector machines (SVMs) and neural
networks. In text classification, each document in a set is
represented as a vector of words. New documents are assigned to
predefined categories using textual content. Recently, SVMs
have been shown to yield promising results for text
categorization [6, 7, 11]. Although programming languages are
written in a manner different from natural languages and have
some commented information, programming languages have

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGKDD ’02, July 23-26, 2002, Edmonton, Alberta, Canada.
Copyright 2002 ACM 1-58113-567-X/02/0007…$5.00.

specific keywords and features that can be identified. Using
these characteristics we show that text categorization techniques
can also be effective for source code classification.

To build a classifier our first and maybe most important step is
the extraction of features. For programming language
classification, our feature set consists of ‘tokens’ in the source
code and/or words in the comments. For the topical
classification, we generate our features from words, bigrams,
lexical phrases extracted from comments and README files,
and header file names extracted from the source code. We
perform feature selection using the expected entropy loss on
these features. Each program is then represented as a binary
feature vector. For each specific class, we use these vectors to
train an SVM classifier. In order to compare the effectiveness of
our approach, we measure the true-positive and false-positive
rates for each class and the overall accuracy.

The rest of the paper is organized as follows. Section 2
summarizes background information and related work. In Section
3 we introduce our data set. In section 4 we describe our
methodology and algorithm. Results are presented in Section 5
and conclusions are in Section 6.

2. BACKGROUND
2.1 Related Work
Various software identification and reuse problems explained in
the literature vary in terms of techniques they use and the
features of programs they take advantage of.

Rosson and Carroll [18] examined the reuse programming for
Smalltalk language and environment. They presented empirical
results of the reuse of user interface classes by expert Smalltalk
programmers. They observed extensive reuse of uses and that the
programmers searched implicit specifications for reuse of the
target class and evaluated the contextualized information
repeatedly. The programmers used and adapted a code when the
information provided matched their goals. Etzkorn and Davis [8]
designed a system called Patricia, which automatically identifies
object-oriented software components through understanding
comments and identifiers. They find object-oriented code more
reusable than functionally oriented. Patricia uses a heuristic
method deriving information from linguistic aspects of comments
and identifiers and from other non-linguistic aspects of object-
oriented code such as a class hierarchy. Merkl [16] suggested
organizing a library of reusable software components by using
self-organizing neural networks. Their approach is based on
clustering the software components into groups of semantically
similar components. They use keywords automatically extracted
from the manual of software components. Each component is
represented by this set of keywords, which does not include stop
word lists. These representations are then utilized to build the
keywords-components matrix or the vector space model of the
data. Each column of the matrix, which corresponds to the
software components, is used to train the artificial neural
network. Search tools for source code are also important for
software reuse. Chen et.al. [4] build a tool called CVSSearch that
uses fragments of source code using Concurrent Version Systems
(CVS) comments and makes use of the fact that CVS comments
describe the lines of code involved. Evaluations of their

technique show that CVS comments provide valuable
information that complements content based matching.
Henninger [10] also studied software components. Their
approach investigates the use of a retrieval tool called
CodeFinder, which supports the process of retrieving software
components when information needs are not well defined and the
users are not familiar with vocabulary used in the repository.

2.2 Expected Entropy Loss
How do we decide which features to select? Expected entropy
loss is a statistical measure that has recently been successfully
applied to the problem of feature selection for information
retrieval [8]. Expected entropy loss is computed separately for
each feature. It ranks the features that are common in both the
positive set and the negative set lower and ranks the features
effective discriminators for a class higher. Glover et. al. used this
method for feature selection before training a binary classifier
[9]. We use the same technique. Feature selection increases both
effectiveness and efficiency since it removes non-informative
terms according to corpus statistics [19]. A brief description of
the theory is as follows [1].

Let C be the event that indicates whether a program is a member
of the specified class and let f be the event that the program
contains the specified feature. Let C and f be their negations
and Pr() their probability.

