
The Neural Network Pushdown Automaton: Architecture,

Dynamics and Training

G.Z. Sun t, C.L. Giles 2"3, H.H. Chen 4
lCommunication Intelligence Corp., 275 Shoreline Drive, Redwood City, CA 94065, USA
2Institute for Advanced Computer Studies, U. of Maryland, College Park, MD 20742, USA

3NEC Research Institute, 4 Independence Way, Princeton, NJ 08540, USA
4Dept. of Physics, U. of Maryland, College Park, MD 20742, USA

1 Introduction
Recurrent neural networks are dynamical network structures which have the capabil-

ities of processing and generating temporal information. To our knowledge the earliest
neural network model that processed temporal information was that of MeCulloch and Pitts
[McCulloch43]. Kleene [Kleene56] extended this work to show the equivalence of finite
automata and McCulloch and Pitts' representation of nerve net activity. Minsky [Min-
sky67] showed that any hard-threshold neural network could represent a finite state
automata and developed a method for actually constructing a neural network finite state au-
tomata. However, many different neural network models can be defined as recurrent; for
example see [Grossberg82] and [Hopfield82]. Our focus is on discrete-time recurrent neu-
ral networks that dynamically process temporal information and follows in the tradition of
dynamically (nonautonomous) recurrent network models defined by [Elman90, Jordan86,
Narendra90, Pollack91,Tsoi94]. In particular this paper develops a new model, a neural
network pushdown automaton (NNPDA), which is a hybrid system that couples a recurrent
network to an external stack memory. More importantly, a NNPDA should be capable of
learning and recognizing some class of context-free grammars. As such, this model is a sig-
nificant extension of previous work where neural network finite state automata simulated
and learned regular grammars. We explore the capabilities of such a model by inferring au-
tomata from sample strings - the problem of grammatical inference. It is important to note
that our focus is only on that of inference, not of prediction or translation. We will be con-
cerned with problem of inferring an unknown system model based on observing sample
strings and not on predicting the next string dement in a sequence. In some ways, our prob-
lem can be thought of as one of system identification [Ljung87].

1.1 Motivation

To enhance the computational power of a recurrent neural network finite state autom-
aton to that of an infinite machine [Minsky67] requires an expansion of resources. One
approach is to introduce a potentially infinite number of neurons hut a finite set of uniform-
ly distributed local connection weights per neuron [Sun91]. Another approach to
constructing a neural network infinite machine is to permit an infinite precision of neuron
units but keep a finite size network (finite number of neurons and connection weights) [Pol-
lack87, Siegdmann95]. Doing so is equivalent to constructing a more general nonlinear
dynamic system with a set of continuous, recurrent state variables. Such a system in general

297

would have rich dynamical behavior: fixed points, limit cycles, strange attractors and cha-
os, etc. However, such systems are not easily trained.

The model we introduce has this flavor. It enhances the neural network by giving it a
potentially infinite memory - a stack - and constrains the learning model by permitting the
network to operate on the stack in the standard pro-specified way - push, pop or no-opera-
tion (no-op). As such, this model can be viewed as: (1) a neural network system with some
special constraints on an infinite neural memory, or (2) a hybrid system which couples an
external stack memory (conventionally a discrete memory, but here a continuous stack)
with a finite size neural network state automaton. There are many issues in connecting and
gaining an external computational structure such as stack to a neural network. For example
what form does the objective function take; when and how are the push/pop/no-op opera-
tions of the stack incorporated into the neural net; and after training how are can learned
rules extracted? We provide a complete procedure for training such a neural network push-
down automata.

1.2 Grammars and Grammatical Inference

Because this paper is concerned with new models of neural networks, we give only a
brief explanation of grammars and grammatical inference. For more details, please see the
enclosed references. Grammatical inference is the problem of inferring an unknown gram-
mar from only grammatical string samples [Angluin83, Fu82, Gold78, Lang92, Micletg0].
In the Chomsky hierarchy of phrase structured grammars [Harrison78, Hopcroft79, Par-
tee90], the simplest grammars and its associated automata are regular grammars and finite
state automata (FSA). Moving up in complexity in the Chomsky hierarchy, the next class
is the context-free grammars (CFGs) and their associated recognizer - the pushdown au-
tomata (PDA), where a finite state automaton has to control an external stack memory in
addition to its own state transition rules. For all classes of grammars, the problem of gram-
matical inference is in the worst case at least NP [Angluin83]. As such, we feel that training
a neural network to learn grammars is a good testbed for exploring the networks computa-
tional capabilities. However, comparison of a neural network pushdown automata with
other methods for grammatical inference is not discussed. Our concern has only been with
how such an architecture can be constructed, how it is trained and how it learns grammars
from grammatical strings.

13 Outline of Paper

In next section, we review some of the previous work on computational models of re-
current neural networks. We argue that from the standpoint of representation, it is
computationally more efficient to use a "real" external stack instead of the neural network
emulator of stack memory [Pollack90]. In Section III we systematically introduce the mod-
el of the Neural Network Pushdown Automata (NNPDA), the structure, the dynamics and
the optimization (learning) algorithms. This model is substantiated by means of theoretical
analysis of many of the related issues regarding its construction. The attempt there is to give
a rigorous mathematical description of the NNPDA structure. We then illustrate the model
by learning the context-free languages: balanced parentheses and the 1 n O n. A modified ver-
sion of NNPDA is then introduced to learn the more difficult Palindrome grammar. The

298

conclusion covers enhancements and further directions. In the Appendices is a detailed
mathematical derivation of the equations necessary for the training the NNPDA. The key
point is that in order to use the real-time recurrent learning (RTRL) algorithm [Will-
iams89], we have to assume a recursion relation for all variables, which means that the
NNPDA model must be approximated by a finite state automaton. In the Appendices, we
discuss this paradox and show one solution to this problem.

2 Related Work

In this section we review previous work related to the NNPDA. However, the general
area of grammatical inference and language processing will not be cover .~; see for exam-
ple [Angluin83, Fu82, Lang92, Miclet90] and more recently the proceedings of the
workshops on grammatical inference [GI]. We only focus on neural network related re-
search and, even there, only on work directly related to our model.

The computational capabilities of recurrent networks have been explored by many.
Rather simple recurrent networks have been proved to be at least Turing equiyalent [Siegel-
mann95] and to within a linear slowdown have output-only feedback networks
[Sieglemann97]. However, certain growing methods such as recurrrent cascade correlation
have been shown to be computationally limited [Giles95a, Kremer96] as have certain lo-
cally recurrent architectures [Frasconi96b] and recurrent networks for structures
[Sperduti97]. Finally, there are recurrent neural network architectures that are topologically
equivalent to subclasses of finite state machines [Kohavi78b], in particular, finite memory
and definite memory machines or automata [Clouse97, Giles95b].

2.1 Recurrent Neural Network State Machine

Recurrent networks have also been explored as models for representing and learning
formal and natural languages. Simple recurrent neural networks can be interpreted as neural
network representations of finite state automaton (FSA) [Allen90, Cleeremans89, EI-
man91b, Giles92eg Home92, Mozer90, Noda92, Pollack91, Sanfeliu92, Watrous92]. For
convenience we will call these neural network finite state automata (NNFSA). It is possible
to prove that simple recurrent networks can exactly emulate the behavior of FSA and that
synthesis and extraction methods exist for FSA and recurrent neural networks [Casey96,
Frasconi96a, Om_lin96a, Omlin96b] and even for fuzzy FSA [Omlin98]. We will not direct-
ly discuss neural network finite state machines, i.e. NNFSA which have additional output
symbols, see for example [Das91, Chen92, Goudreau95].

All of the recurrent network models discussed here will be higher-order. These models
have been found to be very convenient and powerful for representing specific computation-
al constructs in neural networks [Ghosh92, Goudreau94, Lee86, Miller93, Pao89,
Perantonis92, Pollack87, Psaltis88, Rumelhart86, Watrous92]. Using second order connec-
tion weights, the recurrent dynamics of the state neurons, seen in figure I., can be readily
expressed by

i = g (W 0 I k+Oi) , (1)
j ,k

299

Fig.1 A second-order recurrent neural network, where I t and S t represent the current
input and state, S t+l is the next state, and SO T the output neuron.

where Si' is the activity of the/~h State neuron at time step t, I~' is the ~ component of
the input symbol at time step t, g is the nonlinear operator, usually the sigmoid function g(x)
-- I / (l+exp(-x)) and 0 i is the bias term for the ith neuron. When a temporal sequence of
length T: {I 1, 12, 13 1 T} is fed into the recurrent net, the input symbol I t at each time
step together with the current state S t (initial state is assigned) are the "input" to the net-
work and the "output" would be the next time state S t+l. The recurrent network therefore
acts like a real-time machine. At the end of an input string, an end symbol is given to the
network and the output in the last state neuron is checked to determine the classification
category of the input string. This neural network finite state automaton (NNFSA) can be
used to recognize strings that belong to a regular grammar. Various work [Cleeresman89,
Elman91b, Giles92a, Giles92b, Omlin96b, Pollackgl, Watrous92, Zeng94] has shown the
possibility of using neural networks to perform grammatical inference on regular gram-
mars, i.e. to find a "useful set" of production rules P from only a finite set of sample training
strings (and even noisy strings [Carrasr

One of the limitations of NNFSA is its difficulty in processing higher level languages.
A "brute-force" method to enhance the computational power ofa NNFSA is to increase the
size of the existing neural network structure (or increase the precision of the neuron units
in the network) while training on a more complex language, say a context-free grammar
[Allen90]. The assumption is that the size of the neural networks has no bound, but the
knowledge gained as the network grows gives clues to the representation of the underlying
grammar and it associated machine ([Crutchfield91] uses this approach to show that con-
text-free grammars are generated by a nonlinear system on the edge of chaos). But in
practice gaining this knowledge is difficult. What usually happens is that the trained NNF-
SA will only recognize the language up to a certain string length [Wiles95] (in effect, a
regular grammar approximation to a say a context free grammar). For the NNFSA to gen-

300

eralize correctly on longer unseen strings, the NNFSA needs to be re-trained on those
strings. Another way to view this is that a FSA approximation to a DFA is being produced.
The issue is: how good is that approximation?

2.2 Recurrent Network Models: Extensions Beyond Finite State Machines

There has been a great deal of effort to enhance the power of recurrent neural networks
by increasing the precision or size of the network or by coupling it with an external, poten-
tially inf'mite, memory. The work of [Williams89] coupled a recurrent neural network to a
memory tape to emulate a Turing machine and to learn the state automaton controller for
the balanced-parentheses grammar (a context-free grammar). More specifically, a recurrent
network was trained to be the correct finite-state controller of a given Turing machine by
supervising the input-output pairs, where the input is the tape reading from a target Turing
machine and the output is the desired action of the finite controller. The important distinc-
tion between NNPDA model and that of [Williams89] is in the training - particularly, the
behavior of their target controller was known a priori and not learned. In the most general
case of grammatical inference the transition rules of the target machine are not known be-
forehand; only the classification for each training sequence is known. The NNPDA model
we describe allows the NNPDA itself to "figure out" how to construct a neural net control-
ler that knows both the state transition rules and, in addition, how to use and manipulate the
tape or stack.

