
Multi-scale FCN with Cascaded Instance Aware Segmentation for Arbitrary

Oriented Word Spotting In The Wild

Dafang He1, Xiao Yang2, Chen Liang1, Zihan Zhou1, Alex G Ororbia1, Daniel Kifer2, and C.Lee Giles1

1Information Science and Technology, The Penn State University
2Computer Science and Technology, The Penn State University

Abstract

Scene text detection has attracted great attention these

years. Text potentially exist in a wide variety of images

or videos and play an important role in understanding the

scene. In this paper, we present a novel text detection algo-

rithm which is composed of two cascaded steps: (1) a multi-

scale fully convolutional neural network (FCN) is proposed

to extract text block regions; (2) a novel instance (word

or line) aware segmentation is designed to further remove

false positives and obtain word instances. The proposed

algorithm can accurately localize word or text line in arbi-

trary orientations, including curved text lines which can-

not be handled in a lot of other frameworks. Our algo-

rithm achieved state-of-the-art performance in ICDAR 2013

(IC13), ICDAR 2015 (IC15) and CUTE80 and Street View

Text (SVT) benchmark datasets.

1. Introduction

Reading text from scene images could contribute to

many applications such as image, video indexing and read-

ing systems for visually impaired people. Thus it has re-

ceived an increasing attention these years. However, read-

ing arbitrary oriented text lines from scene images is still

difficult and only partially solved. As mentioned in [41],

reading multi-oriented text lines is a much harder problem

than only considering horizontal text lines and the ability to

read multi-oriented or even curved text [28] is important in

many scenarios. However, there is still a gap between the

need in practice and the performance of existing algorithms

for multi-oriented text detection. This can be seen in the

results in ICDAR 2015 competition [1].

Previous works in scene text detection could be mainly

classified into two categories: (1) sliding window-based de-

tection methods [5, 18, 33], (2) region proposal-based de-

tection methods [25, 7, 13, 14, 10]. In early stages, sliding

window-based methods received more attention. They typi-

cally have high computational cost because windows in dif-

ferent scales are used to slide in an exhaustive manner. Re-

gion proposal-based methods received more attention these

years because of the fast computation in proposal genera-

tion and the high recall of the proposals.

Convolutional neural network, which is proven to be ef-

fective in extracting high level features from images, has

also been incorporated in scene text detection [18, 17, 14,

41, 31, 10]. The ability of CNN in extracting high level

feature representations greatly improve the accuracy. Sev-

eral works, which combined region proposal and convolu-

tional neural network, have achieved good performances

in localizing text in horizontal or near horizontal orienta-

tions [14, 10]. They typically follow the same scheme as

generating a set of proposals, and then classify each pro-

posal to get potential individual characters. Then a bottom-

up grouping algorithm is applied to group characters into

text lines. However, such scheme has intrinsic problems:

(1) It assumes individual characters could be identified.

(2) Only horizontal lines could be detected. This is be-

cause when considering multi-oriented text lines, traditional

grouping algorithms will easily find incorrect lines.

Recently, several works have made great breakthroughs

in scene text detection. In [40], Zhang et al. proposed to use

FCN in scene text detection and achieved a breakthrough in

multi-oriented scene text detection. Tian [31] adapted the

idea of using CNN to generate proposals as originally pre-

sented in [8] for object detection. However, it cannot han-

dle curved text lines and text lines that are close to vertical

orientation since they used heuristic proposal linking mech-

anism.

In this paper, we present an algorithm which adopts the

idea of using FCN in scene text detection. The algorithm

runs in a cascaded fashion which can handle truly arbitrary

oriented text. We have two cascaded levels. In the whole

image level, we use a multi-scale FCN in extracting rep-

resentative features and removing most negative regions to
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Figure 1. Scene texts that have been successfully detected by our proposed systems.

Figure 2. The pipeline of our proposed algorithms with demonstra-

tion of the two level cascades. We first extract text blocks with the

multi-scale FCN. Then for each extracted text block, we predict

the text center line by the proposed TL-CNN. After extracting all

the text lines, we use IA-CNN to extract each instance word. Our

pipeline could extract text line in arbitrary orientations.

obtain text blocks. In the text block level, we design a text

instance segmentation network to obtain each text instances

from the text block. We divide the challenging text instance

segmentation task into two easier sub-tasks in a cascaded

fashion as inspired by [6]: (1) We first manage to find text

center lines by training a FCN which predicts the center line

of each instance word. (2) Then we extract each single text

center line from the previous output. (3) Finally, we append

the extracted text line information to the text block image to

further extract each text line segmentation separately. Only

simple low level processing is needed in order to achieve

instance level (word or text line) segmentation.