The prior entropy of the class distribution is
() () () ()CCCCe PrlgPrPrlgPr −−≡

The posterior entropy of the class when feature is present is
() () () ()fCfCfCfCfe PrlgPrPrlgPr −−≡

likewise, the posterior entropy of the class when the feature is
absent is

() () () ().PrlgPrPrlgPr fCfCfCfC
f

e −−≡

Thus the expected posterior entropy is
() ()f

f
effe PrPr +

and the expected entropy loss is
() ()f

f
effee PrPr +−

Expected entropy loss is always nonnegative, and
higher scores indicated more discrimininitory features.

2.3 Support Vector Machines
We use SVMs for a binary classification task. Due to space
restrictions, see [2,3] for more details. Support Vector Machines
can be robust and generally applicable for text categorization
problems and outperform other methods [11]. Its ability to handle
high dimension feature vectors, to reduce problems caused by
over-fitting and its robustness makes it a well-suited technique
for text classification tasks [15]. We choose a SVM classifier
because our problem is similar to text classification.

3. DATA AND FEATURE SETS
We gathered our sample source code files and projects from
different archives on the Internet including the Ibiblio Linux

Archive1, Sourceforge2, Planet Source Code3, Freecode4 and from
pages on the web that include code snippets.

Ibiblio archives over 55 gigabytes of Linux programs and
documentation freely available for download via FTP and/or
WWW access. The Ibiblio archive includes binary files, images,
sound and documentation as well as the source files of programs.
It also archives different versions of the same project. The
primary programming languages of the projects in the archive are
C and C++. The projects are not classified into programming
languages. The Ibiblio1 archive is organized hierarchically into
the following categories: applications, commercial, development
tools, games, hardware and drivers, science and system tools.
SourceForge.net2 is owned by Open Source Development
Network, Inc. and claims to be the world's largest open source
development website. At the time of our study SourceForge
hosted 33,288 projects and had 346,328 registered users. The
Sourceforge archive is categorized under 43 different
programming languages and 19 topics. Programming languages
include both popular languages such as C/C++, Java, Fortran and
Perl, and less popular ones such as Logo and Zope. Users also
have the capability of browsing Sourceforge projects by
development status, environment, intended audience, license,
natural language and operating system. Planet Source Code3
claims to be the largest public programmer database on the web.
During our analysis it had 4,467,180 lines of code. The code files
are not organized by application area. They have 9 programming
language categories. Free Code4 is also owned by Open Source
Development Network. The Free Code archive is organized
under 10 topical categories and includes the programming
language information for each project.

To train the topic classifier we downloaded examples from the
Ibiblio and the Sourceforge archives, and concentrated on C/C++.
For programming language classification we downloaded files
from all of the resources. For our analysis, we select ten popular
programming languages: ASP, C/C++, Fortran, Java, Lisp,
Matlab, Pascal, Perl, Python and Prolog. These popular
languages are used in a wide range of applications. For each
class we randomly grouped our samples into two sets for training
and testing. The training data consist of 100 source code files
and test data consist of 30 source code files from each category.
Our experiments include those with comments included in the
files and without comments. Although comments are used for
giving contextual information about the program, we speculate
that they might also be helpful in finding out the programming
language of the code. As far as the topics are concerned, we
selected categories/subcategories that contain sufficient number
of projects in both resources (Ibiblio and Sourceforge) and
eliminated the ones with a few projects or with no source code
files in them. Another reason that we chose a different
categorization was to evaluate the chance of mis-classification,
making the task more difficult. Thus, we have category pairs that
are well separated (e.g., "database" and "circuits") as well as
category pairs that are quite similar (e.g., "games" and

1 www.ibiblio.org/pub/linux
2 www.sourceforge.net
3 www.planetsourcecode.com
4 www.freecode.com

"graphics"). Table 1 lists our categories and the number of
software programs we used for each from 2 resources.

