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Abstract—Discovering the relationships of gene to gene, gene
to its related diseases, and diseases implicated in common genes
is important. However, traditional biological methods can be
expensive. Here, we show that the diseases implicated in common
genes and the genes related to a multiple-gene disease can be

inferred by the vertex similarity measures, a type of method to
find the similar vertices in a network based on its structure. The
relationship among diseases and the relationship among genes
are modeled as two biological networks: human disease network
and disease gene network. We apply the vertex similarity among
the vertices in the human disease network to infer the diseases
implicated in common genes. By similar manner, we utilize vertex
similarity measures on the disease gene network to infer the genes
related to a common multiple-gene disease. Experimental results
demonstrate the potential of vertex similarity as an inexpensive
approach to infer the possible links between genes and between
diseases. We also develop a system to visualize and get a better
understanding about the relationships among diseases and genes.

I. INTRODUCTION

Discovering 1) the common genes of different genetic

diseases and 2) the genes related to a multiple gene disease

helps improve the diagnosis and the development of new

therapies, and, hopefully, the ability to further understand

genetic diseases. For example, autism spectrum disorders

(ASDs) and epilepsy have recently been found to have a

common predisposing gene; implying that there could be an

underlying pathogenesis between autism and epilepsy [8]. Tra-

ditional biological methods to locate the disease genes include

positional cloning [23], DNA marker [14], and positional

candidate approaches [6]. However, these methods usually

require manual resources and expensive experiments.

In this paper, we show the potential of inferring unknown re-

lationships between genes and between diseases using known

relationships among them. Specifically, the known relationship

among genes and diseases is modeled as a bipartite graph

consisting of two disjoint sets of vertices: the human genetic

diseases set and the genes set. A disease and a gene are

connected if the mutation on the gene is implicated in the

disease [11]. The bipartite network can be projected to two

networks: the human disease network and the disease gene net-

work. The unknown relationships among diseases and genes

are suggested by applying vertex similarity measures to the

two networks respectively. The vertex similarity measures are

one type of calculation that generates similarity scores among

vertices in a network based on its structure. We introduce

the common local structure based vertex similarity measures

(Jaccard similarity [19] and preferential attachment [2, 16]),

global structure based similarity (SimRank [13]), and our

proposed relation strength similarity (RSS) [4, 5] and compare

their ability to predict possible missing links which repre-

sent unknown relationships. Experimental results show that

on average the precision for link prediction is high. This

demonstrates the vertex similarity measures can be an inex-

pensive indicator for genetic disease relationships and gene

relationship analysis. The predicted links among diseases and

among genes are shown to be promising candidates that are

worth further exploration. We also visualize the relationships

and the recommendation links among diseases and among

genes.

II. RELATED WORKS

Community detection can be useful for many types of

social networks. One popular research direction of community

detection is based on the intuition that the intra-community

edges should be denser than the inter-community edges. A

well known example is the max-flow min-cut theorem [9],

which determines the minimal cuts to divide the graph. Sev-

eral studies utilized similar measures such as the ratio cut

and normalized cut [12, 21]. However, these methods suffer

limitations in resolution. One can only claim the nodes of the

same community are similar to each other, but it is difficult

to determine the top similar node pairs. Vertex similarity [15]

is a decent solution to the problem. It defines the similarity

between any pair of nodes based on the referenced property,

such as the structure of the network. Thus, the node-to-node

level granularity is specifically defined, and the communities

are grouped by the similar nodes.

Several biological systems can be represented by a complex

network, such as the protein network [20], Genome net-

work [3], and Diseasome network [11]. The network analysis

techniques and tools can be naturally applied on such systems.

For example, it is shown that the degree distribution of

metabolic and protein networks follow power-law [22]. Thus,

these networks are usually very robust to random failure of

nodes. Several topological features, such as betweenness and

degree, were used to infer the importance of a node. Com-



TABLE I
THE STATISTICAL PROPERTIES OF DISEASOME, HDN, DGN, AND THEIR

CORRESPONDING GIANT COMPONENTS (GCS). (|V |: THE NUMBER OF

VERTICES; |E|: THE NUMBER OF EDGES; d: THE AVERAGE DEGREE; C :
THE AVERAGE CLUSTERING COEFFICIENT; s: THE NUMBER OF

SINGLETONS; ℓ: THE AVERAGE SHORTEST PATH LENGTH)

Network |V | |E| d C s ℓ

Diseasome 3,061 2,673 1.75 0 0 -
Diseasome GC 1,419 1,550 2.18 0 0 12.29

HDN 1,284 1,527 3.52 0.56 417 -
HDN GC 516 1,188 4.60 0.64 0 6.51

DGN 1,777 7,491 10.87 0.77 399 -
DGN GC 903 6,760 14.97 0.85 0 5.93

munity detection algorithm was used on biological networks

to find the similar nodes. For example, food web of marine

organisms is successfully divided into pelagic organisms and

benthic organisms in [10]. Instead of focusing on each small

biological component, the network analysis approaches help

us understanding the interaction and relationship between the

components in a global view.