ISTACK2I

I ST/ ACKII
(a). Push onto stack

ISTACr I
(b). Pop from stack

Fig.2 A neural network emulator of a stack proposed by [Pollack90]. (a) Coding pro-
cess emulates a "push" action onto a stack. (b) Decoding process emulates a "pop" action
from a stack.

Closely related work is the R.AAM model o f [Pollack90], which proposed an "internal"
neural network model of stack memory as a plausible model for cognitive processing. Let
us consider using this model to build a NNPDA. As shown in Fig. 2, the "push" and "pop"
actions onto the stack are emulated by a coder and a decoder separately, where the
"STACKI", "STACK2", and "STACK3" are the neuron arrays with the same size and the
"TOP" represents the symbol(s) on the top of the stack. The training can be performed by
concatenating the network in Fig2(b) with the network in Fig2(a) and using error back--
propagation. The desired outcome requires "STACK3" to be identical to "STACKI".This

301

recursive distributed representation of a stack memory may be of particular interest to cog-
nitive models of language processing. However, as a computational model this structure
has drawbacks. First, this recursive structure is identical to a NNFSA, where the
"STACK's" configurations correspond to internal neural states. In other words, this model
transfers the complexity of a stack manipulation to NNFSA state transitions.For a stack
with limited length, this model is equivalent to training a FSA with a small number of
states. But in general, such a model will be limited since, theoretically, the stack represents
a potentially infinite number of states. Even for a limited length stack, this model is ineffi-
cient. To illustrate this, consider a stack with length L and number of symbols N. Thetotal
number of possible configurations o f the stack is

L N L + l - 1 N L " (2)
= N-I

l = 0

ffwe wish to build a distributed memory of internal states that behaves like a stack, we
need to construct (or learn) a NNFSA with N L internal states. The required memory size of
neurons (or weights) will scale as - N L which severely limits the usefulness of the internal
neural network stack.

Other closely related work is the connectionist "luring machine models of [Siegal-
mann95, Pollack87]. They showed that a stack can be simulated in terms of binary
representations of a fractional number which are manipulated by neural network generated
actions. The focus of this work was initially on "representational" issues and not on a"prac-
tical" learning system. Their proposed stacks use a fractional number represented in terms
of a sequence of binary symbols "0" and ' T ' . A "pop" action removes the leading bit from
the fraction and can be simulated by two consecutive numerical operations: multiplication
by two and subtraction of the leading bit. A "push" is represented by adding "0" or "1" to
the original stack and dividing the sum by two. This stack model is clearly as efficient as
the conventional discrete stack. An additional feature is its simple representation -- a frac-
tional number. However, for learning, these stack models have the problem that they are
not easily coupled to gradient-based learning algorithms. This is because, although a frac-
tional number is continuous, any small porturbation of the fraction causes a discrete change
of the stack content that this fraction is representing. Extensions of these models to graph-
ical structures has also been explored [Sperduti95]. Recent work has also shown that a
recurrent network can be coupled to an standard external stack for syntax analysis [Chen].

Finally, an entirely different method for learning context-free grammars with a neural
network has been proposed. [90] maps directly the production rules of the CFG, both ter-
minals and nonterminals, directly in neural networks and shows some preliminary results
for character recognition.

The original NNPDA model with an external continuous stack and its learning algo-
rithm were originally proposed in short papers [Gilesg0, Sun90]. Recently [Das92]
benchmark experiments with different order connection weights of NNPDA showed that
third order weights were better than first or second order. [Das93] showed the advantage of
using hints in learning CFGs. Recent work [Mozer93] also shows that the continuous stack

302

can be used to manipulate the "continuous rewrite rules" necessary to parse context-free
grammars. [Zeng94] showed that when a recurrent network controlling an external stack is
trained by a pseudo-gradient method and discretized during training, the trained NNPDA
can successfully classify strings of arbitrarily long length.

3 Neural Network Pushdown Automata

In this section, the NNPDA model is thoroughly described. As will be seen, this model
fits into the real-time recognition models that are more similar to NNFSA and dynamical
recognizers [-Moore]. The schematic diagram of the neural network pushdown automata
(NNPDA) is shown in Fig. 3. This NNPDA, after being trained, will hopefully be able to
represent the underlying grammar of the given training set (we assume that for each of our
training sets there is a unique underlying grammar) and be able to correctly classify all un-
seen input strings generated by an unknown CFG. To use the NNPDA as a classifier, input
strings are fed into the NNPDA one character a time, and the "error function" at the end of
each string sequence decides the classification. It is important to note that all grammars and
automata discussed in this paper are deterministic.

Lt+ 1
~ ~ i e r ror f u n c t i o ~ (length of stack at time t+l)

I ~ / / / push or pop with depth IAI

_ ~/ ",3 (action on stac~ -~ I I r / t
Q-._O O O - - - ~ - ' ~ O . ~.D.--------~.-I jtu.4~)

e . i

(state neuron (input symboi)(reading from B(0.67) ,
at time t) top of stack AI0.33)

with unit depth.~ continuous
stack

Fig.3 The schematic diagram of the Neural Network Pushdown Automata NNPDA.
where a high-order recurrent network is coupled with an external continuous stack. The in
puts to the neural net are the current internal states (St), input symbols (I t) and the stack
reading (Rt). The outputs from the neural net are the next time internal state (~+1) and the
stack action (At+l). This action will be performed on the external stack, which in turn will
renew the next stack reading (Rt+l). The weights of the recurrent neural network controller
will be trained by minimizing the error function, which is a function of the final state and
the stack length at the end of input string.

303

The proposed NNPDA consists of two major components: a recurrent neural network
controller and an external continuous stack memory. The structure and working mechanism
of these two components will be described in detail in subsections 3.1 and 3.2. A brief in-
troduction of the NNPDA dynamics follows. The neural network controller consists of four
types of neurons: input neurons, state neurons, action neurons and stack reading neurons;
and the stack is simply a conventional stack with analog symbol "length". At each time
step, the recurrent neural network can be considered an input-output mapping. The input to
the mapping is: the current internal state S t, input symbol I t and the stack reading R t. And
the output are the next time internal state S t+l and the stack action A t+l. This action will be
performed onto the external stack, which in turn will renew the next time stack reading
R t+l. This new stack reading together with new internal state S t+l and new input symbol
I t+l will serve as a new input for another input-output mapping. At the end of input se-
quence the content of internal state and stack will determine whether or not the input string
is legal.

During the training stage, the weights o f the recurrent neural net will be modified to
minimize the error function, which is fully discussed in subsections 3.4 and 3.5. In some
sense the learning can be thought o f as unsupervised or reinforcement style learning, be-
cause (a) no credit assignment is made before the end of input sequences and Co) the system
can extract the classification rules automatically from the input examples.

3.1 Neural Network Controller

The neural network controller is an extended version of the neural network finite state
automata (NNFSA) previously described in [Giles92a]. It is still a high order recurrent neu-
ral network (Fig.3). The difference is that the NNPDA introduces additional input and out-
put neurons (and, of course, the external stack). The "hidden" recurrent neurons {S i,
i=l,2,...,Ns} represent the internal states of the system to be learned. The input neurons {1 i,
i=l,2,...,Nl}, are each associated with a particular input symbol (a localist or one-hot en-
coding scheme). These two groups of neurons are the same as that of NNFSA. The addi-
tional "nonrecurrent" input neurons {R/, i=I,2,...,NR} represent the stack content read from
the top of stack memory. The additional "nonrecurrent" output neurons {4 i, i=l,2,...,N A }
represent the action values that operate the stack (pushes, pops or no-operations). The state
neurons are feedback into themselves after one time step delay (Fig. 3).

The discrete time dynamics o f the neural network controller can be written in general
form as

s , + t = G (S' , R ' , t ' ; re ') (3)

A t+l = F (S t , Rt, l t ;Wa) "

where S t, R t and 1 r are vectors of internal state, stack reading and input symbol at time
t, and W s and W a represent the weight matrices for the state dynamics and action mappings.
It is seen from Eq.(3) that for a full description of the dynamic, we need another equation
for the stack reading R t. In general, this function could be written as

304

1~ = F (A 1 , A 2 A ' , I l, I z 1~) . (4)

The combination of Eqs. (3) and (4) describes a dynamical process for the system
"state variables" {S t, R t, A t } that evolves in time as a function of an input sequence {11,12,
13 J r} , given a set of initial values of S ~ R ~ and A O. However, this is not a state ma-
chine, because Eq.(4) indicates that there does not exist a simple recursive function for the
stack reading R t. The value of R t depends on the entire history of input and actions (or
equivalently, R t depends on weight matrices and input history). This mapping o f R t is high-
ly nonlinear and is determined by the definition of the stack mechanism, which will be later
discussed in detail. To be exact, the so called neural network controller is defined only by
Eq.(3).

To decide the proper structure of neural network controller, both the neural represen-
tations and the target mapping functions need to be known. For discrete pushdown autom-
ata, the mappings (or transition rules) are third-order in nature, by which we mean that each
transition rule is a unique mapping from a third-order combination: { S t x R t x I t} tO its out-
put, the next time state S t+l and stack ac f ionA t+l . Assume that unary representations of/t,
R t and S t are employed. For instance let It=(1, 0, 0), (0, 1, 0) and (0, 0, 1) represent symbols
a, b and c, and S t =(1, 0) and (0, 1) the two different states. It is easily seen that any tran-
sition rule: {,~ t, Rk t / i t} ~ Si t+l orAi t+l could be coded into two four-dimensional matrices
WSijkl and W'ijk 1, each component being a binary value 0 or 1(for WSijkl), or ternary value
1, 0 , - 1(for Waijkl). For example, the state transition rule { S(j), R(k), l(1) } --~ S(i) means that
if the input symbol is the lth symbol, the stack reading is the kth symbol and the internal
state is tbejt h state, then the next state will be the ith state. And, this rule would be coded as
WSijkl=l and W~mjk~'O, m:~i. Similarly, waijld = [1, 0, -1] implies a mapped action: [push,
no-op, pop] o fAi t+l. In this way we show that any deterministic PDA could be implement-
ed by a third order, one layer recurrent neural network with discrete neural activity func-
tion. Particularly, if the NNPDA's neural network controller is represented by third-order
nets of the form

-,st.+ I = g ktSjR,t.lt +
At . t

(5)
t !

j , k , I

the existence of a solution to any given PDA would be guaranteed upon proper quan-
tization of the nonlinear functions g(x) andf(x). During learning, the sigmoid function g(x)
is used andf(x) is defined as f(x) = 2g(x) -1.

However, this proof does not exclude solutions with other neural net structures and
does not necessarily guarantee the best learning behavior with third-order weights for all
problems. In practice, second-order weights were used for some problems and good train-
ing results were achieved. The recurrent updating formula for second-order networks can
be written as

305

S[+~ g (~ ' ' ' = ~ks} (R ~l)k+0,'.)
i,k

(6)

(g'~r)k = ~ R~ if o < k<-NR

lit_,,. if N R < k <_NI+N R

(7)

Experiments and comparisons between NNPDAs with different orders of connection
weights were discussed in [Das92]. In most cases the third-order weights gave better learn-
ing results.