Table 1. Number of programs used from each topic

CATEGORY IBIBLIO SOURCEFORGE

CIRCUITS 30 25
DATABASE 31 33
DEVELOPMENT 75 30
GAMES 209 31
GRAPHICS 190 36
MATHEMATICS 30 30
NETWORK 270 30
SERIAL COMMUNICATION 40 30
SOUND 222 31
UTILITIES 245 31
WORD PROCESSORS 11 24

4. METHODOLOGY
Our system consists of three main components; the feature
extractor, vectorizer and the SVM classifier. There are also four
supplementary modules, which are necessary for topical
classification of programs: the text extractor, filter, phrase
extractor and the stemmer. Our system works in two distinct
phases: training and testing. Each of the components and phases
are explained in the sections below.

4.1 Feature Extractor
Examples in each category are considered as the positives and
the rest of the examples are counted as negatives. We compute
the probabilities for the expected entropy loss of each feature as
follows:

() =CPr

() ()CC Pr1Pr −=

() =fPr

() ()ff Pr1Pr −=

() =fCPr

() ()fCfC Pr1Pr −=

()=fCPr

() ()fCfC Pr1Pr −=

The feature extractor indexes each file and computes the
expected entropy loss for each feature. Then the features are
sorted by descending expected entropy loss. Some features that
appear more frequently in the negative set might also have high
expected entropy loss values. We call these features “negative
features”. Thus, a feature that has a higher frequency in the
negative set can also be distinguishing for a category. Our feature
extractor does not eliminate stop words and can take bigrams
into account. It can also consider lexical phrases as features
using the output of the phrase extractor module. By default, the

amplesnumberOfEx
plessitiveExamnumberOfPo

amplesnumberOfEx
FeatureFamplesWithnumberOfEx

FeatureFamplesWithnumberOfEx
atureFplesWithFesitiveExamnumberOfPo

FoutFeatureamplesWithnumberOfEx
tFeatureFplesWithousitiveExamnumberOfPo

feature extractor module removes the features that only appear in
a single file. It is also capable of eliminating features that occur
below a given threshold of positive and negative examples.

4.1.1 Programming Language Feature Extractor
Features correspond to tokens in the code and words in the
comments. We define a “token” to be any alphabetical sequence
of characters separated by non-alphabetical characters. We do not
consider any numeric values or operators as tokens. Tokens are
gathered by splitting the source code text at any non-alphabetical
character such as white space. For example, in an expression like
“if (topicClass10 = ’network’)”, the tokens will be “if”,
“topicClass” and “network”.

The top 20 features selected by expected entropy loss from each
of 10 classes were used to generate a set of 200 features. We
excluded features that occurred in less than 10% of both the
positive and negative set in the vocabulary.

4.1.2 Application Topic Feature Extractor
The feature extractor for topic classification uses 3 different
resources: comments, README files and the code. The
extraction of comments from the source code files and
identification of README files for each program is performed
by the text extractor module. We do not run the feature extractor
directly on the output of the text extractor but preprocess the data
by filtering, stemming and phrase extraction modules. The filter
module is written to eliminate data that are uninformative for
identification of an application category, such as license and
author information, which appear in any program. Although the
expected entropy loss technique is likely to rank these features
very low, filtering decreases the size of our files and improves
the speed of our algorithms.

We used KSTEM for grouping morphological variants. KSTEM
uses lexicon and morphological rules to determine which word
forms should be grouped together. It is designed to avoid
grouping word forms that are not related in meaning [13].
Stemming is useful because, for example, "colors" and "color",
which typically refer to the same concept, are merged into one
feature. Lexical phrases are important because they reduce
ambiguity (they are usually less ambiguous than the component
words in isolation). In addition, sometimes terms are only
meaningful as phrases (i.e. “work station”). That is, sometimes a
phrase is essentially a word with an embedded space.

We combine the README files and the comments for each
program separately and pull out single words, bigrams and
lexical phrases. From the code itself we just include the header
file names. The top 100 features from each 11 categories are
combined to generate a set of 1100 features. We believe 100
features would be sufficient for a good classification. We have a
selection threshold of 7.5% for application topic classification.