Fig. 1 shows several examples of end-to-end results. Our

pipeline, which contains both the text block FCN and the

word instance segmentation, is shown in Fig. 2. More re-

sults are on supplementary material.

In summation, our contribution are the followings:

1. We design a unique, instance segmentation-based

model for obtaining word instance. We break the

task of instance segmentation into easier tasks which

achieves a good performance in separating word in-

stances in a cascaded fashion. The text instance seg-

mentation model has several advantages over tradi-

tional methods( including proposal-net based meth-

ods): (1)invariant to orientation (2) able to find text

instance even when characters are connected (3) able

to separate text lines that are close to or even touch

each other. The step of obtaining text instance is also

crucial for end-to-end text reading since current scene

text reading methods can only read a single word or

line. Our algorithm, as the first attempt of designing

instance segmentation model for scene text detection,

should be of great value for further researches.

2. We present a multi-scale FCN model for scene text

block detection. It could help identify text block re-

gions with large scale variances and also combine

more context information for each prediction. The text

block FCN aims at removing most false positive re-

gions by extracting multi-scale feature representations.

It serves as the first step of the cascaded framework.

3. We conduct thorough evaluations on several bench-

mark datasets, including the challenging IC15, and

a curve text based CUTE80. Results show that our

model achieves state-of-the-art performances.

We organize the remainder chapters in the following

ways: We first briefly introduce related work in Sec. 2. In

Sec. 3, our model of multi-scale, shared-net FCN is pre-

sented. In sec. 4, we describe our model of word instance

segmentation. Experiments and conclusion are presented in

Sec. 5, Sec. 6, respectively.

2. Related Work

Scene text detection is a challenging task. It differs from

traditional object detection in several key aspects: (1) Text

in images varies a lot in terms of its scales. Even really

small text lines are expected to be detected. (2) Text lines or

3520



words are expected to be extracted instead of a single char-

acter. In traditional methods, this typically means a further

step of grouping characters into text lines. (3) Features of a

single character is typically not enough for distinguishing it

from some background noises. For example, features from

a single character “I” could not be well distinguished from

that of a vertical brick. Similar claims had also been made

in [10]. The three properties made scene text detection a

unique problem.
In early works of scene text detection [5, 18, 33], re-

searchers mostly focused on using sliding window based

methods. Such methods are typically not efficient in com-

putation. Later, region proposal based methods, in which,

extreme region (ER) or maximally extreme region (MSER)

dominate, have attracted great attention [25, 7, 13, 14, 10].

They are computationally efficient, and also achieves high

recall. However, region proposal based methods often fail

when characters are connected or strokes are separated. In

addition, classifying single letter as text or not is error-

prune. Many stroke-like background noises are hard to

be removed. These false positives also cause the extreme

difficulty of detecting multi-oriented scene text. Multi-

oriented text detection has also been proposed in several

works [36, 35, 34, 41]. Most of them follow the similar

scheme as traditional methods by grouping character com-

ponents into text lines. They suffered from the same prob-

lems mentioned above and could not achieve high perfor-

mance in challenging images.
In addition to these methods, researches in synthetic data

generation [16, 9] have also achieved great progress and

boost the deep learning based scene text detection models.

In this paper, we also use the synthetic dataset proposed

in [9], which contains 800,000 synthetic images which are

fully labeled with text bounding boxes. Texts on the syn-

thetic images follow the perspective transformation of its

background and are thus much more realistic.
This work shares similar features with Zhang at el. [41]

for the fact that we both use FCN and treat detection prob-

lem as a segmentation problem. However, we differ from

them in several key aspects which make our algorithm more

robust and general: (1) Instead of using proposal and low

level line orientation estimation, we design a novel instance

segmentation scheme for separating text lines. We do not

make any assumption on the text orientation within each

text block, and only a few low level processing steps are

needed. Our model can handle arbitrary oriented text lines,

including curved text lines which cannot be handled by

Zhang’s method. (2) We use a multi-scale, shared-net FCN

to capture larger context information and text with larger

variances of scales, which leads to better text block detec-

tion results.

Our work also falls into the category of cascaded meth-

ods for text detection [12, 43]. We propose two level cas-

caded solution for the task which is novel and robust.

Figure 3. The architecture of our multi-scale FCN.The input is

downsampled to 0.5 and 0.25 of the scale of the input image. Pre-

diction is done by jointly considering features from three scales.

