
Adversarial Models for Deterministic
Finite Automata

Kaixuang Zhang1(B), Qinglong Wang2, and C. Lee Giles1

1 Information Sciences and Technology, Pennsylvania State University,
State College, USA

{kuz22,clg20}@psu.edu
2 School of Computer Science, McGill University, Montreal, Canada

qinglong.wang@mail.mcgill.ca

Abstract. We investigate a finer-grained understanding of the charac-
teristics of particular deterministic finite automata (DFA). Specifically,
we study and identify the transitions of a DFA that are more important
for maintaining the correctness of the underlying regular language asso-
ciated with this DFA. To estimate transition importance, we develop an
approach that is similar to the approach widely used to expose the vul-
nerability of neural networks with the adversarial example problem. In
our approach, we propose an adversarial model that reveals the sensitive
transitions embedded in a DFA. In addition, we find for a DFA its critical
patterns where a pattern is a substring that can be taken as the signa-
ture of this DFA. Our defined patterns can be implemented as synchro-
nizing words, which represent the passages from different states to the
absorbing state of a DFA. Finally, we validate our study through empir-
ical evaluations by showing that our proposed algorithms can effectively
identify important transitions and critical patterns. To our knowledge,
this is some of the first work to explore adversarial models for DFAs and
is important due to the wide use of DFAs in cyberphysical systems.

Keywords: Deterministic Finite Automata · Transition importance ·
Critical patterns · Adversarial model

1 Introduction

There has been a great deal of work on the computational power of deterministic
finite automata (DFA, level 3 in the Chomsky hierarchy). Although DFA models
can be significantly different in terms of the number of states, accepted strings,
and complexity [12], the family of DFA models is usually studied as a whole for
their computational power and compared with other formal computation models
in the Chomsky hierarchy [8]. As such, our understanding of DFA remains at a
relatively coarse-grained level. We believe it is still an open question regarding
on how to differentiate different DFAs.

Here, we study individual DFAs for their fine-grained characteristics, includ-
ing transition importance and critical patterns. Specifically, we examine the
c© Springer Nature Switzerland AG 2020
C. Goutte and X. Zhu (Eds.): Canadian AI 2020, LNAI 12109, pp. 540–552, 2020.
https://doi.org/10.1007/978-3-030-47358-7_55

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-47358-7_55&domain=pdf
https://doi.org/10.1007/978-3-030-47358-7_55

Adversarial Models for Deterministic Finite Automata 541

importance of transitions by relating this task with the adversarial example
problem [10] often seen in deep learning. This problem describes the phenomenon
where a model, which generalizes well on clean datasets, is strikingly vulnera-
ble to adversarial samples crafted by slightly perturbing clean samples. Because
string identification is an important problem in time series, speech, and other
scenarios, this motivates research into understanding complicated learning mod-
els such as neural networks. One particular approach is to identify feature-level
perturbations that significantly affect a learning model. Similar approaches have
been used for examining the sample-level importance in building a learning
model [9]. These studies use adversarial examples as a data-driven tool for prob-
ing the learning model’s vulnerability, hence indirectly gaining an understanding
of complicated learning models. In order to directly gain a better understand-
ing of a DFA, we follow a similar approach but study the sensitivity of a DFA
through model-level perturbations.

Next, we study critical patterns that can be used for identifying a specific
DFA. Specifically, we formally define a critical pattern as a substring, which
effectively identifies all strings accepted by a certain DFA. We show that for
certain classes of DFA, we can identify these strings statistically by checking
the existence of critical patterns embedded in their generated strings without
exhaustively searching all possible strings or querying the underlying DFA [1,13].
We then develop an algorithm for finding the critical patterns of a DFA by
transforming this task as a DFA synchronizing problem [6]. Last, we provide a
theoretical approach for estimating the length of any existing perfect patterns
and validate our analysis with empirical results.

We feel that our analysis on DFA models will help in research on the security
of cyberphysical systems that are based on working DFAs, e.g., compilers, VLSI
design, elevators, and ATMs. This could be especially for the case when the
actual state machine is exposed to adversaries and be attacked. It is the intent
of this work to open a discussion on these issues.