III. METHODOLOGY

A. Data Description

The known relationships between genes and diseases are

constructed as the Diseasome1, a bipartite graph with two

disjoint sets of vertices [11]. One set contains all known

genetic diseases, and the other set includes all known disease

genes in the human genome. A disease and a gene are

connected if a mutation of the gene would cause the disease.

The Diseasome can be projected to two biologically related

networks: a human disease network (HDN) and a disease gene

network (DGN). For HDN, each vertex represents a disease.

An edge attaches two vertices if there are one or more genes

that are implicated in both. Edge weights correspond to the

number of common genes between the two diseases. For DGN,

each vertex means a disease gene. Two genes are connected

if they are associated with at least one common disease. The

edge weights signify the number of diseases with which the

two genes are mutually associated.

The statistical properties of Diseasome, HDN, DGN, and

their corresponding giant components are shown in Table I.

The average clustering coefficients for Diseasome and its giant

component are 0 because they are bipartite graph thus the

neighbors of a given vertex are never connected to each other.

The average shortest path length and the diameter are not

shown in Diseasome, HDN, and DGN because none of them

are connected graphs.

B. Vertex Similarity Measures

HDN and DGN provide the disease-centered and gene-

centered view of Diseasome respectively. In both networks,

two vertices are connected if they are related. Since we are

interested in the vertices that are related but still unknown, the

problem can be modeled as a missing link prediction problem,

which aims to discover the potential links in the network.

1http://diseasome.eu/

TABLE II
TIME COMPLEXITY COMPARISON OF JACCARD, PREFERENTIAL

ATTACHMENT, SIMRANK, AND RSS. (n: NUMBER OF VERTICES; d:
AVERAGE DEGREE; K : MAXIMUM NUMBER OF ITERATIONS; r:

DISCOVERY RANGE, ASSUMING d << n,K << n, r << n)

Vertex Similarity Measure Time Complexity

Jaccard O(nd3) ∼ O(n)
preferential attachment O(n2

d
2) ∼ O(n2)

SimRank O(Kn
2
d
2) ∼ O(n2)

RSS O(ndr) ∼ O(n)

The missing link can be inferred by the intrinsic properties

of the vertices, such as the symptom of the diseases in HDN

or the phenotypes of the genes in DGN. However, measuring

the intrinsic properties of the vertices in biological network

usually requires huge human power, expensive experiments,

and abundant domain knowledge about the target. The other

type of missing link prediction approach is vertex similarity

based measures, which determines the missing links based on

the similarity among vertices of a network using the network

structure. For networks with many known links and several

links have not yet been observed, the vertex similarity measure

is a cheap tool to capture the possible links [4, 5, 17].

We apply several vertex similarity measures on HDN and

DGN, the two projections of Diseasome, to show the potential

of vertex similarity measures for missing link prediction in

biological related networks. The vertex similarity measures

used in the paper include two local structure based measures

(Jaccard similarity [19] and preferential attachment [2, 16]),

one global structure based similarity (SimRank) [13], and

our proposed relation strength similarity [4, 5], which has a

parameter r to control the discovering range, i.e., the number

of hops away for each vertex to explore the missing links.

Jaccard similarity measure is based on the intuition that

two vertices are more similar if they share more common

neighbors. Studies show that it is good at predicting the

missing links in coauthorship network [4, 5, 17]. For two

vertices vi and vj , Jaccard similarity is defined by Equation 1.

SJaccard/cosine(vi, vj) :=
|mi ∩mj |

|mi ∪mj |
, (1)

where mi is the set of neighbors of vertex vi, the | · | function

returns the number of elements in the set.

The preferential attachment is based on the observation that

a high degree node is more likely to acquire new links. The

phenomenon is common in several large scale networks, such

as World Wide Web [1], citation network [18], and protein

network [7]. Newman [16] proposed that the probability of a

new edge established between two vertices is proportional to

the product of their degree, as defined in Equation 2.

Spref−attach(vi, vj) := |mi| · |mj |. (2)

Instead of using the topology information near the given ver-

tices, SimRank considers the global structure of the network

by a recursive definition: two vertices are similar if their direct



neighbors are themselves similar, as defined in Equation 3.