The existence proof of the NNPDA controller discussed above is based on the assump-
tion of unary representations of internal states and symbols (beth input and reading
symbols). For the stack reading R t and input/t, a unary representation (or linear indepen-
dent vector representation) is necessary. This will be discussed in next subsection.
However, unary representation of internal states may not be necessary. Moreover, to extract
a discrete PDA, the procedure o f state quantization is performed after learning and the
quantized state vectors (often expressed in a binary form) are neither unary, nor linearly in-
dependent. But, during learning (especially hard problems), we often encounter the cases
where we need to adjust independently the transitions between these linearly dependent
state vectors. With third order weights the degrees of freedom are limited and each weight
parameter does not associate with only one particular state transition as in the case of unary
representations. Therefore, learning could be often trapped at a local minimum. To solve
this problem, we propose a "full-order" connected network and find it very useful in learn-
ing some hard problems, like the Palindrome grammar. A "full-order" network is defined
one is which the order of the correlation is the produce of all independent state neurons. The
"full-order" network we used for one action output is

At+l f (E t t t = W~{j} kl S {j} R~kll + 0 a) , (8)
{j},k.t

where the subscript {j }~{Jl, J2 Jn }, represents all 2 n possible n-bit binary numbers
(ira=0, I; m=l, 2 n), and n is the number of state neurons. The s t a t e vectorSt{j} is an nth
order product of St's components defined as

= f l (jmStm + (1 --Jm) (1 t _ Sm)t) (9) St/}
m = l

For example St{ll01l = sItS2t(1-s3t)s4 t for a 4-state neuron net. In learning the palin-

At.+, = f(E VC~ijeSJ (Rt ~ It) k +oa) l
j,k

where (Rt~ It)k is the concatenation of the two vectors R t and/t, whose components
are given by

306

drome grammar, the combination of Eq.(8) and the third order state dynamics of Eq.(5) led
to successful training.

3.2 External Continuous Stack Memory

One of novel features of the NNPDA is the continuous stack memory. The continuous
(or analog) stack was motivated by a desire to manipulate a stack with a gradient descent
training algorithm. In order to minimize the error function along the gradient descent direc-
tion, the weight modification is proportional to the gradient of the error function

A W ~ ~w(ErrorFunction) (10)

To couple the neural net with a stack memory, the stack variable must be included in
the error function. One way of doing this is to make the stack variables a continuous func-
tion of the connection weights, so that an infinitesimal change of weights will cause an in-
finitesimal change of action values, which in turn cause an infinitesimal change of stack
readings. Any discontinuity among these relations may cause the derivative to be infinity,
thereby interfering with the learning process.

3.2.1 Continuous Stack Action

To fully describe the mechanism of the continuous stack, we discuss in detail: (1) the
continuous stack action and stack operation; (2) how to read the stack and (3) the neural
representation of the stack reading. Consider a conventional stack, as shown in Fig. 4(a),
where there arc stored a number of discrete symbols. The discrete stack actions includcpop,
push and no-op. Without affecting the generality of a stack function, it is assumed that each
action only deals with one symbol. The pop simply removes the top symbol and the push
places the symbol read from input suing onto the top of stack. When the continuous stack
is introduced, we have to replace both the discrete symbols in the stack by continuous sym-
bols and the discrete pop and push actions by continuous actions. Therefore, we define the
continuous length of every symbols. In Fig. 4(a), the stack is filled with discrete symbols
and each symbol is interpreted as having equal length L=l. In the general case, as shown
in Fig.4(b), the stack is filled with continuous symbols, each having a continuous length:
1 >- L ~ 0. These continuous symbols are generated by the continuous stack actions. As de-
scribed in the neural network controller in Eqs.(5), (6) and (8), the output of the action
neurons Ait are calculated by the function J~x) with analog values distributed within the in-
terval [-1, 1]. The value ofAi t is interpreted as the intensity of the actions to be taken on the
conventional stack [Harrison78]. When Ait takes on continuous values, the natural general-
ization of the discrete dynamics is to interpret each continuous action A/as an uncertainty
about the action to be taken. We represent this uncertainty in terms of the.length of the dis-
crete symbols to be pushed or popped. Therefore, at each time step only pan of a discrete
symbol is pushed or popped onto the stack with length determined by JAit[. Whether to
push or pop is determined by the sign of Air: push ifAi t > E and pop if A/< -E where ~ is a
small number close to zero; otherwise a no-operation (no-op) takes place. After such ac-
tions, the stack construction would appear as in Fig.4 (b).

307

L = I

L = I

L = I

L = I

(a)

L = 0 . 9 a

.......... C'~
L = 0 . 6
L ='6"Y"

L = I . O b
L ='03"-
L --'i[J':7"" I a

..... : I
(b)

Fig.4 Stack symbols with continuous lengths: (a) discrete stack is filled with discre!
symbols which can be viewed as all having length = 1, (b) continuous stack is filled wit
discrete symbols having continuous length:0 < L < 1.

In the above description of the stack operation, only one component of the vectorA~
is used and all three actions pop, push and no-op are represented by one variable. However,
one could integrate continuous actions into a conventional discrete stack in many different
ways. For instance, separate action neurons could be used to represent the different types
of actions, i.e. one neuron with output 0 < Atz < 1 to represent the value ofpush and anoth-
er neuron with output 0 < A~_ < 1 to represent the value of pop action. In this case both Atl
and A~ could simultaneously have nonzero output and the order in which the two actions
(push andpop) are executed must be assigned in advance. If we first take apop action and
then push, we in effect introduce four types o f actions in the discrete limit: (1)push
(A~ = l a n d a [= O),(2)pop(a~ = OandA[= l),(3)noaction(atl = 0andA[= 0)
and (4) replace (A~ = 1 and A[= 1).

3.2.2 Reading the Stack

How to read from a continuous stack must be defined. For simplicity, we assume only
one action neuron is used. In the conventional discrete stack a read operation only reads one
symbol from the top of stack and sees nothing below. This reading method is not suitable
for the continuous stack, since there will be a discontinuity in the content of the stack read-
ing. We treat the stack as a one-way tape and the reading can be performed without popping
the stack. More specifically, a reading discontinuity may happen in either of the following
two cases: (1) after performing the action A t, a symbol with an infinitesimal length is left
on the top of the stack; or (2) the top symbol has a infinitesimal (or zero) part being re-
moved by the previous pop action A t . In these two cases an infinitesimal perturbation to the
action value A t could generate a discrete jump in the stack readings. See the example shown
in Fig. 4(b). IrA t = -0.9, the symbol "a" will be popped entirely from the top of the stack.
And the next reading Rt+lwould be the symbol "b" with length = 0.6. However, if there is

308

a small perturbation to the connection weights such that the value ofA t increases by only
0.001, then At=-0.899. The top symbol "a" with length L---0.899 will be popped and a small
portion of "a" remains on the top of stack. In that case the next readingR t+l would be the
symbol "a" with length = 0.001. A similar discrete jump will happen for the case whereat=
0. To avoid this discontinuity we impose the condition that each time the continuous stack
is read with depth equal to 1 from the stack's top.

The advantages of this reading method are outlined below. First, a continuous reading
function will be constructed with respect to the connection weights - any infinitesimal
change of weights will cause an infinitesimal change of stack readings. In the example of
Fig.4(b), for At=-0.9 the symbol "a'" on the top is popped. The next readlng contains two
parts: symbol "b" with length = 0.6 and symbol "c" with length = 0.4 (the total length = 0.6
+ 0.4 = 1.0). If the action value was changed to At=-0.899 due to a small perturbation of the
connection weights, the symbol "a'" is not totally popped off and a small fraction is left. In
this case the next reading would contain: a small fraction of symbol "a" with length = 0.001,
a part of symbol "b" with length = 0.6 and a part of symbol "c" with length = 0.399 (total
length = 0.001 + 0.6 + 0.399 = 1.0). This example shows that the change of the next stack
reading R t+l is proportional to the change of previous action values A t. When AA t ap-
proaches zero, the change of readings AR t+l also approaches zero. It should be noted that
this continuity of the reading function does not automatically guarantee that it is differen-
tiable; and, even if it is differentiable, its derivative may not be a function feasible for
numerical implementation. The complication of the derivatives ORtlO Wand ORtlO,~ will
be discussed in Appendix A.

The other advantage of the proposed reading method is its correspondence with a prob-
abilistic interpretation of the continuous action value; a stochastic machine. The continuous
action values can be interpreted as a type of uncertainty compared to the deterministic dis-
crete push and pop. If the maximum of the absolute action value is one, i.e. IA[I -< l , the
length of a symbol to be pushed or popped can be interpreted as the probability of this dis-
crete action. Consequently, the reading of the stack with a total length equal to one implies
the normalization of the total probabilities i.e. the summation of all the probabilities for
reading each discrete symbol normalized to one. In other words, as in the previous example
of Fig.4 0a), if the stack reading (with total length equals to one) contains: 'a ' with length
= 0.001, 'b ' with length = 0.6 and "c" with length = 0.399, we can interpret that the stack
symbol is being read with uncertainty: the probability of the read symbol to be "a" is very
small as 0.001, the probability to be "b" is 0.6 and to be "c" is 0.399. When the stack length
is less than 1, the reading may be only an 'a ' with length = 0.1, this could be interpreted that
the probability to read 'a ' is 0.1 and the probability to read empty stack is 0.9.

3.2.3 Neural Representation

In the last subsections, the stack reading R t and the input/t are often described as a
symbol. In this subsection, the actual neural representation of these two vectors will be dis-
cussed.

The neural representations of the input string symbol/t and the stack readings R t are
determined under the following considerations. First, in the discrete limit (by quantization

309

of the analog neurons to discrete levels) the learned neural network pushdown automata is
required to behave the same way as a conventional pushdown automata. In this limit, since
both sets { l t} and {R t } (each element of which corresponds to a symbol) represent the same
set of discrete symbols, the neural representations of each I t and R t need to be identical. In
this regard, there are no restrictions on their neural representations as long as they are the
same. For instance, consider the symbols 'a ' , ' b ' and 'e ' , the set [/t} or {R t} can be repre-
sented either by two neurons as (0, I), (I , 0) and (I, 1) i fa binary code is used or by three
neurons as (1, 0, 0), (0, 1, 0) and (0, 0, 1) if an orthogonal code is used.

Second, during training, the stack reading should consist of continuoas neuron values
and each reading neuron R t should be able to represent the contents inside a segment of the
continuous stack with total length = 1. This is in general a distribuw.d mixture of the three
possible symbols, each with a analog length less than 1. For effective neural information
representation, it is important to require that there exist a unique one-to-one mapping be-
tween each vector R t and the stack symbol component it represents.

The general mapping from the three continuous lengths to R t can be written as

1~ = f (ll , 12, 13, ~, b, ~) (11)

l +12+13<_1, l,>O, 12>_O, 13>_O'

where/1, 12 and l 3 are the three continuous lengths of discrete symbols 'a' , 'b ' , and 'e '
contaaned m R t and a, b, e are the vector representations of 'a ' , 'b ' , and 'e' in neuron space.
The condition/i+/2+ l 3 < l(not 11+12 + 13 =1) includes the case of partial empty stack during
training where the total length of symbols stored in the stack is less than one.