2 Transition Importance of a DFA

DFAs are one of the simplest automata in the Chomsky hierarchy of phrase
structured grammars [4]. More formally, a DFA can be described by a five-tuple
A = {Σ,S, I, F, T}, where Σ is the input alphabet (a finite, non-empty set of
symbols), S denotes a finite and non-empty set of states, I ∈ S represents the
initial state while F ⊆ S represents the set of accept states, and T is a set of
deterministic transition rules. The transition rules of a certain DFA essentially
describe how that DFA will process a string as it traverses its states. Throughout
this paper all DFAs are complete minimal DFAs. Due to its deterministic nature,
it is natural to assume different transitions are equally important for identifying
a DFA. However, as will become clear from our analysis, this assumption does
not generally hold. Here we illustrate this with the a DFA associated with the

542 K. Zhang et al.

Fig. 1. Example for the Tomita-7 grammar. Red (Black) states are the accept (reject)
states (Color figure online).

Tomita-7 grammar1 shown in Fig. 1. Among all transitions, the cyclic transition
(with input a) associated with state-4 is the most important one. This is because
by substituting this transition by a transition to state-1 with the same input,
we can add significantly more strings to the set of accepted strings.

2.1 Transition Importance Estimation as an Adversarial Model
Problem

To estimate the importance of each transition and identify more important ones,
we take an approach that is complementary to the approach used to identify
sensitive features of a data sample viewed by a deep neural network (DNN) in the
context of the adversarial example problem. As such, the transition importance
estimated by our approach essentially reflects the sensitivity of a DFA with
respect to a transition.

A typical formulation of the adversarial example problem is to maximize a
loss function L with respect to a normal sample x0 and a model f . Then finding
an adversarial sample x̂ is conducted by solving the following problem:

x̂ = arg max
|x−x0|≤ε

L(x, f), (1)

where ε denotes some predefined constraint on the scale of perturbation. Here
we propose to transform the adversarial example problem (Eq. (1)) into the
adversarial model problem, which considers model-level perturbations. Explicitly,
given a model f0 and a fixed set of string samples X, we try to solve the following
problem:

f̂ = arg max
|f−f0|≤ε

∑

x∈X

L(x, f). (2)

Eq. (2) describes the problem of perturbing a target model in a constrained man-
ner to cause maximal loss and provides an alternative view of the adversarial

1 Tomita [11] defined the following grammars with a binary alphabet: (1) a∗, (2)
(ab)∗, (3) an odd number of consecutive ′a′s is always followed by an even number of
consecutive ′b′s, (4) any binary string not containing “bbb” as a substring, (5) even
number of bs and even number of ′a′s, (6) the difference between the numbers of ′b′s
and ′a′s is a multiple of 3, (7) b∗a∗b∗a∗. These grammars have been widely used in
grammatical inference.

Adversarial Models for Deterministic Finite Automata 543

example problem. Specifically, given an ideal mapping f from some functional
space F for a certain learning task, and an arbitrarily small approximation
error ε, the universal approximation theory [5] states that one can always find
a candidate f ′ in some other functional space F ′ (generally taken as a subset
of F) satisfying ‖f − f ′‖ < ε. Given that DNNs already have very complicated
architectures2, we can only measure the difference between f and f ′ numeri-
cally, although these two functions might be quite different. Since these models
built through analytical approaches may not necessarily have actions aligning
with our intuition and expectation, we cannot easily, if not impossibly, establish
a physical understanding of the gap between f ′ and f . Furthermore, in prac-
tice the gap between these two functions may be amplified by formulating the
approximation problem as an optimization problem, and then applying various
techniques to solve the latter [2]. These combined effects imply that the root
cause of the adversarial example problem lies in both the ambiguity of the the-
oretical foundation for building a learning model and the imperfection in the
practice of applying a learning model. Moreover, it is important to note that our
transformation cannot be easily applied to complicated models like DNNs. The
function represented by a DNN has too many parameters, including weights,
neurons, layers, and all sorts of hyper-parameters. This results in an enormous
perturbation space.