The parameters of the convolutional parts are shared among all

three branches.

3. Multi-Scale, Shared-Net FCN

3.1. Design Rationale

Fully convolutional neural network (FCN), which was

originally presented in [23] for scene labeling, has recently

been adopted by [41] in scene text detection. One problem

that needs to be carefully considered is scale of the object,

and several variants have been proposed to solve the prob-

lem [22, 37]. In [41], Zhang et al. tried to capture multi-

scale information in an image using a single branch FCN

with a skip-net model. However, it is still in doubt that text,

which potentially varies a lot in terms of its relative size to

the image, could be well captured without larger context in-

formation. In IC15 training sets, we calculate the relative

scale of the text line, which is defined as the shorter length

of its oriented bounding box divided by the height of the

image. The relative scale could vary from 0.005 to 0.78.

This means that a robust algorithm should be able to cap-

ture text in a wide variety of scales. If we assume that the

input image in testing has a height of 500 pixels. Then the

height of a text line could vary from 5 (0.01 × 500) to 160

(0.32 × 500). We argue that a single FCN is not enough to

accurately capture such large variances of text.

In addition to the scale problem, background contexts

could effectively improve the scene text localization per-

formance. Similar ideas were proposed in [10, 42], which

incorporated contexts in a region proposal framework. Here

we have the same hypothesis and claim that it is also help-

ful for a FCN based scene text detection method and will

improve the performance of the pixel labeling problem.
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Figure 4. Comparison of the multi-scale, shared-net FCN with a

single branched FCN. Left: input image. Middle: single branched

FCN. right: shared-net, multi-scale FCN.

Based on the above two claims, we specifically design

a multi-scale, shared-net FCN which has a larger receptive

field and can capture more useful context information. It

improves the performance of text block detection.

3.2. Architecture

The architecture of our model is shown in Fig 3. There

are three branches with shared convolutional parameters.

The encoded information, after two unpooling layers [3],

is merged to produce the final results.

For each prediction in the final output, it is a joint pre-

diction from all three branches. By joint prediction, it can

capture larger context information and give more accurate

prediction.

In Fig 4, we show several examples of the performance

of our FCN model compared with single branched FCN. We

could see that a larger context is helpful for both removing

false positives and obtaining better responses around text.

3.3. Training with Per­scale Loss

We augment IC13, IC15 training sets and the synthetic

dataset from [9] by random scaling and rotation. All these

data are used for training our FCN model. Note that the

training data contain texts in a large variance of scales. This

is to mimic the situation we might encounter in testing.

Training a multi-scale, shared-net FCN is relatively

harder than training a single FCN. We follow several

works [21, 19, 4] that use a per-scale loss which could make

the learned features from multiple scales more discrimina-

tive, and thus accelerate training and improve performance.

The loss function is described in Equation 1.

P-NLL(θ,D) = −
∑

k

logP (Y = yk|xk, θ)+

M∑

i=1

−αi × (
∑

j

logP (Y = y
j
i |x

j
i , θ))

(1)

M represents the number of scales we used. αi repre-

sents the weight for ith scale. xj , yj represent the output

and groundtruth, respectively. We initialize αi to be larger

in order to learn discriminative features for each scales. We

Figure 5. Results of our instance segmentation model. It can cap-

ture word or text line instances in a wide variety of circumstances

with arbitrary orientations. The segmented results could be di-

rectly thresholded to get the final bounding boxes.

then gradually decrease their values and focus on the train-

ing of the joint prediction.

4. Cascaded Text Instance Segmentation

Given a text block, which might contain several nearby

word instances, we specifically designed an instance seg-

mentation model to segment each word instances. Instance

segmentation has attracted an increasing attention in com-

puter vision community [20, 27, 39, 6]. It is a much harder

task than semantic segmentation because it has to separate

out different instances of the same class. In scene text

detection, we define an instance as a word or a text line

which is not separable purely visually. Here, the input is

the cropped text block image obtained from text block FCN,

which might contain several lines or words, and we propose

two networks in a cascaded fashion to solve the problem:

Text Line CNN (TL-CNN) and Instance-Aware CNN (IA-

CNN). The TL-CNN produces a segmentation that corre-

sponds to the center of each text line. The IA-CNN, by

taking the input as one of the text center lines, produces a

segmentation mask over that text line instance. This step

is crucial, not only for the evaluation of detection perfor-

mance, but also for combining text recognition into an end-

to-end system, since the input to recognition is typically a

single word or text line. In addition to the ability of de-

composing each text block, this component also serves as

a further step of removing false positives. Both sub-nets

are able to further remove some negative detection. Some

examples of the extracted instances from text block images

can be seen in Fig. 5.

