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ABSTRACT
Collaborative research has been increasingly popular and
important in academic circles. However, there is no open
platform available for scholars or scientists to effectively dis-
cover potential collaborators. This paper discusses Collab-
Seer, an open system to recommend potential research col-
laborators for scholars and scientists. CollabSeer discovers
collaborators based on the structure of the coauthor net-
work and a user’s research interests. Currently, three dif-
ferent network structure analysis methods that use vertex
similarity are supported in CollabSeer: Jaccard similarity,
cosine similarity, and our relation strength similarity mea-
sure. Users can also request a recommendation by selecting
a topic of interest. The topic of interest list is determined
by CollabSeer’s lexical analysis module, which analyzes the
key phrases of previous publications. The CollabSeer sys-
tem is highly modularized making it easy to add or replace
the network analysis module or users’ topic of interest anal-
ysis module. CollabSeer integrates the results of the two
modules to recommend collaborators to users. Initial exper-
imental results over the a subset of the CiteSeerX database
shows that CollabSeer can efficiently discover prospective
collaborators.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval—relevance feedbacks, retrieval models,
selection process; H.3.7 [Information Storage and Re-
trieval]: Digital Library—Collections, Dissemination; J.4
[Social and Behavior Sciences]: Sociology
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1. INTRODUCTION
Collaboration among scholars seems to be increasing in

popularity [15]. Research collaboration obviously brings more
points of view to research issues addressed. More impor-
tantly, studies show that scholars with higher levels of col-
laboration tend to be more productive [17, 23]. Therefore,
it would seem beneficial for researchers, especially young re-
searchers, to find potential successful collaborators.

However, the design of traditional digital libraries and
search engines focuses on discovering relevant documents.
This design makes it not straightforward to search for peo-
ple who share similar research interests. Recently, a few dig-
ital library platforms, such as Microsoft Academic Search1

and ArnetMiner2, return a list of experts for a particular
domain. These lists, however, provide only a limited set of
names and ignore the social network of experts given a par-
ticular author. To help in efficiently discovering potential
collaborators, we propose a new system that considers so-
cial network structure, reachability, and research interests of
users to recommend potential collaborators.

In this paper, we introduce CollabSeer3, a search engine
for discovering potential collaborators for a given author or
researcher. CollabSeer is based on CiteSeerX4 dataset to
build the coauthor network, which includes over 1, 300, 000
computer science related literature and over million unique
authors. CollabSeer discovers potential collaborators by an-
alyzing the structure of a coauthor network and the user’s
research interests. Currently, CollabSeer supports three dif-
ferent network structure analysis modules for collaborator
search: Jaccard similarity, cosine similarity, and our rela-
tion strength similarity. Users could further refine the rec-
ommendation results by clicking on their topics of interest,
which are generated by extracting the key phrases of pre-
vious publications. The system is highly modularized; thus
it is easy to add or update the network structure analysis
module or the topic of interest analysis module. To see the
effectiveness of the system, we selected 20 information re-
trieval and machine learning related venues for experiments.
The experimental results show that CollabSeer can suggest
collaborators whose research interests are closely related to
the given user by using only the network structure analysis
module.

The rest of the paper is organized as follows. In Section 2,
we review previous work related to complex networks and in-

1http://academic.research.microsoft.com/
2http://www.arnetminer.org/
3http://proc5.ist.psu.edu:8080/collabseer/
4http://citeseerx.ist.psu.edu/



troduce network structure based vertex similarity algorithms
that will be used for CollabSeer system. The details of sys-
tem infrastructure, implementation, and user interface of
CollabSeer are given in Section 3. Sections 4 explains the
relation strength measure, lexical similarity measure, and
how we integrate the two similarity measures. Experimen-
tal results in Section 5 evaluate the relationship between
vertex similarity and lexical similarity in order to determine
the effectiveness of vertex similarity measures. Summary
and future work appears in Section 6.