The first requirement for the discrete limit can be stated as

R t = ~ i f l I = 1,/2 = 0,/3 = 0 ;

1~ = b i f 12 = 0, l 2 = 1, l 3 = 0; (12)
1~ = ~ i f 13 = O, l 2 = O, 13 = 1

One simple way to satisfy this condition is to write R t as a linear combination of three
basis vectors a, b,

1~ = l l a + 12b + 13~ . (13)

For the second requirement, uniqueness, the necessary, and sufficient condition for the
mapping in Eq.(13) is that the three neural vectors ~, b, e be linearly independent. (By the
uniqueness we mean that if there exists another set of coefficients l ' 1, l ' 2 and l ' 3 such that
l ' l ~ + l ' 2 b + l ' 3 ~ = ll~t+12b+13~ then l' 1 = I I, 1' 2 = 12 and l' 3 = 13")If there are m
symbols used in the input strings, then at least m analog neurons are needed to represent the
input string symbol/t and the stack readings R t because any m vectors in the lower, less than
m, dimensional space would be linearly dependent on each other. In the three symbol ex-
ample, this excludes the use of binary vectors (0, 1), (1, 0) and (1, 1) to represent symbols
'a' , 'b ' and 'e'. For simplicity the unary neural representation, i.e. ~ = (1, 0, 0) ,

310

/7 = (0, 1, 0) and ~ = (0, 0, 1) are used for the three symbols 'a' , 'b' and 'e ' . In this
case the stack readings R t a re represented by a three-dimensional vector (/1,/2,/3), indicat-
ing that in the current stack reading the lengths of letters 'a ' , 'b ' and 'e' are/l, 12, l 3 respec-
tively.

To conclude this section, a novel continuous stack is introduced. One interpretation of
the continuous stack is the concept o f a magnitude associated with a discrete symbol. This
new concept stresses two aspects: (1) generalization of a discrete stack to a continuous
stack and (2) identification of the stack readings and actions as neural network input and
output with a probabilistic interpretation.

3.3 Dynamics of the Neural Network Pushdown Automata

For simplicity the following assumptions are made: (a) only deterministic pushdown
automata are considered; (b) only one action neuron output A t is used; (c) the same set of
symbols represent both the input and stack symbols, so that an action push only pushes the
current input I t onto the stack. These assumptions will restrict the class of CFG languages
that the NNPDA can learn and recognize.

We illustrate the NNPDA dynamics by examples. Consider two symbol strings of 'a '
and 'b' . To mark the end of an input string the end symbol 'e ' is introduced. A possible
input string may be: "aababbabe." Each time a string symbol 'a ' (or 'b ') is fed into the neu-
ral network controller, this same symbol 'a ' (or 'b ') could be pushed onto the stack (or the
stack could be popped from the top) with magnitude IAtl according to the sign ofA t. The
last symbol 'e ' indicates the end of the input string. Upon receiving the end symbol, the
neural network pushdown automata would generate a proper output to tell whether the in-
put string was legal or illegal.

Numerically, two arrays are used to represent the stack: an integer army stacksym-
bol[] to store the symbols { 'a ' , 'b ' , 'e ' } and a real number arraystacldength[] for their
lengths. A record of the number o f symbols stored on the stack is kept in an integertop.
Assume that four state neurons are used such that S t = (s 1, s 2, s 3, st), where 0<Sl, s 2, s3,
s t - < 1 are the four neurons output.

The NNPDA ooerations are outlined for successive time steos.

(1) t = 0.

Initially, the stack is empty, so that top = 0 and the stack reading at t = 0 is R ~ = (0, 0,
0). If the first symbol of the string is letter 'a ' , the initial input neural vector would be/0 =
(1, 0, 0). Assume the initial state to be S O = (1, 0, 0, 0). The stack is shown in Fig. 5(a).

(2) t = I.

Initialize the NNPDA with the values S 0,/o and R ~ (as shown in Fig.3). After one it-
eration of Eq.(3), the new state S l and new action A l are obtained. Assume that the action
output is A 1 = 0.6, then push symbol "a' with length = 0.6 onto the stack. The new status of
the stack can be represented as stacksymbol[1] = 'a ' , stacklength[I] = 0.6 and top= 1. Then
the next reading R 1 would be (.6, 0, 0). The stack is shown in Fig. 5(b).

311

(a)
Fig.5 Stack status at (a) t = 0 and (b) t = 1.

a 0.6 (b)
If the next symbol in the input string is 'b ' , then P = (0, 1, 0). Substituting the new

values S 1, I 1 and R ! into Eq.(3) generates the next time values. Repeat the procedure.

(3) some later time t.

After several possible pushes, pops and no-ops, the current stack memory may have
stored several continuous symbols as in Fig. 6(a): top = 4 (four symbols are stored),
stacksymboi[.] = ('a ' , 'a ' , 'b ' , ' a ') and stacidength[] = (0.32, 0.2, 0.7, 0.4). Since the stack
is read down from the top with depth = 1, the current stack reading would be R = (0.4, 0.6,
0) as shown in Fig. 6(a). Assume the input symbol is 'a ' , so that/t = (1, 0, 0). The state
vector can also be read from the state neuron output as S t .

top t
R t
I a a 0.4 This portion is

ii2 p'~ b 10,46 ~p~_o0.n86 b to | 0.24

[a Rt+I ab i 00.~22
a . ,[, a

(a) time t (b) time t+l

Fig.6 Continuous stack at (a) time t and (b) time t+l.

(4) time t+l.

Substitute S t, I t and R t into Eq.(3) and the next time values are obtained. If the action

312

A t+l =-.86, a segment of the stack with content of length = 0.86 is popped. This "popped
segment" includes 0.4 of 'a ' and 0.46 of 'b ' and the stack now hastop = 3 (three symbols
are left), stacksymbol[] = ('a ' , ' a ' , 'b ') and staeldength[] = (0.32, 0.2, 0.24). The next
stack reading would be R t+l = (.52,.24, 0) (formed by 0.32 of 'a ' plus 0.2 of 'a ' plus 0.24
of 'b').

This procedure is repeated until the end of the input string. The classification of an in-
put string is determined by examining the final state neuron output and the stack length. The
criterion for training and classification will be discussed in the next two sections.

3.4 Objective Function

The objective function to be minimized is defined as a scalar error measure which is
a function of both the end state and the stack length. For a conventional pushdown autom-
ata, either the end state or the stack length alone is a sufficient criterion to determine the
acceptance of input strings [Harrison78]. I f either the end state reaches a desired final state,
or the stack is ended empty, the input string is legal; otherwise illegal. However in training
the NNPDA we find that a combination of these two criteria seems necessary. (Initially, we
tried only one of these criteria in training, but training was unsuccessful. For the stack-emp-
ty only criterion, the stack actions always converged to pop. For the final-state only
criterion, the stack actions were not affected.) We speculate that this is because of the ex-
istence of too many local minimum in phase space. Thus, an objective function consisting
of only one criteria of final state or stack length will have a very complex phase space con-
figuration so that the local learning algorithm - gradient descent- would not be able to drive
the system from the local minima. Therefore, a legal string is required to satisfy both con-
ditions: (1) at the end the NNPDA reaches a desired final state and (2) the stack is empty.

Define the stack length at time t to be L t. Then, L t can be evaluated recursively in terms
of the action value A t

L TM = L t + A t , (14)

because only the push or pop actions can change the length of stack. The initial condi-
tion is L t = 0 and the constraint L t >__ 0 should be imposed at all the times. Let T-1 be the
final time at the end of input string. For legal strings the straightforward error functionE to
be minimized could be

E = (S I - S r) 2 + (L r) 2 , (15)

where S/is the desired final state. However, this error function could not be used to
train illegal strings. For illegal strings the desired value of function E is not known. Maxi-
mizing the same error E as in Eq.(15), in general, would not give a correct answer because
Eis an unbounded function and an illegal string may not end with a long stack length. How-
ever, replacing S / i n Eq.(15) with a desired end state for illegal strings and then minimizing
E presents the same problem since illegal strings are required to end with an empty stack
(in effect avoid using stack). The main difficulty is that there is not enough information to
decide the desired value of stack length for illegal strings.

313

In general, the following reasoning is applied. Since a legal suing requiresboth (a) the
desired final state Sar---S/~ and (b) an empty stack (L t = 0); an illegal suing should require
the opposite: either (a) the final state be a large measurable distance from S/~ or (b) a non--
empty stack (L t > 1). Although other training requirements could be defined, in practice,
both of these conditions are successfully used.

One way to implement the above requirement is to introduce a unified error function
E which can be used to train both legal and illegal strings. For simplicity we assign the final
state(s) in such a way that only one neuron SNs output is to be checked at time Tat the end
of input suing. We require SNsT= 1 an t /L / '= 0 for legal strings and sNsT= 0 orLr>_. 1 for
illegal strings. In this case the unified error function to be minimized for both legal and il-
legal strings can be defined as

E = (v + L r - S ~ c) 2 - - - e 2 , (16)

where v is a parameter assigned as a target value for each training example. For legal
strings v = 1 and for illegal strings v = rain{0, SNsLLT}. The learning algorithm is derived
by minimizing this error function with the proper value of v for each input suing. Correct-
ness of the error function(16) can be checked separately for each string. If the input suing

I" T is legal, v = 1. Then, minimizing E corresponds to the requirement that SNs = 1 and L =0
the desired final state and empty stack. If the input suing is illegal, we require

v = rain{0, SNsLLT}. There are two possible cases, First, when SNsT>L T, let v = 0, which
implies that minimizing E corresponds to driving L r to approach SNs T. The minimum of E
can be reached if SNsT=L T. This means that for each input suing (neuron activity SNs r is
discretized to 0 or 1) one of the following requirements is met: Sjvsr= 0 or LT= 1. Second,
ifL/'is already greater than SNs T, then v = rain{ 0, S~r-Lr}--SNsr-if . This leads to E-0, im-
plying "do not care" or "no error". Thus, in the discrete limit, the combination of the two
cases corresponds a requirement for illegal strings: either SN7 = 0 (illegal state) or L T >_ 1
(non-empty stack).

From the above analysis for analog values ofSNs T the expression H=-.SNsr-Lrcould be
considered as a continuous measure of how well both of the two conditions SNs I" = 1 and
LT=0 are satisfied. The desired value for legal suing is H=I and for illegal strings H_<0.
This H function also provides a simple test measure for new input suing strings. After train-
ing we will use the same measure H=-.SNs1"-L T to test the generalization capability of the
NNPDA on unseen input strings. The measure H will be evaluated for each input suing. A
suing is classified as legal if H>.5, otherwise illegal.

Another criterion to assist learning is the "trap state," one of the "hints" used by
[Das93]. This "trap state" is used in training the non-trivial Palindrome grammar; details
are discussed in Section W.