4.1. Architecture

The architecture of the instance segmentation network is

shown in Fig. 6. There are two branches with shared CNN

parameters except for the first convolutional layer and all

the fully convolutional layers.

The left branch is the TL-CNN. The network has been
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Figure 6. The architecture visualization (left) and details (right) of

the TL-CNN and IA-CNN. The TL-CNN (left branch) is for pro-

ducing the instance level words center lines. The IA-CNN (right

branch) is for producing each word instance segmentation once.

Their inputs have different number of channels since the IA-CNN

need a 4-channel tensor. We ignored the ReLU layer and batch

normalization [15] for simplicity.

trained to embed the “instance” information since it has to

figure out where the center of each word is. Here we only

consider word instance with more than 2 characters, since

they are more distinguishable. However, instead of giving a

hard threshold of removing detected text line with less than

3 components [41], we let the network learn the features that

correspond to a word instance. We hypothesize that such

instance-aware features are complementary to features ex-

tracted by previous text block FCN. The features extracted

from text block FCN are more like traditional “textness”

features. These features only capture whether a given re-

gion looks like text, but no instance information is embed-

ded, and thus might be misled by some background noise.

In Fig. 8, we show several examples that the text block FCN

easily predicts as positive but are rejected by the TL-CNN.

The right branch is the instance-aware segmentation (IA-

CNN) branch, whose input is a 4 channel tensor with size

4 × h × w. h and w correspond to the height and width

of the input text block image, respectively. For the input

tensor, the first 3 channels are R,G,B channels of the text

block image. The 4th channel is the text center line channel

corresponding to the instance we want the network to seg-

ment. Jointly, we can produce instance level segmentation

with the two network in a cascaded fashion.

4.2. Pipeline

The pipeline of the proposed instance segmentation is

shown in Fig. 7. It decomposes the hard task of instance

segmentation into cascaded tasks. Given a cropped text

block B from the original image generated by thresholding

the text block FCN output. We generate a probability map

BL by TL-CNN. Each pixel pl in BL represents probability

of whether it belongs to the center line of one text instance.

Once obtaining the output, we simply threshold the output

Figure 8. Examples of images that text block FCN might fail to

remove. Instead, our TL-CNN can remove them. We only show

the output map from TL-CNN of the first image to save space. The

output of others are similar (completely black). We cannot extract

text lines from them and thus can remove them.

with T , which is chosen based on the evaluation that will

be discussed later, and do a morphological closing opera-

tion followed by a connected component analysis on it. We

extract each component C and do the following operations:

(1) discard those components whose height and width are

less than 0.1 of the height and width of the text block, re-

spectively, (2) discard the text block from which the overall

coverage of the extracted text lines to the oriented text block

bounding box is less than 0.6.

The obtained text line connected components Cs are sep-

arated, and we obtain a series of text line image Ils from it.

Each image Il has -128 value background and 128 value on

the corresponding text line. This channel together with the

original text block is padded into a 4-channel tensor. Then

this tensor will be used as an input to the IA-CNN branch.

The output is the single text line instance segmentation Ii
which corresponds to the input text center line image. Note

that, when two extracted instances have high overlap, we

need to keep the union of them as a post processing step.

Even seldom, this might happen when the TL-CNN out-

puts two disconnected lines for one instance. In such case,

our pipeline will extract two text center lines and produce

two instances. However, the proposed IA-CNN segmenta-

tion will know that they are actually pointing to the same

instance and the outputs will have high overlap. This can

be seen as a way of error handling in the IA-CNN part,

which will be discussed later. After we finish merging such

instances, we simply threshold each instance segmentation

probability map Ii with 0.5 to obtain the bounding boxes.

Fig. 5 shows more results. In testing, for each cropped

image patch, we resize its larger dimension to be in range of

100 to 150 pixel while keeping the aspect ratio unchanged.

The range is chosen for two reasons: (1) Too small size of

image will cause text line instances to be unclear and hard

to separate. (2) Our FCN, which is initialized with VGG-

16, has a receptive field larger than 200. So for each pixel

in the output, it has all the context needed to decide “where
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Figure 7. Our method of instance segmentation. It tries to decompose the hard task of instance segmentation into easier sub-tasks. First

we use TL-CNN to generate text center line labeling. Then we simply decompose from the probability map a set of text lines. Each of

these text lines will generate an input to the IA-CNN together with the original input image. Then we can produce an accurate instance

segmentation of each text lines with arbitrary orientation.

one instance is”. This is crucial for the TL-CNN to find

each text line and give a good prediction.