2. RELATED WORK
Because of their importance in the CollabSeer system, we

review previous work related to complex network analysis
and network structure based vertex similarity measures.

2.1 Complex Network Analysis
Complex networks have been studied and utilized in sev-

eral areas, such as social networks [20, 24], the world wide
web [3], biological networks [4], and coauthor networks [15].
It has been shown that networks in real world scenarios have
distinctive statistical and structure characteristics, such as
power law distributions [2], small world phenomenon [35],
community structure [10], and spatial models [9]. Recently,
the evolution of network topology has been explored [8, 15,
20]. For a survey, please see [1, 5, 26].
Complex network measures can be used for coauthor net-

work analysis. For example, the degree centrality, between-
ness centrality, and closeness centrality to indicate the im-
portance of an author [28] have been used. The similarity,
difference and evolution of the statistics of coauthor network
in various domains and in various digital libraries have been
compared [15, 25, 27].

2.2 Vertex Similarity Analysis
Vertex similarity defines the similarity of two vertices based

on the structure of network. It has been used in several
areas, such as social network analysis [21], information re-
trieval in world wide web [19], and collaborative filtering [31].
One measure is the (normalized) number of common neigh-
bors [29, 30, 33]. Although these methods consider only
local information, they are computationally efficient. As ex-
ample is the well known Jaccard similarity [33] defined in
Equation 1.

SJaccard(vi, vj) =
Γ(mi ∩mj)
Γ(mi ∪mj)

, (1)

where mi is the set of neighbors of vertex vi and mj is the
set of neighbors of vertex vj . The Γ() function returns the
number of elements in the set. Jaccard similarity is based
on the intuition that two vertices are more similar if they
share more common neighbors. Another similarity measure,
cosine similarity [30], is based on the same idea. Cosine
similarity is defined as follows.

Scosine(vi, vj) =
Γ(mi ∩mj)√
Γ(mi)Γ(mj)

. (2)

Previous studies show that cosine similarity generally per-
forms better than Jaccard similarity in most practical sit-
uations [13]. Topology overlap similarity also uses neigh-
borhood information, such as in metabolic networks [29].

Figure 1: Diagram of vertex similarity

Topology overlap similarity is defined in Equation 3.

St.o.(vi, vj) =
Γ(mi ∩mj)

min (Γ(mi),Γ(mj))
. (3)

Most of the local information based similarity measures
exploit a similar idea [39]. Instead of using local neighbor-
hood information, the global network structure can be used
for vertex similarity calculation. We introduce three global
structure based vertex similarity measures, SimRank [16]
Leicht-Holme-Newman (LHN) vertex similarity [21], and P-
Rank [38]. These three methods consider the vertex sim-
ilarity measure based on the same intuition: two vertices
are similar if their immediate neighbors in the network are
themselves similar. Specifically, as shown in Figure 1, vertex
i and v are connected (solid line), but v and j, i and j are
not (dashed line). Then, how i is similar to j is dependent
on how v, the neighbor of i, is similar to j. As such, the
calculation of SimRank, LHN, and P-Rank are all recursive
process, because the similarity between vertex v and j is
related to the similarity between all the neighbors of v and
j. While the intuition is the same, SimRank only calculates
vertex similarity between vertices with even path length [21]
and only makes use of in-link relationships [38], which could
make a substantial difference for the final similarity score.
Although global structure based similarity measures could
get a larger picture regarding the entire network, the re-
quired time complexity is prohibitive. Moreover, a small
structure change, such as adding a new vertex or a new
edge, will eventually propagate the effect to the whole net-
work. Therefore, it is not feasible to apply these algorithms
to a large scale dynamic network. Recent work proposed
a non-iterative approximation for SimRank [22] using in-
cremental updating. However, this method allows only link
updating, i.e., it assumes the total number of nodes in graph
is fixed. Other work [11, 12] approximates LHN similarity
by clustering the social network into virtual nodes to reduce
the graph size.