3.5 Trainiug Algorithm

The training algorithm is derived by minimizing the error function using a gradient de-
scent optimization method. There are currently two ways to implement gradient descent
optimization in recurrent neural networks: the chain-rule differentiation can be propagated

314

forward or backward in time. The forward propagation method is also known as Real Time
Recurrent Learning (RTRL) [Williams89], which propagates a sensitivity matrix forward
in time until the end of an input sequence. Then, error correction is performed and the
weights are modified according to the error message and the sensitivity matrix. Back-prop-
agation-through-time [Williams95] can be applied to recurrent network training by
unfolding the time sequence of mappings into a multilayer feed-forward net, each layer
with identical weights. This method requires memorizing the state history of input se-
quence and, whenever the error is found, the error must be propagated backward in time to
the starting point. Due to the nature of the backward path, it is an off-line method. In prin-
ciple, both methods can be generalized to couple the external stack memory with recurrent
neural network and train the NNPDA. RTRL is desirable for on-line training because the
weights can be modified immediately after the error is detected without waiting for back--
propagation. But it has a complexity of O(N 4) compared to the complexity of O(N 3) for
back-propagation through time (1'4 is the number of neurons and first order connection
weights are assumed). For the task of grammatical inference, on-line training is not neces-
sary because error messages are only given at the end of input strings. But, since the
derivation of forward propagation algorithm is more straightforward for NNPDA, we first
consider the generalization of RTRL for training the NNPDA.

From Eqs.(10) and (16), the weight correction for gradient descent learning becomes

, , , , : - , (a,-.+ '+ +,,,0"+',
kc3w b - f f) '

(17)

where 11 is the learning rate and the partial derivatives of L r and SrNs with respect to
weight matrix W can be calculated recursively. The formula for aLtlaW is easily derived
from Eq.(14)

aL t+t aL t aA t
- t. - - (18)

aw aw aw

The reeursions for astl a w and OAt/aw are found by differentiating the controller dy-
namical equations. For example the second-order connection weights of Eq.(5) yield

a , = ,,,.(sl.>

(19)

-- Y-,

It should be noticed that Eq.(19) is an abbreviation of four equations fol~St+li,/aWSijk,

315

aS t+ I i, / a Wajk, am t+ l [a WSijk and aA t+ l i a VCajk . For simplicity the notations of S t and A t are
combined into one equation. The (Ns+ 1)th component of vector S t is A t. The function hi(x)
represents derivatives g'(x) for i = I to N s and f (x) for i = Ns+ I. B a and W ~ are similarly
combined such that WUt represents W/jr s for i=l to N s and 14~t a for i=Ns+l. (Note the as-
sumption that NA=I and NR=Nt). The learning algorithm formulas for the third order state
transition and "full order" action mapping are presented in Appendix B.

From these recursions and knowing the initial conditions of as~ OA~ their
values at a later time can be evaluated by Eq.(19). But, the recursion is not complete until
aRt+llaw is expressed in terms of astlaW, aAtlaW and aRtlaW. This relation may not be
easy to find, since the stack reading is a highly nonlinear function of all the previous actions
and input symbols, as shown in E,q.(4), Rt=F(A l, A 2 At; I 1,12 It). The approximate
recursive relation for aR t+llaW can be derived (for details see Appendix A). To the lowest
order in its expansion, we have (from the derivation in Appendix A)

aR~, a a '

awi~ k = (sk, ~ - 8k,4) awi~ ~ ,
(20)

where rl t and !"2 t are the ordinal numbers of neurons that represent the top and the bot-
tom symbols respectively in the reading R t. Consider for example the case where after the
execution of the action A t, the stack is (from bottom to top): (0, 0.9, 0), (.2, 0, 0), (0, .7, 0)
and (0, 0, .15). Then rlt=3 and r2t=l, because the symbol (0, 0, .15) on the top is the third
symbol and the symbol (.2, 0, 0) on the bottom of R t is the fh'st one.

The complete recursive equations Eqs.(18), (19) and (20), together with the NNPDA
dynamical equations can be forward propagated with initial conditions aS~
aAolaw---o and aR~ The initial values of A ~ and R ~ are zero and the initial state S O
could be assigned any constant. At the end of the input string, the weight correction Eq.(17)
is evaluated. The final weight correction can be performed using either batch or stochastic
learning.

However, there is the case o f "pop empty stack." If the total length of the remaining
symbols in the stack is less than the value of a pop action (Lt'l<lAtl), a "pop empty stack'"
occurs. For a well designed conventional pushdown automata "pop empty stack" never oc-
curs. But, in learning a PDA, whether with a NNPDA or another method, such an action
seems almost inevitable. We devise two possible ways to deal with this case. First, the input
sequence can be interrupted whenever a "pop empty stack" occurs and weight corrections
are made to increase the stack length (AW - aLtlaW). And, second, when we have "pop
empty stack" and the input string is illegal, no weight correction is made. Conversely,
weight corrections are made for legal input strings.

3.6 Extraction of PDA from a Tra ined NNPDA

There has been a great deal of work on extracting symbolic representations from
trained networks [Casey96, Frasconi95, Giles92a, Omlin96b, Pollack91, Shavlik94, Tick-
le]. The interest here is can we extract from the trained NNPDA a useful reprensentation of
what the NNPDA has learned.

316

After training with examples of a context free grammar, the NNPDA in general could
recognize correctly the training set up to a certain length of strings. But, because of the an-
alog nature of NNPDA, the recognition results are not "correct" in a symbolic sense. The
final state output are analog values between 0 and 1, which are usually reduced to the binary
values of 0 and 1 by a threshold of 0.5. But, analog errors from intermediate states still exist
and could accumulate as the input strings become longer. To extract from the trained NNP-
DA a PDA which represents the underlying CFG, we devise a quantization procedure that
converts an analog NNPDA to a discrete PDA. To simplify the state structure of the extract-
ed discrete PDA, a minimization procedure for the PDA must be devised.

The quantization can be performed as follows. First, the action neuron(s) is quantized
into three discrete values: -1, 0 and 1 according to the rule

0, if (IAI <.4")
f

A = ~-1, if (A<-A*) , (21)
t 1, if (A>A*)

where the threshold A* was chosen to be 0.5 for most of our numerical simulations
(However, our experience indicates that the quantization results do not seem sensitive to
the selection of A* values and other values besides 0.5 could be used). In this way the con-
tinuous stack will behave like a discrete stack and generate the discrete actions: push, no-op
and pop actions. Next we perform a cluster analysis of the internal states. All input strings
that have been recognized correctly are fed into the trained NNPDA and a set of analog in-
ternal states is generated. This set is divided into several clusters using a standardK-mean
clustering algorithm [Duda73]. The number of clusters K is determined by minimizing the
averaged distance from each state to its cluster center (in case the clusters are not well sep-
arated more training with these strings may be needed). After the cluster analysis store the
cluster centers as the representative points of quantized internal states, then a PDA with dis-
crete states is created and the number of states is equal to the number of clusters. During
further testing, each analog internal state is quantized to its nearest cluster representative
points and the discrete transition rules can be extracted. Now construct a transition diagram
and this is the extracted PDA. It should be noted that other extraction methods have been
demonstrated [Das94, Tino95].

In some cases, instead of quantizing the whole state vectors, quantizing each of the
state neurons is also useful. If the state neuron's output is distributed near their saturation
values (0 or 1), a binary quantization is natural, i.e. Sti is quantized to one ifSti > 0.5 and
zero otherwise. If the state neural activity is uniformly distributed, more quantization levels
are needed. The quantized NNPDA is tested with training or test strings again. If the rec-
ognition is incorrect, a finer re-quantization is needed (see [Giles92a, Casey96] for a
discussion of a similar method for FSA extraction for trained NNFSA).

When a linear "full order" mapping is used for the action output (linear "full order"
mapping is the linear form of Eq.(8)), then the quantization rule of Eq.(21) can be replaced
by quantizing the connection weights by:

317

0, if (l l_<w f
W ~ = ~-1, if (W ~ < - W *) , (22)

L
1, if (I ~ > W *)

where W ~ are the connection weights for action output and W* is the threshold. For de-
tails, see the numerical simulation for learning the Palindrome grammar.

After extraction of the discrete PDA, we reduce the state structure by pruning equiva-
lent states. It is known that, in general, there exists no minimization algofi .thin (as for FSAs)
for obtaining the unique minimal PDA; and that there exists no algorithm to tell whether or
not two context flee grammars or the two PDAs which accept two context free grammars
are equivalent [Hopcroft79]. But, for a given specific structure of a PDA, the minimal size
can be obtained by exhaustive search. For instance, assume a specific swacture of a deter-
ministic PDA, which pushes and pops only one symbol per input and the stack symbols are
the same as input symbols. For this type of PDA each state transition can be characterized
by a three-tuple condition (~ [3,T), where r is input symbol, [3 is stack reading symbol and
y=1, -1, 0 represents push, pop and no-op. I f we consider each combination of ~ , y) as
an equivalent input symbol of a regular grammar, the extracted PDA transition diagram is
equivalent to a finite state automaton transition diagram where a transition occurs each time
a "symbol" (r is seen, Thus, the minimization algorithm for FSA can also be effec-
tively used to reduce the extracted PDA. For detailed examples, see the next section.

4 Numerical Simulations of Grammar Learning

To illustrate the learning capabilities of the NNPDA, we train the NNPDA on a finite
number of positive and negative strings o f three context-free grammars. Different types of
NNFDA and training procedures arc discussed for each particular problem set. For all prob-
lems the external stack of the NNPDA is initially empty. All simulations were performed
with 64 bit, double precision. For training we started with short strings and gradually in-
creased the string length [Elman91a]. For some simulations only 5 significant figures arc
presented.

4.1 Balanced Parenthesis G r a m m a r

We train a second-order NNPDA to correctly recognize a given sequence of "bal-
anced" parentheses. Input sequences consist of two input symbols '(' and ') ' and an end
symbol 'e ' . Unary input representations are used with three input neurons, where (1,0,0),
(0,I,0) and (0,0,1) represent respectively ' (' , ') ' , and 'e' . The stack action is controlled by
one action neuron A t . T h e number o f state neurons is chosen empirically to be three, since
the correct PDA controller is known to be a two state machine. The initial state is (1, 0, 0).
At the end of the input string the value of third state neuron S 3 is checked. During training,
the target value of S 3 is 1.0 for legal strings and 0.0 for illegal strings.

318

start

(0, ~, . ~ 0 , ~ , - 1)

Quantized states:

(T) = (1, O, O)

(~) = (1., .25, .25)

0 = (1, .25, .25)

(~) = (.75, .25, .75)

Fig.7 The pushdown automaton (PDA) extracted from the NNPDA after the balance,
parenthesis grammar was learned. The discrete states (1), (2), (3) and (4) are obtained bl
quantizing the numerical values of state neurons into five levels: 0, .25, .5, .75, and 1. Stat.
(1) is start state. State (4) is the legal end state. Just before the end symbol, a legal strin.
must end at state (2) with an empty stack.