SSimRank(vi, vj) := c

∑

∀x∈mi

∑

∀y∈mj
SSimRank(vx, vy)

|mi| · |mj |
,

(3)

where c is a parameter specifying the relative importance

ratio between the indirect neighbors and direct neighbors for

similarity calculation (0 ≤ c ≤ 1). The smaller the value of c,
the less important the indirect neighbors are.

The other vertex similarity measure, relation strength sim-

ilarity, permits users to explicitly assign the weights to every

edge proportional to the relation strength between vertices. In

HDN, the edge weights are the number of known common

genes related to two diseases; whereas in DGN, the edge

weights represent the number of known common diseases

related to two genes. RSS [4, 5] considers the path length,

the number of distinct simple paths, and the relation strength

between neighboring vertices for similarity calculation. Equa-

tion 4 defines RSS.

SRSS(vi, vj) :=

M
∑

m=1

R∗
pm

(vi, vj), (4)

where R∗
pm

(vi, vj) is the general relation strength from vi to

vj along the path pm, which is defined in Equation 5.

R∗
pm

(vi, vj) :=

{

∏K
k=1

R(uk, uk+1) if K ≤ r
0 otherwise,

(5)

where r is the discovery range parameter controlling the max-

imum degree of separation to calculate, and pm is a path from

vi(= u1) to vj(= uK) through vertices u2, u3, . . . , uK−1.

The term R(uk, uk+1) in Equation 5 is relation strength (or

the normalized edge weight), as defined in Equation 6.

R(vi, vj) :=







wij/
∑

∀k∈mi

wik if vi and vj are neighbors

0 otherwise,
(6)

where wij is the weight for the edge (vi, vj).

One advantage of RSS over previous introduced vertex

similarity measures is that RSS allows users to specifically

assign weights to the edges. A higher edge weight infers the

two end nodes have a stronger connection or more frequent

interaction; thus they should have a higher similarity score.

Table II lists the time complexity to compute these vertex

similarity measures.

IV. EXPERIMENTS

In this section, we show the potential of the vertex similarity

measures in terms of their ability to predict the missing links

in the two biological networks HDN and DGN.

A. Experiment Setup

One way to determine the validity of vertex similarity

measures in discovering unknown relationship for HDN and

DGN is biological experiments such as DNA marker [14] and

positional candidate approach [6]. However, these approaches

usually require expensive experiments.

Instead of conducting the expensive biological experiments

to verify the results, we imitate the machine learning technique

by separating the known information into training and testing

data set to show the potential of vertex similarity measures [5].

Specifically, for the 1, 527 known links in the HDN, each link

has a probability p to be included in the training network and

(1 − p) in the testing network (0 < p < 1). The expected

numbers of links in the training network and testing network

are 1, 527p and 1, 527(1 − p) respectively. We perform the

same setup for DGN. In addition, among the 1, 284 vertices

in HDN, 417 of them are singletons, i.e., the vertices have no

links attached to it. The singletons are removed because the

similarity score between a singleton and any other vertices is

always zero by vertex similarity measures. Thus, the training

network of HDN contains 867 vertices. By similar manner,

the training network of DGN has 1, 378 vertices.

We apply the vertex similarity measures on the training

network to obtain the similarity scores of each non-neighbor

vertex pair. The potential links are predicted by requiring the

top-n most similar pairs be connected. The correctness of the

prediction is validated by the testing network. The procedure

is repeated 20 times independently.

B. Experimental Results

To evaluate the prediction performance, a commonly used

measure is Prec(Sm, n) (precision at n), which gives a cut-off

rank of precision by considering only the topmost results.

Unlike the coin flip guessing problem which has 50%
precision by naı̈ve random guessing, link prediction is much

harder because the precision of a random guess is very

low [5, 17]. When the training network contains p = 80%
of the edges of the original network, the training network

of HDN would have 867 vertices and 1, 222 edges. Ran-

domly picking two vertices and requiring the two should

be connected gives
(

867

2

)

= 375, 411 possible combinations.

Since 1, 222 of them are already connected in the training

network, there are 375, 411− 1, 222 = 374, 189 non-neighbor

pairs. Only 1, 527(1 − p) = 305 of them are the correct

pairs. Thus, the precision of a naı̈ve random pick for the

HDN is 305/374, 189 = 0.0815%. By similar calculation, the

precision of a random pick for DGN is 0.0953%.

In Figure 1(a), the average precision of 20 independent trials

for different vertex similarity measures in HDN is shown. To

demonstrate the effectiveness of vertex similarity measures,

for each measure we show both the precision and relative

performance P (Sm, n), which is defined in Equation 7.