Recently, network structure information was used to infer
the missing links in coauthor networks [37, 39]. However,
lexical similarity between authors was not considered. A re-
cent paper [32] utilized the frequency of key phrases in au-
thor’s pervious publications to infer his or her research inter-
ests. This work recommends papers, not potential collabora-
tors, for a given user. He et. al [14] proposed a context-aware
citation recommendation prototype. Their model suggests
papers based on content, not coauthor network or citation
network information. Cucchiarelli and D’Antonio [6] uti-
lized the coauthor links and similarity links formed by the
centroids of the documents to discover partnership opportu-
nities among research units. To the best of our knowledge,
CollabSeer is the first online system for discovering prospec-
tive collaborators for individuals.



3. SYSTEM OVERVIEW
CollabSeer is built based on CiteSeerX dataset. To min-

imize the impact of author name ambiguity problem, the
random forest learning [34] is used to disambiguate the au-
thor names so that each vertex represents a distinct author.

3.1 System Architecture
Figure 2 shows the system architecture of CollabSeer. For

the user interface, users put in queries and receive collabo-
ration recommendations from CollabSeer system. The Col-
labSeer system consists of the following five components:

Coauthor Information Analyzer retrieves data from Cite-
SeerX dataset to build a weighted coauthor network,
where each node acts as an author, each edge repre-
sents a collaboration behavior, and the weight of an
edge indicates the number of coauthored articles of the
two authors.

Vertex Similarity analyzes the structure of the coauthor
network and indexes the result for later use. Currently,
CollabSeer supports three vertex similarity modules;
they are Jaccard similarity [33], cosine similarity [30],
and our relation strength similarity. Other similarity
measures [16, 21] can also be added as modules. We
introduce the details of relation strength similarity in
Section 4.1. Though targeted at coauthor networks,
our proposed vertex similarity measure can be applied
to other complex network applications as well.

Key Phrase Extractor analyzes the scientific literatures
to get the key phrases of each article by KEA [36]
algorithm.

Lexical Similarity associates the authors to the key phrases
for lexical similarity analysis. The result is indexed to
handle the real time queries. We introduce the details
in Section 4.2.

Similarity Integrator amalgamates the indexed vertex sim-
ilarity score and the indexed lexical similarity score
to calculate the collaboration recommendation in real
time.

3.2 User Interface
Here we introduce the user interface and design consider-

ations. Figure 3 shows the screenshots of the system. Fig-
ure 3(a) is first page the users would see when they visit Col-
labSeer. Users could put names in the input box, and select
one of the vertex similarity measures shown in the drop down
list. The CollabSeer system would suggest the potential col-
laborators based on user’s selected measure. Figure 3(b)
shows a list of matched names. Note that different authors
may share the same name either as full names or as initials
and last names. We disambiguate the author names using
random forest [34]. The snapshot of the recommendation list
and user’s topic of interest are displayed in Figure 3(c). The
lower part of Figure 3(c) shows the list of recommended col-
laborators with their service institutions. The upper part is
the user’s topic of interest arranged in an alphabetical order.
The size of the key phrases are proportional to the signif-
icance of interests, a metric to measure strength of user’s
interest on this topic. Details about significance of inter-
ests calculation will be introduced in Section 4.2. When
a user clicks on any of the topics, CollabSeer reranks the

recommendation list based on both vertex similarity score
and lexical similarity score. A user could also click on the
names of the potential collaborators to see more informa-
tion, including how the two users are related, as illustrated
in Figure 3(d).

4. SIMILARITY ALGORITHMS

4.1 Vertex Similarity Algorithm

4.1.1 Relation Strength Vertex Similarity
The relation strength similarity is based on the idea of re-

lation strength, which defines how close two adjacent vertices
are. For the coauthor network in particular, two adjacent
vertices indicate two people coauthored at least one arti-
cle together before. The relation strength of two adjacent
authors is proportional to the number of their coauthored
articles. Assuming user A has nA publications, user B has
nB publications, user A and user B coauthored nAB articles.
The relation strength from author A to author B is defined
as follows.