The training set consists of fifty strings: all thirty possible strings up to length four and
twenty randomly selected longer swings up to length eight. The training criterion and algo-
rithm (RTRL) are the same as described in Sections 3.4-5. For each mn the initial weights
are randomly chosen from the interval [-I,1]. For 5 different runs approximately one hun-
dred training epochs are needed for the NNPDA to converge, i.e. learn the entire training
set. To speed up training, we introduce the empirical condition that the input sequence is
stopped and the stack length is reduced (AW- - ~LtlOW) if a "pop empty stacl(' occurs dur-
ing input of an illegal string. In this case, after only twenty epochs of training, the training
set is learned. During testing, all the strings up to length twenty can be correctly recognized
(totally 221 strings). The acceptance criterion is discussed in Section 3.4. Due to analog er-
ror accumulation, longer strings could not be correctly recognized. To extract a discrete
PDA the state neuron activation [0, 1] is quantized into five segments: (0, 0.125), (0.125,
0.375), (0.375, 0.625), (0.625, 0.875), (0.8755, 1) or five discrete values:S/= 0, 0.25, 0.5,
0.75 and 1.0, each corresponding to one segment. After quantization, the analog NNPDA
becomes a discrete PDA. To check its performance, randomly chosen longer strings (length
50 to 100) were tested. All strings incorrectly classified by the analog NNPDA were now
correctly recognized by the discrete PDA.

The transition diagram is extracted by tracing all possible paths of state transition nu-
mericaUy. This is easily done using a tree search method. Denote each node of the tree as
a combination of state and stack reading. Starting from the root node, the initial state and
empty stack, input all possible symbols at each node and trace the path of each symbol by

319

calculating the next time state, stack reading and stack operation in terms of quantized
NNPDA. Each time a new node is calculated, this node is checked to see if it has already
been created in the previous level of the tree. If it is not, create this node and construct a
transition line from the old node to the new node. Label the stack operation for this transi-
tion. Repeat this procedure at the new node until no additional new node occurs. The result
of the tree structure can be translated to a transition diagram with each state as a node. As
shown in Fig.7, each circle represents one quantized neural state and the arrows represent
the state transitions. The notation (a,b,c) in Fig.7 represents a transition that occurs when
the input symbol is/ t= 'a ' , the stack reading Rt= 'b ' and action neuron output is At=c. The
two parentheses ' (' and ') ' are denoted by '1 ' and '0 ' and an empty stackreading by 1~'. It
is seen from Fig.7 that when a "1' is presented to the NNPDA, a '1 ' is pushed onto the stack
(due to rules (l,(l),l) and (1,1,1)). l.fa '0 ' is presented to the NNPDA, a ' I ' is popped from
the stack (due to (0,1,-1)). Whenever a '0 ' is presented and the stack is empty, the "pop
empty stack" occurs. An input string will be classified as legal if, just before the presenta-
tion of the end symbol, the PDA is at state 2 and the stack is empty. Otherwise the input
suing is illegal, i.e. either "pop empty stack" occurs or the stack is not empty).This is in-
deed the desired PDA. In addition to the start state (state 1), only one state (state 2) is
needed. States 3 and 4 are only needed to check if the stack is empty at the end of string.

4.2 The lnO n grammar.

The language of the ln0 * grammar is a subset of the parenthesis grammar. The ln0 n
PDA needs at least 2 internal states in order to filter out the strings legal for the balanced
parenthesis grammar but illegal for the ln0 n grammar [Hopcroft79]. The neural controller
we used to learn the ln0 n grammar had 5 state neurons.

A small training set, 27 short strings with 12 legal and 15 illegal strings shown below
was initially used for training:

nl, nl I, nl000 y1100, nlO11, y l0 , yl0, y1100, n110010, yl0,
n0,nl00, n 1111, y l 1110000, n1101, yl0, yl0, y 1 I00, n110100,
n00, nl001, nl 1 I0, y l 111100000, yl0, y1100, nl01 I00, nl010,

where the letter 'n ' and ' y ' in front of the strings denote the classifications "no" and
"yes". The ln0 n grammar contains very few legal strings; among 2 L strings of length L
there is only one legal suing 1 I...100...0. Hence, the training set replicates some of the short
legal strings "10" and "1100" between illegal strings in order to give balanced training set.
For this example, the empirical rules (or "hint") of "pop empty stack" or "dead state" are
not used. Whenever a negative stack length appears, we stop and modify the weights to in-
crease the stack length L t (A W - ~Ltl'OW). This is equivalent to increasing the "push" action
value A t tO avoid "pop empty stack".

After 100 training epochs, the NNPDA correctly classified the training set and was
tested on unseen strings. Up to length eight, all strings are classified correctly except the
following six strings:

n11000, n1100100, nO1110000, nl0101000, n11011000, n11001100.

These strings are then added to the training set and the NNPDA is retrained for another
100 epochs. Testing found 8 errors for all strings up to length nine. The misclassified

3 2 0

strings are again added to the training set. After repeating this procedure five times, the
trained NNPDA correctly classified all 2,097,150 strings up to length twenty and 20 ran-
domly chosen strings up to length 160.

To analyze the learned NNPDA, the state neurons are quantized into two levels: 0 (if
S=<0.5) and 1 (otherwise), and the action neuron is quantized into three levels: -1, 0 and 1
as before. Starting from the initial state (1,0,0,0,0) and empty stack, all possible state tran-
sitions could be identified by inputting different strings. The resultant transition diagram is
shown in Fig.8, where six binary states: (1,0,0,0,0), (1,0,0,0,1), (0,0,0,0,1), (1,1,1,1,I),
(0,0,0,1,1) and (1,0,1,1,1) were found to form a close loop for any input strings of '0 ' and
' 1'. For clarity, the transitions for inputting an end symbol are not shown. Without end sym-
bol, the state (1,1,1,1,1) is the desired final state for legal strings. All other states are illegal
final states. This is because that starting from (1,1,1,1,1) with an empty stack, an end sym-
bol input will lead to state (0,0,0,0,1). But, in all other cases (either starting from state
(1,1,1,1,1) with non-empty stack or starting from other states) an end symbol input will lead
to an illegal final state (*,*,*,*,0), a state with last neuron activity being zero.

(o, ~ , 1) .

/1 / ' , ; + i
' / o / :

t .
. 51goi

Cl, 1, 1) (~ (1 ~ , 1) r i l , 1, 1) -~1"

f r * _ i I I I

/o / i I I I
il Iolcl, l , t) lgl i co,1,1 III

i N . / i l I , 1 �9 ; I I

(1, O, 1)

Fig.8 The state transition diagram extracted from the trained NNPDA where the
training examples were from the context-free grammar ln0 n. In the figure, each five--
component column vector represents a state of the PDA which is obtained by quantizing
each of the state neurons to the binary values: 0 and 1.

The state transition diagram of the extracted PDA can be reduced using procedures
previously discussed. The reduced transition diagram is shown in Fig.9, where the states 1,
2, 3 and 4 represent the quantized states (1,0,0,0,0), (1,0,0,0,I), the combination of states
{(1,1,1,I,1), (1,0,1,1,1)} and the combination {(0,0,0,0,1), (0,0,0,1,1)} respectively. In the
reduced diagram, state 3 is the desired final state. Recall that acceptance of a legal string
requires both a desired final state and an empty stack.

321

(o, ~, 1)

I (o,,,-,)

(o, 1,

(1, 1, 1) [,W-j~'

Fig.9 The reduced PDA transition diagram of the la0 n grammar. This diagram is ob-
tained by grouping together the equivalent states in Fig.8 and assigning one representation
to each state group, where the states 1, 2, 3 and 4 represent respectively the quantized states
(1,0,0,0,0), (I,0,0,0,1), the combination {(1,1,1,1,1), (1,0,1,I,1)] and the combination
{(0,0,0,0,1), (0,0,0,1,1)}.

4-3 Palindrome g ram m a r

The language of the deterministic Palindrome grammar contains all strings in the form
of WcW', where W represents an arbitrary string of given symbols (here, we use two sym-
bols 'a ' and 'b'), W" is the reversed order of W, and 'c ' is an additional symbol to mark the
boundary symbol between W and W'. For example, strings "abaaabbcbbaaaba" or "bbabba-
cabbabb" are legal.

The minimal (to our knowledge) palindrome PDA is shown in Fig. 10. Starting with
state (1), every input symbol 'a ' or "b' is pushed onto the stack and the PDA remains in
state (1). After an input symbol 'c" the PDA moves to state (2). When in state (2) the PDA
pops every stack symbols if the stack reading ('a ' or 'b ') matches the input symbol; other-
wise it moves to a trap state. The input string is classified as legal only if the PDA ends at
state (2) with empty stack. In this example no end symbol is used.

This grammar has been found difficult to learn [Das92]. In our numerical simulations,
both second order and third order nets were not able to learn a correct PDA for palindrome
grammar. Two major difficulties were found. Fast, we lack sufficient information to super-
vise the stack actions for illegal su-ings. In most simulations the NNPDA did not learn to
push correctly every symbol into the stack for illegal strings like "ab" and "babbaa" since
it was not told what should be the target stack length during training. After seeing 'c ' as in
strings "abcba" (legal) or "babaacaab" and "babaacabb" (both illegal), the NNPDA is sup-
posed to compare input symbols with stack readings and perform a pop if they match. But,
since those symbols before 'c ' were not stored in the stack as discrete symbols, the NNPDA

322

could not compare the right stack symbols with input and perform the correct pops. Al-
though, in learning the balanced parenthesis grammar a NNPDA had been able to learn a
correct pop, this is a different level of stack operation. Comparing the two transition dia-
grams in Figs.7 and I0, it can be found that the palindrome grammar involves a more
sophisticated level of stack manipulations than those in the balanced parenthesis grammar
PDA. The stack of balanced parenthesis grammar is in fact only a counter. As shown in
Fig.7, all the state transitions and stack actions can be decided totally by the combination
of input symbol and current state, they do not really depend on the contents the stack is
reading. (In this sense, only a second order correlation is needed.) But, the stack actions for
the palindrome grammar require a third order correlation and actual dependence on the
stack contents.

The second problem is the limitation of neural network structures. [Das92] shows that
second and third order neural network structures are not able to learn certain grammars
without "hints." Moreover, our simulations show that even with hints using second and
third order networks, the palindrome grammar cannot be learned. The limitation of the neu-
ral network structure for learning the palindrome is now discussed. For example, the
Palindrome grammar requires the action rules (a, a, 1) before seeing 'c ' and (a, a, -1) after
seeing 'c ' . For these two rules, the input and the stack reading are the same but the action
is different: one is push and the other is pop. So, according to the third order dynamics, the
stack actions could be written A =3~W-S + O) where the summation over input symbols and
stack readings for these two cases have already been performed and W is the result of the
"equivalent weights". The problem becomes one of leaxning the weightsW and O such that
A=I for one set of states {$1} (before seeing 'c ') and A=-I for another set of states {$2}
(after seeing 'c'). Clearly, two arbitrary sets of state vectors may not be linearly separable
unless they all have a unary representation (or mutually orthogonal in general). (This is the
assumption for justifying the usefulness of third order networks.) However, during learning
the numerical neural states most likely to occur are neither unary nor mutually orthogonal.
To overcome this problem we introduced the idea of a"full order" linear net for stack action
mapping.

~, *, 1) (a, a, -1)
,* ,1) ~) (*, . , 1 ~

start ~ . ~ / (c, *, O) (cx, [3, 1)

final state trap state

Fig.10 The simplest PDA transition diagram for palindrome grammar, where r and
I] represent any combinations of input symbols and stack readings other than (a, a) and (b,
b).