4.3. Optimization

In training, we use a simple iterative scheme that iterate

between training a TL-CNN and training a IA-CNN. For

TL-CNN, all the convolutional layers are initialized with

VGG-16 model [3]. For IA-CNN, the shared CNN parts

are also initialized with VGG-16 model. All other layers

are initialized with zero mean and standard deviation 0.1,

Gaussian distribution. Inputs to both branches are normal-

ized to have zero mean. Values of input range from -128 to

127. In optimization, we iteratively optimize the loss func-

tion 2.

NLL(θ1, θ2, D) = −α×
∑

j

logP (Y = yj |xj , θ1)−

(1− α)×
∑

i

logP (Y = yi|xi, θ2)
(2)

In the equation, α controls which branch of the network

is in training. It can only equal to 0 or 1. xi, yi represent

the prediction and groundtruth, respectively. Note that part

of θ1 and θ2 are shared. When the loss of two branches

become stable, we start to finetune the shared convolutional

parts with smaller learning rate in the same iterative manner.

4.4. Error Handling in Instance­Aware Segmenta­
tion

Error handling is an important part of gaining robust

performance for the instance-aware segmentation network.

This is because in prediction the extracted text line could

not be perfect. There might be variances of the line width,

and the predicted line might not be centered well. The two

end points of the line might have small offset from the cen-

ter of the two sides. In order to make the model robust, we

randomly add noise to the training data. Specifically, we

randomly change the line width, and the location of the two

end points of each line. Under certain constraints, we could

obtain noisy training samples, and make the model more

robust in testing. Fig. 9 illustrates how we create noisy

training samples.

In the illustration image, L2 represents the offset from

p1 to q1 along the shorter side of the oriented word box, L1

represents the offset from p1 to q1 along the longer side.

The length of L1 and L2 and the width of text center line

W is defined in equations below it.

The offset from p2 to q2 is processed in the same way

as p1 to q1. By doing such randomization on the training

set, we can train a more robust model. Several training ex-

amples are shown in Fig 10. Note that we also randomly

sample negative text center lines that are on background re-

gion of a text block. For these text center lines, the cor-

responding ground truth are masks of all background label.

The training set is from synthetic text blcok dataset and also

from [9]. The line information could also be seen as a hint

which tells the network where to find the instance, and thus

it doesn’t need to be perfect.

5. Experiments

5.1. Curved Text

Curved text typically causes a lot of troubles in scene text

detection [41], and many works do not consider curved text

since they have the assumption that text lines are straight.
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Figure 9. Illustration of creating noisy training set for IA-CNN

network. The bounding box of the word is for illustration pur-

poses. Length1 and Length2 are the length of longer side and

shorter side or the word patch, respectively. p1, p2 and the cor-

responding green line represent the ground truth center line. q1,

q2 and the corresponding red line represent the shifted noisy line.

L1, and L2 are the offsets from p1 to q1 along the longer side and

shorter side, respectively.

Figure 10. On the top two rows, we show some examples of the

noisy training data for instance-aware segmentation. The input

line image is shown in the image with a black line crossing the

word. Here we only show one instance line per image for illustra-

tion purposes. On the last two rows, we show examples demon-

strating the effectiveness of augmented the noisy training data.

From left to right: Input text block image, instance results with

model trained on good quality data, instance results with model

trained on noisy data. More results about such error handling are

in supplementary material.

However, many texts in signs or logos are curved and the

ability to read curved text is important and will help many

applications.

Our model can effectively capture the curved text by the

joint power of TL-CNN and IA-CNN. In Fig 11, we show

some curved text testing results on CUTE80 dataset [26].

Figure 11. Results of our instance segmentation model on several

curved text blocks. We can accurately capture curved text from a

lot different scenes. From left to right: (1) The input image. (2)

Text line captured by our text line model (3) Instance segmentation

results on these curved data.

We could see that even with extreme curvature, our model

can successfully estimate the text center line and further in-

fer the instance mask for each text line.

Another surprising fact is that, we don’t have any curved

training data in our training set for both TL-CNN and IA-

CNN. We hypothesize that this is because the model learned

the intrinsic representation of an instance line which does

not rely on whether it is straight or not.