R(A,B) :=
nAB

nA
. (4)

For two non-adjacent authors A and C, if A could reach C
only through author B, then how close author A to author C
should be proportional to the relation strength of author A
to author B and the relation strength of author B to author
C. We define indirect relation strength from author A to
author C as

R∗(A,C) := R(A,B) ·R(B,C) =
nAB

nA
· nBC

nB
. (5)

Equation 5 can be generalized as follows. Assuming there
exists a simple path pm from A to C, where the path pm
is formed by A, B1, B2, · · · , BK , C. The indirect relation
strength from A to C through simple path pm is

R∗
pm(A,C) := R(A,B1) ·

K−1∏

k=1

R(Bk, Bk+1) ·R(BK , C). (6)

Now, if there are M distinct simple paths p1, p2, . . . , pM
from A to C , the similarity value from A to C is defined as

S(A,C) :=
M∑

m=1

R∗
pm(A,C). (7)

4.1.2 Analysis of Relation Strength Similarity
First, we now show that the similarity measure between

any two nodes is always between 0 and 1. For any neigh-
boring pair, the relation strength is not larger than 1 by
Equation 4. Assuming that there is at least one path pm be-
tween two vertices vi and vj . The indirect relation strength
of vi to vj through pm is still not larger than one because it
is defined as the products of relation strength by Equation 6.
We can rewrite Equation 7 as follows to show that S(vi, vj)
is always less or equal 1.

S(vi, vj) =
∑M

m=1 R
∗
pm(vi, vj)

=
∑M

m=1

[
R(vi, v

(m)
i+1 )

∏K−1
k=1 R(v(m)

i+k , v
(m)
i+k+1)R(v(m)

K , vj)
]

≤
∑M

m=1 R(vi, v
(m)
i+1 )

≤ 1,
(8)
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Figure 2: CollabSeer system framework

where vi, v
(m)
1 , v(m)

2 , . . . , v(m)
K , vj form pm, the mth path

between vertex vi and vertex vj .
Our vertex similarity measure considers both relation strength

and reachability between two vertices. The relation strength
is included in the measure by Equation 4, where the more pa-
pers two people coauthored, the stronger the relation strength
is. The reachability between two vertices is included by
Equation 6, where the longer the path, the smaller the in-
direct relation strength tends to be. This is because indi-
rect relation strength is defined as the product of relation
strength, which is between 0 and 1.
Compared with other similarity measures, such as Jac-

card similarity [33], cosine similarity [30], SimRank [16],
LHN [21], or P-Rank [38], relation strength similarity has
at least the following two advantages. First, It is asymmet-
ric, i.e., S(A,B) may not equal S(B,A). This is because the
relation strength from author A to author B may not equal
the relation strength from B to A, as defined in Equation 4.
The asymmetric property is closer to the real world scenario.
For instance, suppose author A only cooperates with author
B; author B works with author A, author C, and author
D. Since author A has only one choice and B has several
options, the importance of author B to author A is larger
than the importance of author A to author B. Second, rela-
tion strength similarity considers the edges’ weights, which
can be used to represent the number of coauthored papers
between two authors. Suppose that the number of papers
coauthored between author A and author B is larger than
the coauthored papers between author B and author C, au-
thor A should be more important to author B. Previous
works [16, 21, 30, 33] would regard A and C be equally im-
portant because they can only deal with unweighted graph
and hence ignore the number of coauthored papers.
Although this similarity measure takes into consideration

the complete topology of the network, the complexity to
compute the similarity from one vertex to all the other ver-
tices is O(d!), where d is the average degree of vertices and
! is the longest path length between two vertices. This large
complexity comes from the need to retrieve all the available
simple paths between two vertices. Since the similarity mea-
sure is asymmetric, we need to compute the similarity vector
for all the nodes. Therefore, we need O(nd!) to compute the
similarity between all the nodes in the graph.