4.2 Vectorizer
The vectorizer generates feature vectors for each program/source
code file. We do not consider the frequency of the features. The
elements of the vectors consist of 1s and 0s. A ‘1’ in a feature
vector means that the corresponding feature exists in the
corresponding example and a ‘0’ means that it does not. The

vectorizer module uses the features extracted from the training
data for creating vectors for both the test and the training set.

4.3 SVM Classifier
The SVM classifier is trained by vectors generated from the
training set in which each document has a class label. SVM
classifies the test data, which are again represented as vectors. It
returns the overall accuracy of the classification, which is the
percentage of programs that are categorized correctly.

We use “LIBSVM – A Library for Support Vector Machines” by
Chang and Lin [3], which is an integrated software for support
vector classification, regression and distribution estimation.
LIBSVM is capable of performing cross validation, multi-
categorization and using different penalty parameters in the SVM
formulation for unbalanced data. LIBSVM uses the “one-against-
one” approach [12] for multi-class classification. In the one-
against-one approach, k(k-1)/2 classifiers are constructed where
k is the number of classes. Each classifier trains data from two
different classes. Chang and Lin [3] utilize a voting strategy
where each example is voted against a class or not in each binary
classification. At the end the program is assigned to the class
with the maximum number of votes. In the case that two classes
have the same number of votes, the one with the smaller index is
selected. There is also another approach for multi-class
classification called “one-against-all“. In this technique, the
number of SVM models as many as the number of classes are
constructed. For each class, the SVM is trained with all the
examples in that class as positives and the rest of the examples
as negatives. Previous research has shown that one-against-one
approach for multi-class categorization outperforms the one-
against-all [17].

5. EXPERIMENTAL RESULTS
5.1 Programming Language Classification
For programming language classification, we performed our
experiments both with the comments included in the code and
without comments to ascertain the impact of comments. The
feature extraction step gives us a list of words that best describes
a programming language class.

Table 2. Top 10 features for each class
CLASS COMMENTS ARE INCLUDED COMMENTS ARE EXCLUDED

ASP asp, dim, vbscript, td, head asp, vbscript, dim, td,
language

C\C++ struct, void, sizeof, include,
unsigned

struct, void, ifdef, sizeof,
include

FORTRAN subroutine, pgslib, logical,
implicit, dimension

subroutine, logical, pgslib,
dimension, implicit

JAVA throws, jboss, java, ejb, lgpl jboss, throws, java, package,
util

LISP defun, lisp, setq, emacs, progn defun, let, setq, prong, defvar
MATLAB zeros, -type, denmark,

veterinary, -license
zeros, -name, -type, -string,
plot

PASCAL unit, sysutils, procedure,
synedit, mpl

implementation, unit, luses,
procedure, sysutils

PERL speak, voice, my, said, print my, speak, voice, said, print
PYTHON def, moinmoin, py, jhermann,

hermann
def, moinmoin, py, copying,
rgen

PROLOG prolog, predicates, diaz, descr,
fail

-if, fail, built, bip, atom

Table 2 lists only the top 5 words when comments are used with
the code and when comments are filtered. A minus sign indicates
the negative features (ones that are more frequent in the negative
set compared to the positive set). We generated a set of 200
features by taking the top 20 features from each class. Our
training data consist of 100 source code files and test data consist
of 30 source code files from each language class.

Table 3 lists the true-positive rates and false-positive rates for
each language class and the overall accuracy of our classifier.

Table 3. TP rate, FP rate and the accuracy of the classifier
 COMMENTS ARE INCLUDED COMMENTS ARE EXCLUDED

CLASS TP RATE FP RATE TP RATE FP RATE
ASP 100.00% 0.34% 90.00% 1.75%
C\C++ 93.33% 0.00% 93.33% 0.00%
FORTRAN 81.48% 0.68% 95.24% 0.35%
JAVA 70.00% 0.00% 63.33% 0.00%
LISP 93.33% 0.00% 83.33% 0.00%
MATLAB 96.30% 7.53% 100.00% 8.39%
PASCAL 86.21% 0.00% 86.66% 0.00%
PERL 100.00% 1.03% 93.33% 1.05%
PHYTON 96.66% 0.00% 89.65% 1.05%
PROLOG 72.41% 1.37% 82.14% 0.00%

ACCURACY 89.041% 87.41%

We think that the performance of each class highly depends on
the programming language that is being classified and the
overlap between the tokens in source code files. For this reason,
we explored the intersections between the top 100 features of
each class and presented the results in Table 4.