P (Sm, n) :=
Prec(Sm, n)

Prec(Sr, n)
, (7)

where Sm is the given vertex similarity measure, Sr is a naı̈ve

random select measure, Prec(Sm, n) is the precision of Sm by

requiring the top-n similar vertex pairs should be connected.

A larger relative performance score is preferred.

As shown, Jaccard similarity is good when n is smaller

than 10. When n is between 11 and 100, RSS outperforms

all other measures for both r = 2 and r = 3. Although
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(a) Average relative performance and precision of
various vertex similarity measures for HDN.
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(b) The boxplot of Jaccard similarity for HDN.
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(c) The boxplot of preferential attachment similar-
ity for HDN.
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(d) The boxplot of SimRank similarity for HDN.
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(e) The boxplot of RSS (r = 2) for HDN.
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(f) The boxplot of RSS (r = 3) for HDN.

Fig. 1. The relative performance ratio of various vertex similarity measures for HDN.

SimRank considers the global structure, its performance is

not as good as the local structure based Jaccard similarity

and our proposed RSS. The preferential attachment is good

at simulating the global network statistics [2]. However, it

is less effective in terms of the ability to predict individual

missing links. Even the worst preferential attachment measure

is more than 147.95 times better than random select in average.

This demonstrates the potential of vertex similarity measures

as the non-expensive indicators for the genetic diseases sharing

common genes. To let the readers see more insight about

the experimental results, Figure 1(b) to Figure 1(f) show the

box-and-whisker plot for the 20 independent experiments of

Jaccard similarity, preferential attachment similarity, SimRank,

RSS with discovery range 2, and RSS with discovery range

3. They suggest that the vertex similarity measures are very

stable in predicting the missing links of HDN.

By the same manner, the average performance of all the

vertex similarity measures on DGN is shown in Figure 2(a).

The Jaccard similarity performs best in DGN, followed by our

proposed RSS. SimRank is a little behind RSS. Preferential at-

tachment is again the worst among all the similarity measures.

Except preferential attachment, all the similarity measures are

more than 500 times better than random select in average.

Figure 2(b) to Figure 2(f) show the box-and-whisker plot of

these measures. They suggest that vertex similarity measures

are superior and stable indicator to identify the genes that are

related to a common multi-gene disease.

V. MISSING LINK PREDICTION

The previous section separate the known information into

training and testing network to demonstrate the potential vertex

similarity measures on biological networks, such as HDN and

DGN. In this section, we show the missing links predicted by

various vertex similarity measures using the full topology of

the given networks. A visualization system is also introduced.

A. Link Prediction Results

By using all the known relationship, Table III and Table IV

present the predictions of the top 5 similar vertices by us-

ing different vertex similarity measures on HDN and DGN

respectively. The relationships have not yet been validated by

biological experiments, but they could be the potential disease

pairs or gene pairs that deserve more attention. One of our

ongoing work is working with biologists for validation.

B. Link Prediction Visualization

The Tables introduced in previous section give only the

predicted results. To get a deeper understanding about how

the two non-neighboring diseases or genes are related, we im-

plemented a system to visualize the results. Users can interact

with the system to see the relationship between diseases or

between genes. The results predicted by different similarity

measures can also be compared and visualized.

Figure 3(a) is a snapshot of HDN in the demonstration

program. The right hand side shows the disease network in

which each vertex is a human disease, an edge represents

at least one known gene is implicated in two diseases. The

disease names appear when moving the cursor on the vertices.
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(b) The boxplot of Jaccard similarity for DGN.
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(c) The boxplot of preferential attachment similar-
ity for DGN.
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(d) The boxplot of SimRank similarity for DGN.
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(e) The boxplot of RSS (r = 2) for DGN.

1 6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 96

0
2
0
0

4
0
0

6
0
0

8
0
0

1
0
0
0

top n

re
la

ti
ve

 p
e
rf

o
rm

a
n
c
e

(f) The boxplot of RSS (r = 3) for DGN.

Fig. 2. The relative performance ratio of various vertex similarity measures for DGN.

(a) A snapshot of HDN in the demonstration pro-
gram.

(b) A snapshot of how to diseases are related. (c) A snapshot of the disease of interest and its
neighbors

Fig. 3. Snapshots of the visualization system.

The sizes of the vertices are proportional to their degrees.

The left panel lists available measures: RSS with r = 2, RSS

with r = 3, Jaccard similarity, preferential attachment, and

SimRank. Users can choose from these measures for potential

link recommendation. The slide bar under each measure is

used to specify the number of recommending links to show.