The formidable parts of the time complexity comes from
the exponent !, the longest path length between two ver-
tices. We approximate the relation strength similarity by
introducing a new discovery range parameter, r, to control
the maximum degree of separation for collaborators, i.e.,
we only look for collaborators at most r hops away. The
required time complexity becomes O(ndr) ! O(n) when
d << n and r << n. The approximation is reasonable be-
cause once the path length is too long, the product form in
Equation 6 would make R∗

pm very small, and therefore con-
tributes little to the final similarity measure (Equation 7).
In current CollabSeer system, we set the value to 3, i.e., our
approximation looks for nodes in three degrees of separation.
Compared with previous work, the local information based
vertex similarity algorithms [13, 30, 33] are too restrictive
in the sense that they only look for authors who share mu-
tual friends with the given author and fail to consider the
global picture of the network. However, the global informa-
tion based vertex similarity algorithms [16, 21, 38] are not
computationally feasible for large networks. Our algorithm
allows users to control the discovery range and thus reduces
the complexity.

4.2 Lexical Similarity Algorithm
In addition to using vertex similarity to find potential col-



(a) The main query interface. Different vertex similarity
modules are available in the drop down list.

(b) A list of matched names

(c) A list of recommended collaborators and user’s topic of
interests

(d) The relationship between two users

Figure 3: Snapshots of CollabSeer system

laborators, CollabSeer also allows users to select topics of
interests in order to refine the recommendations.
First, CollabSeer extracts the key phrases of each docu-

ment [36], and associates the authors of the document to the
key phrases. On the one hand, CollabSeer can use the table
to infer an author’s research interests. The more frequently
a key phrase associates with an author, the more likely the
author would be interested in the topic. On the other hand,
CollabSeer can gauge an author’s contribution to a specific
topic. The contribution score is calculated using the number
of times the key phrase associating with the author divided
by the total number of times the key phrase appears.
Specifically, assuming that author Ai has published m pa-

pers p1, p2, . . ., pm. The key phrases extracted from the m
papers are k1, k2, . . ., kn, with the number of appearing
times be f1, f2, . . ., fn respectively. CollabSeer determines
author Ai be interested in topics be k1, k2, . . ., kn. The
significance of interests (S.O.I.) of topic kj (1 ≤ j ≤ n) for

author Ai is defined as

S.O.I(Ai, kj) :=
fj∑n

k=1 fk
. (9)

On the other hand, suppose that topic kj interests u au-
thors, namely A1, A2, . . ., Au. For a particular author
Av (1 ≤ v ≤ u), gv out of author Av’s publications has
key phrase kj . CollabSeer gauges the contribution of topic
(C.O.T.) for author Av to topic kj be

C.O.T.(Av, kj) :=
gv∑u

w=1 gw
. (10)

Let us take a closer look at the author to key phrase map-
ping table with an example shown in Figure 4. Assuming
author A has two publications Doc 1 and Doc 2. Doc 1 has
two key phrases, “key phrase 1” and“key phrase 2”, and Doc
2 has two key phrases, “key phrase 1” and “key phrase 3”.
Author B also has two publications, Doc 3 and Doc 4. Doc
3 has key phrases “key phrase 1” and “key phrase 4”, and
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Figure 4: Illustration of how the author to key phrase map is generated

Doc 4 has key phrases “key phrase 5” and “key phrase 6”.
CollabSeer uses these information to build a table of people
to key phrases to frequency. For instance, “key phrase 1”
appears in both of author A’s publications, therefore author
A would be associated to “key phrase 1” with frequency 2.
The rest of the tables are shown in Figure 4. In the ex-
ample, CollabSeer infers author A’s research interests are
topics related to “key phrase 1”, “key phrase 2”, and “key
phrase 3”, with significance of interests be 2/4, 1/4, and 1/4
respectively. Author B’s research interests are topics related
to “key phrase 1”, “key phrase 4”, “key phrase 5”, and “key
phrase 6”, with significance of interests be 1/4 for all four
topics. For the topic related to “key phrase 1”, author A
contributes twice as much as author B, since 2/3 of the pa-
pers related to “key phrase 1” is published by author A and
1/3 of them is published by author B.