On the other hand, for a DFA, the perturbation space is significantly lim-
ited to only include its transitions and states. Furthermore, the perturbation of
a state can be represented by a set of perturbations applied to the transitions
associated with this state. Therefore, in the following, we only consider transi-
tion perturbations as they provide a more general description of the adversarial
perturbations of a DFA. In addition, we only consider perturbations that make
substitution operations on the transitions. This is because for a given DFA,
inserting transitions is not allowed since this DFA is already complete and min-
imal. Also, removing a transition is equivalent to substituting this transition to
the transition that connects the current state to an absorbing state, of which
the outward transitions all loop back to itself. Our study of the adversarial DFA
can be taken as a step in studying the adversarial phenomenon by restricting
the underlying models to be physically interpretable and directly investigating
the vulnerability of that model.

2.2 Transition Importance

The deterministic property of a DFA enables it to be naturally immune to adver-
sarial examples. However, when the adversarial perturbation is applied to a DFA,
it is possible to generate an adversarial DFA, which only differs from the origi-
nal DFA by a limited number of transitions, yet recognizes a regular grammar
that is dramatically different from the one associated with the original DFA. To
quantitatively evaluate the difference between two sets of strings accepted by
different DFAs, here we introduce the following metric:
2 Recent research [7] on explaining DNNs have demonstrated the difficulty of analyzing

and inspecting these powerful models.

544 K. Zhang et al.

Definition 1 (Intersection over Union (IoU)). Given two arbitrary DFAs
represented by A and Â, and their accepted sets of strings denoted by X and X̂,
respectively, then

IoU(A, Â) =

∣∣∣X ∩ X̂
∣∣∣

∣∣∣X ∪ X̂
∣∣∣
. (3)

It is easy to notice that the metric IoU is well-defined and lies between 0 and 1.
One can apply the L’Hopital’s rule to calculate it if both the numerator and the
denominator approach infinity. By using the above definition of IoU , we express
the adversarial model problem for a DFA as perturbing the transitions of a given
DFA to reach a low IoU . Then we have the following theorem.

Theorem 1. Given a DFA with alphabet Σ = {a1, a2}, we use A1 and A2 to
denote its transition matrices associated with the first and second input symbol.
Similarly, let Â1 and Â2 denote the transition matrices of perturbed DFA yielding

IoU(A, Â) =

(∑∞
n=1(1 ⊗ p)T(M1 ⊗ (A1 +A2) +M2 ⊗ (Â1 + Â2))n(1 ⊗ q)∑∞

n=1(p ⊗ p)T(A1 ⊗ Â1 +A2 ⊗ Â2)n(q ⊗ q)
− 1

)−1

. (4)

where p ∈ B
n is a one-hot encoding vector to represent the initial state, and

q ∈ B
n denotes the set of accept states of a DFA with n states. We also have

1 =
[
1
1

]
, M1 =

[
1 0
0 0

]
, M2 =

[
0 0
0 1

]
, and ⊗ denotes the Kronecker product.

Due to space constraints, we only provide a sketch of this proof. For this
we construct a new automaton that represents the union of two source DFAs.
The initial state vector, accepting state vector, and the adjacency matrix of this
constructed automaton are denoted as 1⊗ p, 1⊗ q, and M1 ⊗ (A1 +A2)+M2 ⊗
(Â1 + Â2), respectively. Similarly, for the DFA that recognizes the intersection
of two sets of strings accepted by two DFAs, we denote its initial state vector,
accepting state vector, and the adjacency matrix as p ⊗ p, q ⊗ q, and A1 ⊗ Â1 +
A2 ⊗ Â2, respectively. In order to compute the cardinality of the union set and
the intersection set, we need to sum the number of strings for which the length
varies from 1 to infinity. Now assume that there are two column vectors sI and
sE , which represent the set of initial and ending states. Then the number of
N -length strings that reach sE from sI is sTI PNsE .