Table 4. Overlap of features between categories. The
upper triangle shows the overlap rates when comments are

included. The lower triangle shows when comments are
excluded.

CAT ASP C\C++ FORT JAVA LISP MATL PAS PERL PHYT PRO

ASP - 1% 1% 1% 0% 3% 0% 1% 0% 1%
C\C 1% - 1% 4% 1% 0% 1% 0% 0% 20%
FOR 2% 2% - 4% 0% 22% 0% 23% 1% 5%
JAVA 0% 7% 0% - 1% 3% 1% 5% 2% 1%
LISP 0% 1% 1% 0% - 0% 1% 1% 0% 1%
MATL 1% 2% 18% 6% 0% - 0% 36% 1% 7%
PAS 1% 1% 2% 1% 1% 1% - 0% 2% 1%
PERL 1% 2% 9% 6% 2% 23% 0% - 2% 6%
PHYT 0% 2% 3% 5% 1% 5% 0% 6% - 0%
PRO 1% 1% 13% 3% 0% 18% 1% 13% 2% -

The upper triangle of the table lists the overlaps when features
are extracted from both the code and the comments. The lower
triangle, on the other hand, lists the overlaps when features are
gathered only form the code. We observe that in both cases,
Matlab class has the highest overlap percentages with other
language classes (especially with Perl) and it is also the class
with the highest false positive as well. It is also true that most of
the examples that are not correctly classified are assigned to the
Matlab class. On the other hand the effect of the use of
comments in programming language classification depends on

the language. Although comments help to increase the overall
accuracy of classification, they have a bad effect on identification
of Fortran, Matlab, Pascal and Prolog classes.

5.2 Application Topic Classification
To test our method for topical classification we performed five
different experiments on different data sets using combinations
of the three types of features: single words, lexical phrases and
bigrams. In each experiment, we chose 100 features from each
of 11 categories and generated a set of 1100 features. Features
were selected according to their expected entropy loss. Table 5
lists the abbreviations of experiments and the feature types used
in each experiment. These sets were generated from both the
Sourceforge and the Ibiblio archive.

Table 5. Types of features used in each experiment
EXP. TOP TEN FEATURES EXTRACTED
SW Top 100 features from single words
LP Top 100 features from lexical phrases
2G Top 100 features from bigrams
SW2G Top 100 features from single words and bigrams
SWLP Top 100 features from single words and lexical phrases

The outputs of the feature extractor were promising for each
category. We were able to select the features, from which one
can easily guess the corresponding category. For example, Table
6 tabulates the top five words and lexical phrases extracted from
the Ibiblio Archive. It is not surprising that we have “calculator”
for the mathematics class, “high score” for the games class and
“database” for the database class. On the other hand, some of the
features are shared among the categories since they have
multiple meanings for example “play” appears in both the sound
and the games classes. Another observation is that the utilities
category has more negative features than positive ones. This
means that the words like “play” and “client” are unlikely to
appear in the utility programs and the “socket.h” library is not
included in most of them.

To evaluate our classifier and to be able to find the appropriate
penalties for training, we first applied 5-fold cross validation to
each data set (Sorceforge and Ibiblio) separately and to the
combined sets. In 5-fold cross validation, the data is divided into
5 subsets and each time one subset is used as the test set and the
4 subsets are used for training. We did not use the same archive
for both training and testing because the number of examples in
some of the categories in an archive were not sufficient. Another
factor about our data is that it is unbalanced. For example the
number of programs in the word processors category is 11 where
it is 270 in the network category. Thus, we used the weighted
version of the SVM and changed the penalty parameters (C) for
categories. Penalty for each category is computed by multiplying
the weights by the specified cost C. We chose the linear kernel
function and assigned 100 to C.