4.3 Integration of Vertex Similarity and Lexi-
cal Similarity

CollabSeer considers both vertex similarity and lexical
similarity to recommend the collaborators. For two authors
Ai and Aj in the coauthor network, CollabSeer normalizes
the vertex similarity score to be between 0 and 1. The cur-
rently supported vertex similarity scores (Jaccard similar-
ity [33], cosine similarity [30], and relation strength similar-
ity) are all between 0 and 1 by their nature so we could ignore
the normalization step, but we may still need the step when
other similarity measures are added to CollabSeer. Collab-
Seer system lists the recommended collaborators by only
vertex similarity score in default.
CollabSeer lists the topics the user might be interested in

based on his or her previous publication history using Equa-
tion 9. The value is also between 0 and 1 by its nature.
When the user clicks on any of these terms, CollabSeer cal-
culates contribution of topic (C.O.T.) for authors to a par-
ticular topic by Equation 10. The C.O.T. score SC.O.T. is
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(a) Empirical CDF of ver-
tices’ degrees (unweighted)
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(b) Empirical CDF of ver-
tices’ weighted degree

Figure 5: Empirical cumulative distribution func-
tion of vertices’ unweighted and weighted degrees

integrated with the vertex similarity score Sv.s. by

S := exp(Sv.s.) · exp(SC.O.T.). (11)

We use the product of exponential functions instead of
product of the two similarity scores because we don’t want
the zero vertex similarity score or zero lexical similarity
score to zeroize the whole measure. In addition, since Sv.s.

and SC.O.T. are both normalized between 0 and 1, they are
equally important for the final score.

5. EXPERIMENTS

5.1 Experiment Data Collection
CollabSeer system makes use of CiteSeerX data to build

the coauthor network. We use random forest learning [34] to
disambiguate the author names. Our system now has a coau-
thor network containing more than 300, 000 distinct authors.
The giant component (the largest connected subgraph) ac-
counts for 69.1% of the coauthor network. For experiments,
we select 20 information retrieval, machine learning, and



Table 1: The statistical properties of the coauthor networks

Name #Papers #Authors Avg Deg Avg Cluster Coef. Avg Path Length
CollabSeer 1, 321, 190 308, 116 6.63 0.58 −

Giant Comp. of CollabSeer 942, 308 212, 881 7.94 0.64 6.62
The selected 20 venues 285, 550 11, 932 3.75 0.61 −

Giant Comp. of the 20 venues 146, 420 5, 611 5.36 0.70 7.43
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(a) The result of Jaccard similarity mea-
sure
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(b) The result of cosine similarity mea-
sure
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(c) The result of relation strength simi-
larity measure

Figure 6: The results of different similarity measures for high, mid, and low degree nodes

data mining related conferences5 published between 1979
and 2007 to construct an coauthor network. The statisti-
cal properties of the CollabSeer, the experimental coauthor
network, and their giant components are listed in Table 1.
In our later experiments, we will compare the similarity for
vertices with different degrees. To let the readers get more
ideas about the degrees of the network vertices, we show
the empirical cumulative distribution function of vertices’
degrees in Figure 5. Figure 5(a) shows the empirical cumu-
lative distribution function of the degree of the nodes; the
weights of the edges are ignored. Figure 5(b) illustrates the
empirical cumulative distribution function for weighted de-
gree, i.e., the sum of edge weights adjacent to the node. Note
that the x axis is in logarithm scale for better visualization
purpose.