In the snapshot, RSS with r = 2 and Jaccard similarity are

checked. The top 3 similar non-neighbor vertices calculated by

RSS with r = 2 and the top 2 similar non-neighbor vertices

calculated by Jaccard similarity are shown by red and green

lines respectively.

To see how two suggested vertices are related, users can

double click on the recommendation link. As Figure 3(b)

shows, the mutual neighbor vertices are highlighted to help

users understand how and why two vertices might be related.

A user interested in a particular disease can double click

on the corresponding vertex to highlight the vertex and its

neighbors. As shown in Figure 3(c), the disease “Deafness”

and all the known diseases that are implicated with genes in

common with Deafness can be highlighted.

The DGN can also be represented in a similar manner. Due

to space limitations, we only show the snapshots of HDN.

VI. CONCLUSIONS AND FUTURE WORK

We show that mining relationships among genetic diseases

and among genes using vertex similarity measures can be an

inexpensive and promising indicator for potential gene-disease

relationship discovery. By requiring the most similar vertex

pairs should be connected, the average precision for human

disease network is about 60%, more than 700 times better

than the naı̈ve random selection. The performance on disease

gene network is even better: the average precision by requiring

the first returned pair should be connected is 85%, almost

900 times better than the random selection. This suggests the

effectiveness of using vertex similarity measures to explore the

potential links for conducting actual biological experiments.

We list the top 5 similar vertices on human disease network

and disease gene network as promising related diseases and

related genes respectively. In addition, a visualization system



TABLE III
THE TOP-5 PREDICTED RESULTS OF THE GENETIC DISEASES THAT MAY HAVE GENES IN COMMON.

RSS (r = 2) RSS (r = 3) Jaccard Pref. Attach. SimRank

1 Situs ambiguus and
Ciliary dyskinesia

Adrenomyeloneu-
ropathy and Zellweger
syndrome

Tolbutamide poor me-
tabolizer and Vitamin
K-dependent coagula-
tion defect

Colon cancer and
Deafness

Tolbutamide poor me-
tabolizer and Vitamin
K-dependent coagula-
tion defect

2 Convulsions and Deaf-
ness

Rhizomelic
chondrodysplasia
punctata and
Zellweger syndrome

Palmoplantar kerato-
derma and Steatocys-
toma multiplex

Colon cancer and Dia-
betes mellitus

Palmoplantar kerato-
derma and Steatocys-
toma multiplex

3 Adrenomyeloneu-
ropathy and Zellweger
syndrome

Situs ambiguus and
Ciliary dyskinesia

Night blindness and
Retinal cone dsytro-
phy

Colon cancer and
Prostate cancer

Night blindness and
Retinal cone dsytro-
phy

4 Rhizomelic
chondrodysplasia
punctata and
Zellweger syndrome

Convulsions and Deaf-
ness

Walker-Warburg
syndrome and
Myotilinopathy

Colon cancer and Re-
tinitis pigmentosa

Walker-Warburg
syndrome and
Myotilinopathy

5 Palmoplantar kerato-
derma and Steatocys-
toma multiplex

Hyperproinsuli-nemia
and Diabetes mellitus

Maple syrup urine
disease and Pyruvate
dehydrogenase
deficiency

Deafness and Breast
cancer

Maple syrup urine
disease and Pyruvate
dehydrogenase
deficiency

TABLE IV
THE TOP-5 PREDICTED RESULTS OF THE GENES THAT MIGHT BE RELATED TO A COMMON MULTI-GENETIC DISEASE.

RSS (r = 2) RSS (r = 3) Jaccard Pref. Attach. SimRank

1 ZIC3 and THRAP2 AHI1 and NPHP4 SLC25A19 and
MCPH1

EYA4 and TP53 ZIC3 and THRAP2

2 TNNI2 and TPM2 SDHC and SDHB ZIC3 and THRAP2 KRAS and EYA4 WWOX and TGFBR1
3 SDHC and SDHB PSORS6 and BTNL2 WWOX and TGFBR1 TP53 and PPARG CHX10 and BCOR
4 LZTS1 and TGFBR2 PSORS6 and HLA-

DRB1
CHX10 and BCOR CCND1 and EYA4 OCA2 and TYRP1

5 PPP1R3A and PPARG ZIC3 and THRAP2 OCA2 and TYRP1 KRAS and PPARG NPC1 and SMPD1

has been build and is demonstrated to help visualize and

understand the relationships and their predictions.

Future work could be both computational and biological.

Of course, it would be important to validate these predictions.

Machine learning methods could also be applied to predict

missing links and hopefully obtain a higher precision rate.

Network algorithms presented here could be applied to other

types of biological networks to study their characteristics.
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