Table 7 lists the accuracies of the cross validations performed on
the Sourceforge, the Ibiblio archive and the on the combined sets
for each experiment. We have 2 experiments for the combined
sets because one set uses the features extracted from the Ibiblio
Linux and the other uses the features extracted from Sourceforge.

Table 6. Top ten words and lexical phrases from each category of Ibiblio archive
CLASS TOP FIVE WORDS TOP FIVE LEXICAL PHRASES
CIRCUITS circuit, spice, pin, simulator, transistor standard cell, transfer curve, circuit interface, cell library, short channel
DATABASE sql, database, query, postgresql, libpq the database, database system, database server, sql statement, method code
DEVELOPMENT class, thread.h, new.h, iostream.h, malloc class library, first item, class hierarchy, global function, header file
GAMES game, games, play, score, xlib.h high score, new game, new level, computer player, the map
GRAPHICS image, jpeg, gif, ppm, pixel an image, independent jpeg, jpeg library, jpeg software, image file
MATH calculator, mathematics, exponent, math, fractal, plot function, radix mode, real numbers, palette change, complex numbers
NETWORK socket.h, netdb.h, in.h, ip, inet.h ip address, security fix, error output, backup copy, libc version
SERIAL COMM. modem, zmodem, voice, fax, serial serial port, modem device, script language, voice modem, incoming data
SOUND soundcard.h, sound, audio, mixer, soundcard sound driver, cd player, sound card, audio device, the track
UTILITIES -game, -netdb.h, -socket.h, -client, floppy floppy disk, illegal value, block device, other locale, appropriate system
WORD PROCES. tex, dvi, latex, lyxrc, tetex latex command, style sheet, dvi driver, default value, vertical scale

Table 7. Cross validation accuracies. In the third data set
features used are extracted from Sourceforge and in the

fourth data set features used are extracted from the
Ibiblio Archive.

DATA SET ACCURACY

 SW LP 2G SW2G SWLP

SOURCEFORGE 43.20% 19.64% 27.79% 38.37% 41.39%

IBIBLIO 72.51% 49.96% 56.24% 72.36% 72.58%
COMBINED
(SOURCEFORGE) 64.13% 33.73% 36.10% 56.77% 60.22%

COMBINED
 (IBIBLIO) 64.55% 46.50% 50.53% 67.34% 66.80%

Table 8. TP, FP rates and the overall accuracies for each
experiment using the features from Ibiblio

CLASS SW 2G LP SW2G SWLP

 TP % FP % TP % FP % TP % FP % TP % FP % TP % FP %

CIRCUIT 18.51 2.08 28.57 14.02 21.43 2.46 28.57 1.60 28.57 1.11

DATAB. 60.60 1.11 38.71 3.21 19.35 2.96 45.16 1.11 75.16 0.99

DEVEL. 40.38 4.05 50.94 5.84 26.41 11.55 54.72 5.58 50.94 5.84

GAMES 71.66 4.58 69.17 4.02 60.83 6.24 80.83 3.88 80.00 4.02

GRAPH. 64.60 5.63 56.64 8.24 50.44 9.20 72.57 10.16 70.80 8.79

MATH 30.00 1.11 6.67 2.34 30.00 3.45 26.67 1.36 30.00 1.85

NET. 82.66 7.38 59.33 4.48 52.57 3.91 84.00 4.34 82.00 5.21

SERIAL. 31.43 1.48 11.43 1.61 25.71 6.45 42.86 0.87 34.28 0.50

SOUND 77.95 2.66 65.08 4.33 49.21 5.03 82.54 2.24 83.33 2.94

UTIL. 67.15 10.94 34.53 4.13 40.29 7.55 52.52 6.84 54.68 6.84

WORD P. 5.55 0.12 23.53 2.55 29.41 2.79 17.65 0.36 23.53 0.97

ACCUR. 64.25% 50.24% 44.65% 66.39% 65.80%

When we compare the two data sets, Ibiblio performs better than
the Sourceforge. Although we apply cross validation, the reason
for the poor performance appears to be the number of examples
in the Sourceforge data. For most of the categories, we used
fewer examples from the Sourceforge than the Ibilio archive. As
far as the types of features are concerned, single words together
with lexical phrases are the most helpful feature group in
classification. Although, lexical phrases alone do not perform
well, they increase the accuracy of the cross validation on Ibiblio
archive when used with the single words. Single words with

bigrams are also useful and outperform the other techniques for
the last data set.