5.2 Evaluation
The difficulty of evaluating different similarity measures is

because vertex similarity results usually lack interpretabil-
ity [7]. One method would be a user study. Another method
is to create a gold standard lexical similarity as the ground
truth and comparing the consistency of vertex similarity
with the lexical similarity.
To generate the gold standard lexical similarity, we build a

text vector for each vertex based on the vocabularies used in
the title of authors publications with stopwords are removed.
We use Euclidean distance to represents the difference of two
text vectors. Specifically, for two vertices vi and vj and their
associating text vectors Xi and Xj , the Euclidean distance
is

d(Xi, Xj) =

√∑

∀k

(xik − yjk)2, (12)

5The 20 conferences are: AAAI, CIKM, ECIR, EDBT,
ICDE, ICDM, ICDT, IJCAI, JCDL, KDD, NIPS, PAKDD,
PKDD, PODS, SDM, SIGIR, SIGMOD, UAI, VLDB, and
WWW.

where Xi = (xi1, xi2, . . . , xin), Xj = (xj1, xj2, . . . , xjn), the
pair (xik, xjk) is the appearing frequency of key phrase wk

in vi and vj ’s publication titles.
We use the distance between text vectors as an indicator

about similarity of two vertices. The closer the distance,
the more similar two vertices are. We use Kendall tau rank
correlation coefficient [18] to compare the ranking of differ-
ent vertex similarity measures. Kendall tau is a statistic
used to measure the ranking correlation between two quan-
tities. Specifically, we use Kendall tau type b because it
makes adjustments for ties. For two sequences X and Y ,
X = (x1, x2, . . . , xn) and Y = (y1, y2, . . . , yn), we say two
pairs (xi, yi) and (xj , yj) are concordant if both xi > xj and
yi > yj , or if both xi < xj and yi < yj . We say the two
pairs are discordant if xi > xj and yi < yj , or xi < xj and
yi > yj . Kendall tau b is defined as

τb(X,Y ) =
nc − nd√

(nc + nd + tx) · (nc + nd + ty)
, (13)

where nc is the number of concordant pairs, nd is the
number of discordant pairs, tx is the number of pairs tied
only on the first data sequence, ty is the number of pairs
tied only on the second data sequence.

The Kendall tau statistic is always between −1 and 1,
where 1 means the ranking of two sequences perfectly match
each other, and −1 means the ranking of one sequence is the
reverse of the other.

5.3 Experimental Results
Referring to Figure 5(a), we classify the vertices into high,

mid, and low degree vertices. High degree vertices are those
with degree numbers in the top 1/3 of all the vertices; low
degree vertices are those with degree numbers in the bottom
1/3 of all the vertices; and mid degree vertices are all the
remaining. We randomly pickup 100 high degree nodes, 100
mid degree nodes, and 100 low degree nodes for the following
experiment.
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(a) Kendall tau boxplot of high degree
nodes
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(b) Kendall tau boxplot of mid degree
nodes
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(c) Kendall tau boxplot of low degree
nodes

Figure 7: Boxplot of Jaccard similarity for high, mid, and low degree nodes
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(a) Kendall tau boxplot of high degree
nodes
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(b) Kendall tau boxplot of mid degree
nodes

2 3 4 5 6 7 8 9 10

−1
.0

−0
.5

0.
0

0.
5

1.
0

number of retrieved documents

ke
nd

al
l t

au

(c) Kendall tau boxplot of low degree
nodes

Figure 8: Boxplot of cosine similarity for high, mid, and low degree nodes

Figure 6 shows the performance of similarity measures for
high, mid, and low degree vertices. For each (x, y) pair in
the figure, y is the Kendall tau statistic between the vertex
similarity and the background truth (lexical similarity) for
the first x returns. Each point is the average of 100 results.
Note that the x axis starts from 2, since Kendall tau value
is defined only if the sequences have more than 1 items.
From Figure 6(a) and Figure 6(b), Jaccard similarity and

cosine similarity shows similar performance in general. It
is not surprising since Jaccard similarity (Equation 1) and
cosine similarity (Equation 2) share the same numerator.
Note that the cosine similarity measure constantly performs
slightly better than Jaccard similarity for high degree and
mid degree nodes. This is mainly because the variance of
Kendall tau result for Jaccard similarity is larger than the
result of cosine similarity, as shown in Figure 7 and Fig-
ure 8. This result matches the theoretical derivation that
cosine similarity is usually more effective comparing to Jac-
card similarity for link analysis in most practical cases [13].
Figure 6(c) shows the average Kendall tau result of rela-