Theorem 1 provides directly an explicit formulation for computing our
defined IoU . As such, the original adversarial model problem for the DFA can
be transformed to an optimization problem. Furthermore, we require that this
manipulation only allows one transition substitution to be applied to one of the
transition matrices associated with different inputs. The allowed single transition
substitution causes the Frobenius norm of the manipulated transition matrix to
be changed by

√
2. This also avoids changes to the absorbing states of the source

DFA (if they exist), so that any existing absorbing states will not be affected.

Adversarial Models for Deterministic Finite Automata 545

In addition, we require the set of accepted states remains the same. Therefore,
we have the following optimization problem3:

min
Â1,Â2∈T

∑∞
n=1(p ⊗ p)T(A1 ⊗ Â1 + A2 ⊗ Â2)n(q ⊗ q)

∑∞
n=1(1 ⊗ p)T(M1 ⊗ (A1 + A2) + M2 ⊗ (Â1 + Â2))n(1 ⊗ q)

s.t. &
∥∥∥Â1 − A1

∥∥∥
2

F
+

∥∥∥Â2 − A2

∥∥∥
2

F
= 2;

y(A1 + A2) = y(Â1 + Â2);

(A1 + A2)yT = (Â1 + Â2)yT.

(5)

where y = 0 when the source DFA does not have an absorbing state and y =
[0, 0, · · · , 1]. Otherwise, T denotes the set of transition matrices which contains
exactly one 1 in each row, and ‖·‖F denotes the Frobenius norm.

In practice, it is possible that some additional constraints can be added to
the above formulation. Specifically, here we require the perturbed DFA to remain
strongly connected and no new absorbing states will be created. Since it is diffi-
cult to formulate these constraints in Eq. (5), we manually examine their viola-
tions in the obtained solutions. Note that these constraints can be easily checked
by analyzing the spectrum of the perturbed transition matrix.

2.3 Evaluation of DFA Transition Importance

In the following, we use the Tomita grammars to demonstrate our estimation of
the transition importance of DFAs. Since this is the first work on studying the
adversarial scheme of formal computation models, our evaluation mainly focuses
on examining the effectiveness of our proposed approach.

In the experiments, we select the Tomita-3/5/7 grammars as examples. These
grammars are selected as they are representative of the exponential, propor-
tional, and polynomial classes [12] of regular grammars with the binary alpha-
bet, respectively (These classes are introduced in Sect. 3). Since it is impossible
to sum up to infinity, for our evaluation we fix the maximum length N of binary
strings to 20. Also, instead of solving the original objective which takes a quo-
tient form, we apply the symmetry difference of two sets as an alternative. This
choice is reasonable since the objective functions capture the same essence of
minimizing the cardinality of the intersection and maximizing the cardinality
of the union of two sets. Furthermore, as the original problem is formulated
as a high-order integer programming problem, which is difficult to solve with
existing solvers, we relax the constraints such that Â1 and Â2 are constrained
as row-wise stochastic matrices as their entries. As such, we determine the final
perturbation by selecting the one with the maximal value, which represents the
maximal transition probability. We notice that our approximation may not yield
the real optimal solution; however, as shown by the results in Table 1, it provides
satisfying results in analyzing the transition importance.

3 The constant number 1 is omitted for simplicity.

546 K. Zhang et al.

Table 1. Optimization results for the Tomita-3/5/7 grammars.

IoU

Value from optimization Value from randomization

The 3 1.48e-3 0.342

Tomita 5 0.152 0.289

Grammars 7 0.025 0.225

Fig. 2. Illustration of identified important transitions for example DFAs. The marked
(with a yellow cross) and dashed lines demonstrate the most sensitive transitions of
the original DFAs and the perturbed transitions, respectively. (Color figure online)

The effectiveness of our optimization approach when comparing it with a
randomization approach is shown in Table 1. Specifically, for the randomization
approach, we randomly select five legitimate perturbations (manually checked
according to the constraints described above) and calculate and average the
resulting IoUrand. We then compare IoUrand with the IoUopt obtained by our
optimization. It is clear that the results provided by the optimization approach
are much more desirable. We also provide a visualization of the perturbations
generated by our approach for each investigated grammar in Fig. 2.