Secondly, we split our combined data set to two subsets and used
one subset for training and the other for testing. We used the
features extracted from the Linux archive in this experiment.
Table 8 shows the true positive and false positive rates and the
overall accuracy of the SVM classifier trained by the features
from the Ibiblio Archive and tested on the combined set. Similar
to the programming language classification, single words when
used with bigrams and lexical phrases perform the best on
overall. This is also true for each category but the utilities.
Between the categories, the database, games, graphics, network
and the sound classes performed much better than the other
classes. This is again related to the few examples we have in the
other classes and the fuzziness of the utilities class. We observe
that the utilities class always has a high false positive rate.

Table 9. TP, FP rates and the overall accuracies for
each experiment using the features from Sourceforge

CLASS SW 2G LP SW2G SWLP

 TP % FP % TP % FP % TP % FP % TP % FP % TP % FP %

CIRCUIT 17.86 1.48 25.00 12.80 21.43 3.81 32.14 2.95 25.00 1.84
DATAB. 41.93 0.86 19.35 1.48 16.13 2.83 51.61 1.48 38.71 0.99
DEVEL. 50.94 5.46 26.41 6.98 20.75 6.34 54.71 1.05 37.74 4.95
GAMES 74.17 4.30 39.17 1.32 37.50 12.62 77.50 4.58 71.67 6.10
GRAPH. 82.30 14.29 35.40 8.24 38.05 12.91 70.80 15.80 73.45 16.08
MATH 43.33 1.48 36.67 3.33 23.33 1.48 36.67 1.36 43.33 1.23
NET. 80.00 2.60 22.67 1.01 22.00 1.30 46.67 1.44 68.67 2.75
SERIAL. 22.86 1.61 20.00 5.71 22.86 5.46 25.71 1.61 25.71 1.36
SOUND 86.51 4.61 47.62 1.97 57.14 25.59 73.02 7.69 75.40 7.41
UTIL. 38.13 3.70 16.55 2.99 12.95 4.42 23.02 3.28 40.29 4.70
WORD P. 17.65 1.21 23.53 2.55 23.53 2.67 29.41 2.06 0.00 1.09

ACCUR. 64.60% 30.05% 30.88% 52.97% 57.48%

In the third step, the classifier was trained with features from the
Sourceforge archive and tested on the combined data set. Table 9
shows the accuracy of the SVM classifier for each category. This
time experiments on single words have the highest performance.
The classes that perform the best do not change for this
experiment but the false positive rate of the graphics category is
worse than the others. When the two data sets are compared, not

surprisingly the accuracy is higher when we train our classifier
with features from the Ibiblio archive. Please note that we used
the same penalties in each method of the experiments to be able
to compare the feature types. However, weights can be different
for each feature type to increase the overall accuracy.

6. CONCLUSIONS AND FUTURE WORK
Our experiments show that source code can be accurately
classified with respect to programming language and application
category. However the accuracy of this classification depends on
many factors. The variance of our data, the application categories
in concern, the selection of features to use, the information
retrieval techniques and the programming language can affect
performance.

We demonstrate an SVM based approach to programming
language and topic classification of programs. We train our
classifier with automatically extracted features from the code,
comments and the README files. For programming language
classification, these features are tokens in the code and words in
the comments. For topical classification, we use words, bigrams
and lexical phrases in the comments and README files, and the
header file names in the code as features. We perform feature
selection by expected entropy loss values. We train an SVM
classifier using these features. Though our work shows
promising results, there is much to explore, including the choice
and number of feature vectors. Using values such as term
frequency in the vectors, instead of binaries can improve the
performance of our classifier. Our work for programming
language classification can also be extended by adding more
syntactic features together with the words. We believe that other
properties of programming languages such as the way comments
are included, or the tokens used for arithmetic or logical
operations, will help in identifying the programming language.