5.2. Evaluation on Instance Segmentation

In order to evaluate the performance of the TL-CNN and

the following IA-CNN module, we collect 1500 cropped

images from IC13, and IC15 training set. They contain text

blocks with 1-5 lines in each image.

Note that this evaluation is meaningful since the train-

ing data for the two networks are synthetic images, so these

public training sets are used as validation purposes. Fig. 12

shows the precision and recall curve.

We can see that the choice of T only has little effect on

the performance. The evaluation is based on the metric in

[24]. Note that this evaluation framework artificially lowers

recall. We have found that the relatively lower recall is gen-

erally caused by the fact our model usually predicts a line

as one instance when there is less visual cue to separate out

each word. This has little effect on end-to-end performance

because current state-of-the-art recognition model [11] can

directly read a line and thus will not hurt end-to-end scene
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Figure 12. The

precision (red) and

recall (green) curve

with respect to the

choice of T on 1300

randomly cropped

text block image

from IC13, IC15

training set.

method precision recall F-measure

Neumann[25] 73 65 69

Shi[29] 83 63 72

Bai et[2] 79 68 73

Zamberletti[38] 86 70 77

Tian[30] 85 76 80

Zhang[40] 88 74 80

Zhang[41] 89 78 83

tian[31] 93 83 88

Our model 93 79 85
Table 1. Localization performances (%) on ICDAR 2013 data sets.

Bold number outperforms other methods.

text reading. We use 0.85 as our final choice of T in further

evaluations.

We thoroughly evaluate our algorithm on four widely

used benchmark datasets: IC13-focused text detection,

IC15-scene text detection, CUTE80 and SVT. We choose

them based on two criteria: they are widely used for eval-

uation and comparison or interesting for practical applica-

tions. We give a brief description and performance compar-

ison of each dataset separately.

5.3. ICDAR 2013

ICDAR 2013 dataset is probably the most widely used

dataset. It contains 251 test images with a wide variety of

diversity except that all the text lines are horizontal or near

horizontal.

We evaluated them by submitting our results into the IC-

DAR system. The evaluation protocol is based on [24]. Re-

sults are shown in Table 1.

5.4. ICDAR 2015

ICDAR 2015 dataset is a relatively newly released

dataset which contains 500 testing images. They were taken

with cell phone, so motion blur is common in the dataset.

The texts in it are with arbitrary orientation and it poses

a great challenge to scene text detection algorithms. Note

that, in order to remove detected Chinese, we further ran a

binary English text nontext classifier on the extracted word

patches to remove some false positives.

We also evaluated our algorithm in ICDAR system, and

the results are shown in Table 2. Note that some results are

from ICDAR website, so there is no reference for them yet.

method precision recall F-measure

HUST 44 38 41

StradVision1 53 46 50

StradVision2 77 37 50

Zhang[41] 71 43 54

tian[31] 74 52 61

Our model 76 54 63
Table 2. Localization performances(%) on ICDAR 2015 data sets.

Bold number outperforms other methods. Some methods do not

have references.

5.5. Street View Text and CUTE80

SVT dataset [32] contains images taken from street view,

and CUTE80 dataset[26] contains texts that are in curved

shape. They represent interesting aspects of scene text

detection, and are also highly application oriented. Both

datasets have the problem that they are not fully-annotated.

So here we only evaluate the recall of our method in the two

datasets. The results are shown in Table 3.

method recall

Jaderberg [17] 71

He [10] 75

Our model 78

method recall

Tian [31] 60

He [10] 56

Risnumawan [26] 68

Our model 73
Table 3. Text Localization evaluation (%) on SVT (left) and

CUTE80 (right) dataset. We only evaluate recall on these datasets

because they are only partially annotated.

5.6. Limitation

The proposed algorithm can handle text detection in a

lot of different and challenging scenes. However, for some

certain cases our current framework will fail. Fig. 13 shows

some failing results. Extremely low contrast, too blurry text

or text lines with scattered characters will cause problem in

our framework.

Figure 13. Example images that our algorithm fail to detect cor-

rectly. Blue rectangles mean that we fail to localize the texts.

6. Conclusion

In this paper, we present a novel algorithm for scene

text detection. We combined a mutli-scale FCN with a

novel, cascade-style instance segmentation for end-to-end

scene text detection, and achieved state-of-the-art results in

benchmark datasets. We demonstrated that instance seg-

mentation, which is gaining an increasing attention in com-

puter vision community, is also helpful for end-to-end text

reading systems.
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