(1). Full Third-order Network Structure.

The third order connection weights for state dynamics as in Eq.(5) are used, and the

323

stack action is governed by a linear "full order" mapping. The parameters are: (i) number
of state neurons Ns=4, (Equivalent to the number of binary states = 16); (ii) Number of in-
put symbol N1=3, number of stack reading symbols NR=4. Three input neurons for symbols
'a ' , 'b ' and 'c ' (no end symbol) and an additional neuron is introduced to represent the emp-
ty stack. This is necessary to supervise the learning to avoid the "empty stack" situation.
(iii) One action neuron, NA=I. In this case, the state transition weights as in Eq.(5) are a
four-dimensional matrix W~[4] [4] [4][3] and the stack action weights are a three-dimension-
al matrix Wa[16][4][3]. The dynamics of the neural controller are

Sti +1 = g Wijkt(SjRkll) + Osi
~=ik=il=l

2xs ~V~, ~V,

At+I = Z Z Z W~j,, (p~RtJD
J = 1 k-- I t = I , (23)

where the nonlinear function3'(x) in Eq.(8) has been replaced by a linear function f(x)
= x and the extended state vector Pj is defined as

~s

P~ = H ($mS~+ (1 -S in) (1 -St,,)). (24)
m = l

In Eq.(24), the symbol Sra inside the product represents the binary values of 0 and 1,
which are determined by the rant bit of the binary number (J-l). For example, if J-1 = 10,
its binary form is 1010, which sets Sin: 51=1, $2 --0, $3 =1 and ~--0. The summation of all
components of the extended state Pj is equal to one, i.e.

2xs

~ P ~ , = 1, (25)
1 = 1

where Pc can be interpreted as the probability for a NNPDA to be in each of the 2 A's
binary states. To guarantee that the action output be in the range: -l<_.At<I, the stack action
weights are truncated to the range -1< Wa<l.

It can be seen that Eq.(25) plus the truncation of ~ to [-1, 1] will automatically guar-
antee the action output in Eq.(23) to be within the range -l<_At+l<l. Later, upon
performing the post-learning quantization of 14 ~ to three levels: -1, 0 and 1, each of the ac-
tion weights Vr ~ will represent an action rule, which were used in Figs.7- 10. For example,
wa[3][2][1] = -1 means that, starting from the third binary state, e.g. (0,0,1,0), if the input
symbol is the first one, e.g. 0, and the stack reading is the second one, e.g. 1, the stack action
will be a pop, i.e. a rule (0, 1, -1) marked besides the transition arrow from state (0,0,1,0)
to the other state.

324

(2) Learning Criterion.

Some modifications have been made to the learning objective function previously dis-
cussed in Section 3.4. Both state and stack length are used to discriminate the legal and
illegal strings. But, instead of using the usual desired final state and non-desired final state,
we introduce the "trap state" and "non-trap state" to discriminate the "potentially legal
string" and "definitely illegal string" [Das93]. Input strings "abbbacbab", "abbbacbbaba-
baaab' , can now be classified before seeing the end of the string. This is because
whenever symbol 'b ' occurs after ' c ' , an ' a ' in front of a 'c ' is not matched and siring is
illegal irrespective of the remaining symbols. In that case, we force the NNPDA to go to
the "trap state" and stop further learning. This requires prior knowledge ~aout the underly-
hag language in order to successfully supervise training. Here, we assigned the last state
neuron to be 0 for the "trap state" and 1 for the "non-trap state". For input strings not
trapped into the "trap state," training is as usual. The weight updates become

= - S) ~ - ~ + (L * - L t) , (2 6)

where S* and L* are the target values of state and stack length. The target state is de-
termined by the "trap state" or "non-trap state", and the target stack length is zero for a legal
string. Since the target stack length for an illegal string is not known, a small driving force
is used empirically to slightly increase the stack length for all illegal strings ending at a
"non-trap state", i.e., L * - L t = 0.1 if Lt->0.9 and L*= 1 if Lt<0.9. This error supervision is
based on the following. Although the exact length of an illegal string is not known, it must
be greater than or equal to one if the string ends up at a "non-trap state". For illegal strings
ending at a "trap state", the stack length is unaffected.

(3)Trainin~ Set.

Two training sets are used. The first training set includes all 39 strings up to length
three. The second contains 363 strings up to length five. Since the number of legal strings
is much smaller than the illegal strings, the training set is balanced by adding all four legal
strings up to length five to the first training set and all eight legal strings up to length seven
to the second training set. In each training set the legal and illegal strings are put in two sep-
arate groups. During training, we present a legal string between every five illegal strings
and make the learning rate for legal strings five times larger than that of illegal strings. Each
training set was trained for 200 epochs.

(4)Training Algorithm.

The RTRL learning algorithm is generalized to the dynamics of Eqs.(23) to (26) which
can be derived from the "chain rule" and forward propagating the error rate. Details are list-
ed in Appendix B.

(5) Training Simulations.

The t'trst training set described above was used to train the NNPDA for 200 epochs.
Then, the second training set was used for another 200 epochs. The "averaged classification
error" for each training set was monitored during training. After a total 400 epochs of train-

325

ing, it converged to - 0.06. At the end of each string the error is determined by

---- (S* --S~s) 2+ (L* - L r) 2 (27)

The values of S* and L* are specified as before. The only difference from before is that
for illegal strings the error (L* - L T) is set to zero if L T is already greater than one.

The trained NNPDA is tested on new input strings. In testing the "trap state" monitor
is not used to stop any sequence. The classifications criterion is: LEGAL ifboth STs >0.5
andL T< 0.5; ILLEGAL otherwise. The 29,523 test strings include all possible strings con-
structed with symbol ' a ' , ' b ' and ' c ' up to length nine. [The following results are given for
5 significant figures, though 64bit f loating point double precision was used.] The test result
shows only four errors: three legal str ings "ababcbaba" (sT~-0 .9898, Lr=1.0776), "abba-
cabba" (STu~-0.9973, LT---0.7301) and "bbbacabbb" (sT~--0.9994, LT---0.5302) are
classified as illegal because LT>0.5 and one illegal string "abcbbbcbb" (STNs---0.9744,
LT--0.4543) is classified as legal because ST s > 0 .5 and Lr<0.5To illustrate the inner work-
ings of the NNPDA for classification after training, consider the examples in Table 1,
strings "acabc", "bacab" and "bacba". The processing status at each time step is displayed
using the data listed in the five columns. For all the cases, the initial neural state is (1, 0, 0,
0) and the initial stack reading is "empty stack". At each time step the first, second, third,
fourth and fifth columns are the input symbol, the four-dimensional neural states t , the ac-
tion neuron outputA t, and the stack segment length and symbol, respectively. For example,
the combination of (1.0000, 0.1323) in the fourth column and (a, c) in the fifth column rep-
resent a stack configuration: symbols ' a ' at the bottom with length = 1.0000 and 'c ' at the
top with length = 0.1323.

Input string = "acabe", final stack length -- 1.8805 > 0.5 -> classification Illegal.
input state

a (0.0079, 0.9952, 0.0160, 0.9580)
c (0.0010, 0.0162, 0.9994, 0.9599)
a (0.0026, 0.9982, 0.9971, 0.9995)
b (0.2055, 0.9749, 0.6775, 0.0003)
c (0.0030, 0.9977, 0.4301, 0.9684)

a~loll
1.00(30
0.1323

- 0.9869
0.7667
0.9684

stack segment lengths stack symbols
(1.0000) (a)
(1.00130, 0.1323) (a, c)
(0.1454) (a)
(0.1454, 0.7667) (a, b)
(0.1454, 0.7667, 0.9584) (a, b, e)

Table la.

Tables la-c. A demonstration of the step by step working process of the trained NNPDA. The three ex-
ample strings are "acaba", "abeba" and "abcab'. The state of the NNPDA at each time step is displayed in each
row using the data listed in the five columns. For all the cases, the initial neural state is (1, 0, 0, 0) and the
initial stack reading is "empty stack". The first column is the input symbol, the second is the output of internal
neural state St represented as a four-dimensional vector, the third one is the action neuron output At, and the
fourth and fifth ate the stack status at each time step. The actual accuracy of the calculation was 64bit double--
precision, but only 5 significant figures are shown.

See the first example in Table la . The whole string is an illegal pattern "acabc", but

326

the first three symbol consists of a legal string "aca". When "aca" is fed in, the trained NNP-
DA first pushes 'a ' with length 1.00130 into the stack, then pushes again the second input
symbol 'c ' with length 0.,1323 and finally po.,ps the stack with total length 0.9869. In the
stack remains a symbol 'a with final length L ' = 0.1454(<0.5). The internal state varies and
reaches a final state such that neuron ST~--0.9995(>0.5). Therefore, the string "aca" is clas-
sifted as le4$al (STs>0.5 and LT<0.5). Notice that all three states are a "non-trap state"
(because S'/vs > 0.95 for all cases). But, when an additional symbol 'b ' is read, the state
changed to a "trap state" indicating that "acac" is an illegal string. During the training we
ignored the rest of the sequence and concluded that no matter what the next symbol, the
entire string would be illegal. But, in the test sequence, the "trap state" monitor is not used
and classification of any strings will be decided at the end of each string. After feeding in
another symbol 'c ' , the state becomes a "non-trap state" (not a desired state). But due to
training, the stack actions in the last two steps become pushes and the final stack length/s
LT=1.8805>0.5, classifying the entire string as illegal.

In Table lb, the trained NNPDA deals with a legal string "bacab" nearly perfectly. The
controller first pushes 'b ' and 'a" onto the stack and then moves to a special state (0.0030,
0.1921, 0.9995, 0.9990) after seeing ' c ' (but does not push much of 'c ' into the stack since
0.0625 is a tolerable error). It pops "a' and 'b ' out of the stack when the input symbol
matches the stack readings. Concurrently, the state remains in the "non-trap state" as de-
sired.

Input string = "bacab", final state -- 0.9993 > 0.5, final stack length = 0.0318 < 0.5 -> classification Legal.

[input state acuon

b (0.9183, 0.0831, 0.9777, 0.9708) 1.0000

�9 'a (0.9934, 0.9875, O. 1103, 0.9999) 0.9540
c (0.0030, 0.1921, 0.9995, 0.9990) 0.0625

a (0.0021, 0.9989, 0.9961, 0.9998) - 0.9989
b (0.0031, 0.9089, 0.9994, 0.9993) - 0.9858

stack segment lengths stack symbols

(I.OOOO) (b)
(1.0000, 0.9540) (b, a)

(1.0000, 0.9540, 0.0625) (b, a, c)
(1.0000, 0.0176) (b, a)
(0.0318) (b)

Table lb.

The Table lc shows what happens if we reverse the order of last two symbols 'a ' and
'b ' in the last example. Again, the trained NNPDA behaves nearly perfectly. When the
fourth symbol 'b ' is fed in, the stack reading is almost a complete 'a' (a combination of 'c '
with length 0.0625 and 'a ' with length 0.9375). Since the input 'b ' does not match the stack
reading 'a ' , the NNPDA enters a "trap state" and the string "bacb" is classified as illegal.
Furthermore, if another symbol 'a ' is seen, the NNPDA moves to another "trap state". So,
"hacba" is still illegal. Concurrently, the stack actions generated from the "trap state" are
all pushes. These increase the stack length so that the classification is "far" from legal.