3 Critical Patterns of DFA

3.1 Different Types of Critical Patterns

Here, we provide a relatively coarse-grained view, in contrast to what we
described regarding transition importance, to investigate the characteristics of
a DFA. Specifically, we identify critical patterns of a DFA, defined as:

Definition 2 (Absolute and relative patterns of a DFA). Given the
alphabet Σ of a DFA and a data space X ⊆ Σ∗, X is the union of two dis-
joint sets, i.e., X = P ∪ N4, and we define the following patterns:

Absolute pattern : m̂ = arg max
|m|=k

∣∣Prm∼fy(y ∈ P) − Prm∼fy(y ∈ N)
∣∣ . (6)

4 For a DFA, P (N) represents the space of strings accepted (rejected) by this DFA.

Adversarial Models for Deterministic Finite Automata 547

Relative pattern : m̂ = arg max
|m|=k

|Pry∈P (m ∼f y) − Pry∈N (m ∼f y)| , (7)

where y is a string in X and m ∼f y indicates that m is a factor (consecutive
substring) of y.

b = # strings in
N with m

a = # strings in
P with m

d = # strings in
N w/o m

c = # strings
in P w/o m

Set P Set N

with m

w/o m

Fig. 3. An illustration of the difference between absolute and relative patterns.

Here we focus on the general case where all the strings follow the uniform
distribution without using any particular prior knowledge. We illustrate the dif-
ference between the absolute and relative patterns with the example in Fig. 3 by
splitting the entire data space X into four parts denoted as {a, b, c, d}. Accord-
ing to Eq. (6), an absolute pattern describes the substring m (has the length
of k) such that, among all strings that contain m, it causes the largest discrep-
ancy between the probabilities of a string that belongs to different disjoint sets.
Thus, the absolute pattern differentiates strings in {a, b}, and the objective in
Eq. (6) are equal to |a−b|

a+b . In contrast, a relative pattern is identified by consid-
ering the statistics of the entire data space, with the objective in Eq. (7) equal to∣∣∣ a
a+c − b

b+d

∣∣∣. Note that these two patterns are equivalent to each other under cer-
tain circumstances. For example, consider a DFA that rejects any binary string
containing “bbb” as a substring5. In this case, both the absolute and relative pat-
terns identify the factor “bbb”. Here, we are concerned with the absolute pattern
since it provides better insight as to the connection between identified patterns
and the underlying DFA. In contrast a relative pattern mainly provides a con-
ceptual understanding from a statistic perspective. Furthermore, we introduce
the following definition:

Definition 3 (Perfect absolute pattern of a DFA).
Let Ap = {m | maxm

∣∣Prm∼fy(y ∈ P) − Prm∼fy(y ∈ N)
∣∣ = 1}, then the

perfect absolute pattern is defined as:

m̂ = arg min
m∈Ap

|m| . (8)

5 The example DFA is associated with the Tomita-4 grammar.

548 K. Zhang et al.

A perfect absolute pattern describes a substring, which has minimal length
among all absolute patterns and perfectly differentiates the strings from different
disjoint sets. However, not all DFAs have perfect absolute patterns. Some DFAs,
which have a cyclic property, contain recurrent or persistent states that contain
both accepting and non-accepting states. This indicates that these DFAs can
never determine the label of a string until they finish processing the entire string.
These DFAs with a binary alphabet, as previously determined [12], belong to
one of three classes, which are then categorized according to the complexity of
different DFAs. Specifically, the complexity of a DFA is measured by its entropy
value, which essentially reflects how balanced are the sets of strings accepted
or rejected by a DFA. As such, a grammar with a higher complexity has a
higher entropy value, hence recognizing more balanced string sets. Based on
the entropy values of different DFAs, they can be categorized into three basic
classes (1) polynomial class, where the number of accepted strings of a certain
length is a polynomial function of the length; (2) exponential class, where the
number of accepted strings of a certain length takes an exponential form of the
length with the base value smaller than 2; (3) proportional class, where the
number of accepted strings of a certain length is proportional to number of all
binary strings with the same length. Interestingly, except for the proportional
class, which contains DFAs with either 0 or 2 absorbing states, DFAs from other
classes have exactly one absorbing state. See Wang et al. [12] for more details.