tion strength similarity measure. The Kendall tau score of
relation strength similarity is lower than Jaccard similarity
and cosine similarity. It is because both Jaccad similarity
and cosine similarity consider only vertices with 2 degree
of separation, whereas relation strength similarity measure
includes vertices with 2 degree of separation and 3 degree
of separation in the experiment. Larger degree of separa-
tion makes CollabSeer system explore more potential col-
laborators, but also means the recommended collaborators
would be more diverse in terms of their research interests.
The diversity can also be suggested by Figure 9, where the

variation of the Kendall tau result for relation strength sim-
ilarity is generally larger than Jaccard and cosine similar-
ity. Although the association relationship between relation
strength similarity and the lexical similarity is not as strong
as Jaccard or cosine coefficient, they are still mostly pos-
itively related, especially for high degree and mid degree
nodes.

6. CONCLUSION AND DISCUSSION
In this paper, we introduce CollabSeer, a system that con-

siders both the structure of a coauthor network and an au-
thor’s research interests for collaborator recommendation.
While expert recommendation systems usually report a simi-
lar set of users to those who share similar research interests,
CollabSeer is more personalized because it suggests a dif-
ferent list of collaborators to different users by considering
their position in the coauthoring network structure. Cur-
rently, CollabSeer supports three vertex similarity measures:
Jaccard similarity, cosine similarity, and relation strength
similarity. Other vertex similarity measures can also be in-
tegrated into CollabSeer easily since CollabSeer is highly
modularized. The lexical similarity module utilizes the pub-
lication history to determine authors’ research interests and
authors’ contribution to different topics.

Compared to other common vertex similarity algorithms,
our relation strength similarity measure has the following
advantages. It is an asymmetric similarity which allows mea-
sure to be used in more general social network applications.
It can be employed on a weighted network. The relation
strength between neighboring vertices can be represented
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(a) Kendall tau boxplot of high degree
nodes
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(b) Kendall tau boxplot of mid degree
nodes
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(c) Kendall tau boxplot of low degree
nodes

Figure 9: Boxplot of relation strength similarity for high, mid, and low degree nodes

by edge’s weight. For coauthor network in particular, edge
weights can represent the number of coauthored papers. The
relation strength similarity considers reachability between
any two vertices. Finally, the “discovery range” parameter
can be adjusted for further collaboration exploration. For
our application, increasing this parameter would recommend
potential collaborators; whereas decreasing it would signifi-
cantly reduce the computation.
Experimental results show that vertex similarity is posi-

tively related to lexical similarity, which means the vertex
similarity measure alone could discover authors who share
similar research interests. Compared with Jaccard similar-
ity or cosine similarity, the relation strength similarity mea-
sure has a lower correlation with lexical similarity measure.
This is because relation strength similarity discovers poten-
tial collaborators with larger degree of separation than Jac-
card similarity or cosine similarity. This allows CollabSeer
to explore more potential collaborators, but also means that
the research interests of the returned authors would be more
diverse. We argue that Jaccard similarity and cosine similar-
ity are too restrictive because they only look for authors who
share common friends. Since CollabSeer system allows users
to choose the topic of interest to refine the recommendation,
relation strength similarity permits the user to explore more
authors as the candidates.
Future work could integrate CollabSeer with other vertex

similarity measures, such as taking a paper’s publication
year into consideration for both the vertex similarity mea-
sure and lexical similarity measure. For vertex similarity,
authors who collaborate recently could then have a larger
relation strength than authors whose work was long in the
past. For lexical similarity, authors may be more interested
in topics related to their recent papers than their older work.
Other lexical similarity measures are also of interest. In ad-
dition user studies can evaluate different vertex similarity
measures and the design of various user interfaces.
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