These results imply that large archive collections of mixed data
such as text and source code can automatically be effectively
classified and categorized. We believe this will lead to more
effective use of such archives and a reduction in duplication of
programmer effort.

7. ACKNOWLEDGEMENTS
We gratefully acknowledge Gary Flake, Eren Manavoglu and
Burak Onat for their comments and contributions.

8. REFERENCES
[1] Abramson, N. Information Theory and Coding. McGraw-Hill,

New York, 1963.

[2] Bennett, K. P. and Campbell, C. Support vector machines:
Hype or Hallelujah. ACM Special Interest Group on
Knowledge Discovery and Data Mining (SIGKDD)
Expolarations 2(2):1-13, 2000.

[3] Chang, C. and Lin, C. LIBSVM: A library for support vector
machines. Software available at
http://www.csie.ntu.edu.tw/~cjlin/libsvm.

[4] Chen, A., Lee Y. K., Yao A. Y., and Michail A. Code search
based on CVS comments: A preliminary evaluation
(Technical Report 0106). School of Computer Science and
Eng., University of New South Wales, Australia, 2001.

[5] Creps, R. G., Simos, M. A., and Prieto-Diaz R. The STARS
conceptual framework for reuse processes, software
technology for adaptable, reliable systems (STARS)
(Technical Report). DARPA, 1992.

[6] Dumais, S. T. Using SVMs for text categorization. IEEE
Intelligent Systems Magazine, Trends and Controversies,
13(4):21-23, 1998.

[7] Dumais, S. T., Platt J., Heckerman D., and Sahami M.
Inductive learning algorithms and representations for text
categorization. In Proceedings of the ACM Conference on
Information and Knowledge Management, 148-155, 1998.

[8] Etzkorn, L. and Davis, C. G. Automatically identifying
reusable OO legacy code. IEEE Computer, 30(10): 66-71,
1997.

[9] Glover, E. J., Flake, G. W., Lawrence, S., Birmingham, W.
P., Kruger, A., Giles, L. C., and Pennock, D. M. Improving
category specific web search by learning query modification.
In Symposium on Applications and the Internet, 23-31. San
Diego, CA, US: IEEE, 2001.

[10] Henninger, S. Information access tools for software reuse.
Systems and Software, 30(3): 231-247, 1995.

[11] Joachims T. Text categorization with support vector
machines. In Proceedings of the Tenth European Conference
on Machine Learning, 137-142, 1999.

[12] Knerr, S., Personnaz, L., and Dreyfus, G. Single layer
learning revisited: a stepwise procedure for building and
training a neural network. In J. Fogelman (Ed.),
Neurocomputing: Algorithms, Architectures and
Applications. Springer-Verlag, 1990.

[13] Krovetz, R. Viewing Morphology as an Inference Process.
Artificial Intelligence, Volume 20, 277-294, 2000.

[14] Krueger, C. W. Software resuse. ACM Computing Surveys,
24(2):131-183, 1992.

[15] Kwok J. T. Automated text categorization using support
vector machines. In Proceedings of the International
Conference on Neural Information Processing,347-351,
1999.

[16] Merkl, D. Content-based software classification by self-
organization. In Proceedings of the IEEE International
Conference on Neural Networks, 1086-1091, 1995

[17] Platt, J.C., Cristianini, N., and Shawe-Taylor, J. Large
margin DAGs for multiclass classification. In Advances in
Neural Information Processing Systems, Volume 12, 547-
553. MIT Press, 2000.

[18] Rosson, M.B. and Carroll, J.M. The reuse of uses in
Smalltalk Programming. In ACM Transactions on
Computer-Human Interaction, Volume 3(3), 219-253, 1996.

[19] Yang, Y. and Pederson, J. A comparative study on feature
selection in text categorization. . In Proceedings of the
Fourteenth International Conference on Machine Learning
(ICML'97), 412-420, 1997.