Upon inspection, it is just a random guess for identifying a string accepted by
a DFA which has no absorbing state and by only checking its contained factors.
Also, determining the pattern of a DFA, which contains two absorbing states,
can be taken as performing a random guess twice. As such, we only focus in
the following analysis on DFAs belonging to the polynomial and the exponential
classes. Importantly, we find that identifying a perfect absolute pattern of a DFA
is essentially analogous to designing a synchronizing word [6] for the absorbing
state of a DFA. Therefore, instead of solving the optimization problem in Eq. (6),
we propose a DFA synchronizing word approach and design a metric to evaluate
the confidence for determining whether a certain string belongs to a particular
class. We show that our metric is highly correlated with the probability in Eq. (6).

3.2 DFA Synchronizing Algorithm

Recall that the synchronizing word (or the reset sequence) is a substring that
sends any state of this DFA to the same state. An absorbing state naturally fits
this synchronizing scheme. As such, we can set the absorbing state as the state
to be synchronized. And since all states will result in an absorbing state when
applying the same substring to these states, the label of a string containing the
substring can be determined definitely.

However, given a string of fixed length k, there is no guarantee that we
can always reach an absorbing state. Thus, we design the following algorithm
and metric to evaluate the efficiency of identifying an absolute pattern. More
specifically, given a DFA with n states and a predefined length k, we then have
its k-order transition matrix Ak

Σ by multiplying the transition matrix AΣ by

Adversarial Models for Deterministic Finite Automata 549

itself k times. We focus on the column associated with the absorbing state. This
column represents the prefixes coming from all states to this absorbing state. We
now choose the most frequent substring m appearing in this column. We denote
that number of occurrences as n̂ and determine m since an absolute pattern has
confidence of n̂/n. For the perfect absolute pattern, the confidence is 1, since
the substring sends all other states to the absorbing state and it will appear in
each entries of the column associated with the absorbing state of the k-order
transition matrix. In experiments presented in the latter part of this section, we
demonstrate the results of applying this algorithm.

Furthermore, given a DFA with one absorbing state, similar to the Černý’s
conjecture [3], we can estimate the length of a perfect absolute pattern associated
with a DFA by providing a loose upper bound. That is, given a DFA with an
absorbing state, we have the following theorem for estimating the minimal length
of a synchronizing substring, which leads all states to the absorbing state.

Theorem 2. The length of a perfect absolute pattern of a DFA with n states is
at most n(n − 1)/2.

To obtain an upper bound of the length of a perfect absolute pattern, we need
to consider the worst case. Specifically, the distance between each state and the
absorbing state is 1, 2, · · · , n−1, respectively. In addition, at step t, synchronizing
the nearest state is the optimal choice. Furthermore, after synchronizing the t-
step nearest states, the distances between the rest n− t states and the absorbing
state range exactly from t + 1 to n − 1 during this iterative process. As such, to
synchronize all states in the worst case, we have the length of a synchronizing
substring at most 1 + 2 + · · · + (n − 1), which is equal to n(n − 1)/2.

It is straightforward to check that the upper bound in Theorem 2 holds for
any size of alphabet. As such, we conjecture that there exists a tighter upper
bound, which depends on the number of states and the DFA alphabet size. Next,
we provide some examples in order to further investigate the pattern length.

We demonstrate in Fig. 4a and b that when the number of states of a DFA is
set to 3 or 4, we can construct a DFA for which the perfect absolute pattern meets
the upper bound exactly. Specifically, for the DFAs shown in Fig. 4a and b, their
associated patterns are bab and babaab. However, it is impossible to construct
a 5-state DFA, for which the perfect absolute pattern has a length that reaches
the upper bound in Theorem 2. More specifically, we have the following result:

Theorem 3. The length of a absolute pattern of a 5-state DFA is at most 9.

This theorem can be proved by using combinatoric and enumeration tech-
niques, and is omitted due to space constraints. In Fig. 4c, we construct an
example five-state DFA that has a pattern with a length of 9 in the worst case.

550 K. Zhang et al.

Fig. 4. DFA examples that illustrate Theorem 2.

Table 2. Transition matrices for example DFAs. Aσ(s1, s2) represents a transition from
state s1 to s2 via σ. We only provide the transitions matrices for DFA-3/4/5 and omit
the matrices for DFA-1/2 (Tomita-4/7) due to space limit.

Transition matrix

DFA 3 Aa(1, 4) Aa(2, 3) Aa(3, 4) Aa(4, 3) Aa(5, 4) Aa(6, 6)

Ab(1, 2) Ab(2, 3) Ab(3, 3) Ab(4, 5) Ab(5, 6) Ab(6, 6)

DFA 4 Aa(1, 5) Aa(2, 4) Aa(3, 2) Aa(4, 1) Aa(5, 6) Aa(6, 1) Aa(7, 7)

Ab(1, 2) Ab(2, 3) Ab(3, 2) Ab(4, 3) Ab(5, 6) Ab(6, 7) Ab(7, 7)

DFA 5 Aa(1, 2) Aa(2, 3) Aa(3, 4) Aa(4, 8) Aa(5, 3) Aa(6, 8) Aa(7, 4) Aa(8, 8)

Ab(1, 6) Ab(2, 1) Ab(3, 5) Ab(4, 7) Ab(5, 2) Ab(6, 7) Ab(7, 1) Ab(8, 8)

Table 3. Patterns and their corresponding confidence for example DFAs. When several
patterns have the same length, we randomly show only one of them.

Length DFA 1 DFA 2 DFA 3 DFA 4 DFA 5

Pattern Con. Pattern Con. Prob. Pattern Con. Pattern Con. Pattern Con.

2 bb 2/3 ab 3/5 0.674 bb 1/2 ab 3/7 aa 5/8

3 bbb 1 bab 4/5 0.912 abb 1/2 abb 3/7 aaa 7/8

4 abab 1 1.0 abba 1/2 aabb 4/7 aaaa 1

5 baabb 2/3 aaabb 5/7

6 bbaabb 1 aaaabb 5/7

7 aaaabbb 5/7

8 bbaaaabb 1

3.3 Evaluation of DFA Pattern Identification

In the following experiments, we use the Tomita-4 and Tomita-7 grammars
(indexed as DFA-1 and DFA-2), which are representative grammars for the expo-
nential and the polynomial classes [12], respectively, and also use randomly gen-
erated other DFAs as shown in Table 2. For all DFAs, we set their starting state
as state 1 and their absorbing states as the states with the largest indexes. By
applying the algorithm we previously introduced, we obtain and demonstrate in
Table 3 identified patterns for all evaluated DFAs.

Adversarial Models for Deterministic Finite Automata 551

We observe in Table 3 that our algorithm successfully identified the perfect
absolute pattern for the Tomita-4 (DFA-1) grammar. We also find that the
length of an identified perfect absolute pattern does not necessarily increase as
the number of states increases. Moreover, we observe that the confidence for
determining an absolute pattern for all DFAs is non-decreasing as the length of
the identified pattern increases. To further understand the relationship between
the confidence and the probability introduced in the definition of the absolute
pattern, we design the following experiment and use DFA-2 as our demonstra-
tive example. Specifically, we generate 1000 strings for each identified pattern
with their lengths less than 15. We then calculate the frequency of the generated
strings that appear in both the accepted and rejected sets, respectively. In par-
ticular, we use that frequency to approximate the probability by using the law
of large numbers. We show in Table 3 that the probability difference and con-
fidence have a positive correlation. Although we do not establish a theoretical
relationship between the above mentioned two statistics, we empirically show
that it is reasonable to replace the probability with the confidence. As such, we
believe these results validate the effectiveness of our algorithm.

4 Conclusion

Here we have defined transition importance and critical patterns for DFAs, which
we believe gives insight into understanding and identification of specific DFAs.
Specifically, we transformed the widely-accepted adversarial sample scheme to an
adversarial model scheme, which reveals the sensitivity of a model with respect
to its components. For the case of a DFA, we focus on the components repre-
sented by its transitions. In addition, we have designed an effective synchronizing
algorithm to find critical patterns of a DFA and studied the upper bound of the
length of a perfect absolute pattern. Finally, we empirically validated our algo-
rithms and the practicability of our metric with several grammars. Future work
could focus on extending this work to understand more complex models and
DFAs used in real applications.

References

1. Angluin, D.: Learning regular sets from queries and counterexamples. Inf. Comput.
75(2), 87–106 (1987)

2. Bottou, L., Bousquet, O.: The tradeoffs of large scale learning. In: NIPS, pp. 161–
168. Curran Associates Inc., (2007)

3. Černỳ, J.: Poznámka k homogénnym experimentom s konečnỳmi automatmi
(a note on homogeneous experiments with finite automata). Matematicko-fyzikálny
časopis 14(3), 208–216 (1964)

4. Chomsky, N.: Three models for the description of language. IRE Trans. Inf. Theory
2(3), 113–124 (1956)

5. Cybenko, G.: Approximation by superpositions of a sigmoidal function. Math.
Control Signals Syst. 2(4), 303–314 (1989). https://doi.org/10.1007/BF02551274

https://doi.org/10.1007/BF02551274

552 K. Zhang et al.

6. Don, H., Zantema, H.: Finding DFAs with maximal shortest synchronizing word
length. In: Drewes, F., Mart́ın-Vide, C., Truthe, B. (eds.) LATA 2017. LNCS, vol.
10168, pp. 249–260. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
53733-7 18

7. Guidotti, R., Monreale, A., Ruggieri, S., Turini, F., Giannotti, F., Pedreschi, D.:
A survey of methods for explaining black box models. ACM Comput. Surv. 51(5),
1–42 (2019)

8. Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to automata theory, lan-
guages, and computation. ACM Sigact News 32(1), 60–65 (2001)

9. Koh, P.W., Liang, P.: Understanding black-box predictions via influence functions.
In: Proceedings of the 34th International Conference on Machine Learning. ICML,
pp. 1885–1894 (2017)

10. Serban, A.C., Poll, E.: Adversarial examples - a complete characterisation of the
phenomenon. CoRR, abs/1810.01185 (2018)

11. Tomita, M.: Dynamic construction of finite-state automata from examples using
hill-climbing. In: Proceedings of the Fourth Annual Conference of the Cognitive
Science Society, pp. 105–108 (1982)

12. Wang, Q.: A comparative study of rule extraction for recurrent neural networks.
arXiv preprint arXiv:1801.05420 (2018)

13. Weiss, G., Goldberg, Y., Yahav, E.: Extracting automata from recurrent neural
networks using queries and counterexamples. In: Proceedings of Machine Learning
Research. ICML, vol. 80, pp. 5244–5253. PMLR (2018)

https://doi.org/10.1007/978-3-319-53733-7_18
https://doi.org/10.1007/978-3-319-53733-7_18
http://arxiv.org/abs/1801.05420

	Adversarial Models for Deterministic Finite Automata
	1 Introduction
	2 Transition Importance of a DFA
	2.1 Transition Importance Estimation as an Adversarial Model Problem
	2.2 Transition Importance
	2.3 Evaluation of DFA Transition Importance

	3 Critical Patterns of DFA
	3.1 Different Types of Critical Patterns
	3.2 DFA Synchronizing Algorithm
	3.3 Evaluation of DFA Pattern Identification

	4 Conclusion
	References