Although the classifications for these three examples are all correct, in the sense of a
correct discrete PDA, there are still some numerical errors. These numerical errors will ac-
cumulate over time and possibly misclassify an input string that is too long. One of the four
incorrect classifications in our test result, the string "ababcbaba", is illustrated in Table 2,

327

Input string = "bacba", final state = 0.0054 < 0.5, final stack length = 3.6539 > 0.5 -> classification Illegal.
input Internal state action

b (0.9183, 0.0831, 0.9777, 0.9708) 1.0000
a (0.9934, 0.9875, O.1103, 0.9999) 0.9540
c (0.0030, 0.1921, 0.9995, 0.9990) 0.0625
b (0.2890, 0.9472, 0.9021, 0.0260) 0.6850
a (0.0190, 0.99602, 0.4490, 0.0054) 0.9524

stack segment lengths stack symbols
(1.0000) (b)
(1.0000, 0.9540) (b, a)

(1.0000, 0.9540~ 0.0625)
(1.0000, 0.9540, 0.0625, 0.6850)

1.0000, 0.9540, 0.0625, 0.6850, 0.9524)

(b,a,c)
(b ,a , c ,b)
(b,a, c, b, a)

Table lc .

where the general behav io r o f the l ea rned N N P D A is the same as that of a discrete PDA.

But, due to the accumula t ion o f numer i ca l errors , at t =7 when the input symbol is ' a ' , the

NNPDA reads not a comple te ' a ' in the stack. Instead, i t reads with depth unity an ' a ' with

length 0.6467 and a ' b ' wi th l eng th 0 .3533. Therefore , the action output is not a full "pop"
but a "pop" with l eng th 0.2757. Thus , accumula ted final stack length is 1.0776 > 0.5 and
the string is classif ied as illegal.

Input string = "ababcbaba", final stack length = 1.0776 > 0.5 -> classification Illegal.
input lntcraal state

a (0.0077, 0.9952, 0.0160, 0.9580)

b (0.9855, 0.9364, 0.9868, 0.9784)
a (0.9627, 0.9961, 0.1055, 0.9811)
b (0.9987, 0.8105, 0.9719, 0.9995)
c (0.0002, 1.0000, 0.0239, 0.9992)

b (0.0053, 0.9977, 0.9881, 0.9996)
a (0.0016, 0.9996, 0.9209, 0.9993)

b (0.0246, 0.9377, 0.9986, 0.9937)
a (0.0128, 0.9994, 0.7910, 0.9898)

action

1.0000

0.9716
0.9936 (1.0000, 0.9716, 0.9936)
0.9932 (1.0000, 0.9716, 0.9936, 0.9932)
0.0810 (1.00(30, 0.9716, 0.9936, 0.9932, 0.0810)

- 0.9981 (1.0000, 0.9716, 0.9936, 0.0761)

- 0.8207 (1.0000, 0.9716, 0.2491)
- 0.8674 (1.0000, 0.3533)

- 0.2757 (1.0000, 0.0776)

stack segment lengths stack symbols
(1.00(30) (a)
(1.0000, 0.9716) (a, b)

(a ,b , a)
(a, b ,a ,b)
(a, b, a, b ,c)

(a,b,a, b)
(a ,b , a)
(a , b)
(a , b)

Tab le 2

Table 2. The step by step operations of a numerically trained NNPDA for the example string "ababcbaba".

The general behavior of the analog NNPDA is correct. But, due to the cumulated numerical round-off error, the
action output deviates gradually from the d i sc t~ pop so that the final classification is wrong.

(6). Ouant izat ion o f the T r a i ned N N P D A .

The state neuron activi t ies are quan t i zed to two levels. The stack action weightsW a are
quantized to three levels."

328

0, if (Iw~l_<0.5) f
W a = ~-1, if (wa<-0 .5) �9 (28)

t
1, if (Wa>0.5)

After quantization, we test the NNPDA with all possible swings up to length fifteen.
The classification rule is as follows. The "trap state" monitor is used to monitor the last
state neuron S~s. Whenever S~ , becomes zero, we stop the sequence and classify it as an
illegal string; otherwise, we proce~! to the end of the input sequence. At .the end, ifLT=0,
the input is classified as legal; otherwise it is illegal. The test result is that all the 21,523,359
strings are classified correctly. But, this does not mean that the quantize~l NNPDA repre-
sents the Palindrome grammar. We have to extract the correct discrete PDA and verify that
it recognizes the Palindrome grammar.

(7)- Extraction of the Learned PDA.

Using the quantized NNPDA with the initial state (1, 0, 0, 0), we check all possible
paths of the quantized NNPDA by reading input symbols as described in Section 4.1. The
transition diagram of these paths is drawn in Fig.1 I. Every path was terminated whenever
a "trap state" occurred. Each bracketed action rule in the form of (input, reading, action) is
marked besides the transition arrows. This diagram looks more complicated than might be
expected. Though it did not turn out to be the simple diagram of Fig.10, the neural net gen-
erates some rather novel transitions.

First we find all equivalent states. All "trap states" are equivalent. Also, the two states
(1,0,1,1) and (0,0,1,1) make equivalent transitions and actions. After grouping these equiv-
alent states, seven states are finally selected and labelled as in Fig.12. The first six states
are "non-trap states" and the seventh is the "trap state". Let us see how this PDA shown in
Fig.12 could recognize the Palindrome grammar. The start state is state (I) and the start
reading is an "empty stack" represented by "qb'. I f the first input symbol is 'c ' , it will move
to state(3), and then either stop there with an empty stack (the string "c" is legal) or goes to
the "trap state"--state(7) if more symbols are read (i.e. an illegal string). When an input
string starts with 'a ' or 'b ' , the neural net controller pushes the read symbol onto the stack
and moves to either state(2) (for input 'b ') or state(3) (for input 'a'). Then, before seeing a
symbol 'c ' , it will push all the read symbols onto the stack and, concurrently, move among
a symmetric structure of the four states (2), (3), (4) and (5). These four states are manipu-
lated in a very complicated manner. Whenever a symbol 'b ' is read, it is pushed onto the
stack and the PDA moves to either state(2) or state(5). Whenever a symbol 'a ' is read, it is
pushed onto the stack and the PDA moves to either state(3) or state(4). If a symbol 'c ' is
read, it will transit to either state(2) (if the last symbol is 'a ') or state(3) (if the last symbol
is 'b'). Then, the controller will examine whether the next input symbol matches the top
symbol on the stack. If every read symbol matches the stack reading, the PDA will pop and
move to state(6) and stay there until the stack is emptied. If any input symbol does not
match the top stack symbol, the PDA will go to the "trap state"-- state(7) and the string is
classified as illegal.

329

(a,a, D

Fig. l l The extracted discrete PDA obtained from the trained NNPDA by quantizatio!
of the neural activities of the continuous NNPDA. Using the quantized NNPDA, start witt
the initial state (1, 0, 0, 0) and cover all possible paths by feeding in various strings when-
ever needed. Here, all paths are terminated whenever a "trap state" occurs. Each bracketec
action rule in the form of (input, reading, action) is marked by the transition arrows.

As noted in Fig.12, the self-loop for state('/) indicates that there is no escape from a
"trap state." This is assumed because of our pre-knowledge about the "trap state". Howev-
er, the discrete NNPDA-generated "trap states" may not form closed loops. We have
checked all the possible transitions from the "trap states" and find that there do exist
"leaks". For example, the illegal string "bbebabacabab" is found to end at a "non-trap state"
(1,1,1,1) and the string "aaacabbeb" ends at (1,0,1,1). Thus, it is good idea to use the "trap
state" monitor in recognition as well as in training.

5 Conclusions

A recurrent neural network pushdown automata (NNPDA) was specified and used to
learn simple but illustrative deterministic context-free grammars (CFGs). The NNPDA it-
self is a hybrid model consisting of a recurrent neural network state automaton controller
and an external continuous stack memory connected through a common error function.
This is to be contrasted to connectionist models that construct stacks (and their associated
state structure) from internal hidden layers or from the dynamic range of the nonlinearity

330

(b•2
(a, a, ol)

0

?'(a ~ , 1 ~ Co, b, -1)
/

Qffi(l,O,O,O)startstate, Q = (O , I , O , 1) ,

Q -- {(1,0,1,1),(0,0,1,1)}, Q = (1,1,0,1),

(b, a, 1)
(c, a, D

i
r... Co, a, 1) ~ ~)

(*, *, 1)

(c, *, I)

a*' ~' 1)
�9 b, 1)

(c, b, 1)

Q=(I,1,1,1),(~={ (0,1,1,0),(0,0,1,0)
x ~ , (0,1,0,0),(1,1,0,0) Q = (0,1,1,1), (O,O,O,O)}trapstate.

Fig.12 The equivalent reduced PDA that recognizes the palindrome grammar. It is ob-
tained by grouping the equivalent states of the PDA in Fig.11 into seven representative
states and completing their transitions. The correspondence between the original 12 states
and the reduced 7 states is listed in the seven equalities below the transition diagram.

of the neural network. To train the NNPDA an enhanced forward-propagating real time re-
current learning algorithm (RTRL) was derived and used to learn CFGs from positive and
negative string examples. However, the NNPDA model is quite general and can be trained
using other gradient descent approaches such as a modified back-propagation through time
algorithm. What should be noted is that during training the NNPDA simultaneously learns
to construct its internal state controller and to figure out how to control with the proper ac-
tions (push, pop and no-operation) the use of the external stack memory.

The external continuous stack memory is constructed of two arrays; one for symbols
and one for real values associate with those symbols. The input symbol alphabet is also the
stack alphabet (this somewhat restricts the class of learnable CFGs). A gradient-descent
training algorithm is derived for the continuous stack. One interpretation of the continuous
stack memory is that the real values associated with the symbols stored on the stack reflect
an uncertainty in the content of stack reading of the NNPDA. This allows more than one
symbol to be read from the top of stack and each with different probabilities.

For all languages of the learned grammars (the balanced parenthesis, ln0 n and palin-
drome grammars), the size of the positive and negative string training set was less than 512.
The number of epochs required for successful training was approximately 100 and usually
less than 1000. The trained NNPDA exhibited very good generalization capabilities and

331

were able to correctly classify large sets (usually millions) of unseen strings. Its perfor-
mance appears to be much better than other connectionst stack models used to learn simple
context-free grammars.

We devised an algorithm for extracting a discrete pushdown automaton (PDA) from
the trained NNPDA. For all the grammars used in training, correct PDAs were extracted
(For all languages the strings were generated by "known" PDAs). The advantage of this
quantization process is that the extracted PDA was often able to outperform the trained
NNPDA in correctly classifying any unseen strings (similar results were shown for FSA
extracted from trained NNFSA [Giles92a, Omlin96b]). However, the extracted PDAs
could be quite complex and not necessarily a simple PDA.

There are manv open issues. We only demonstrated the principle of simultaneously
training a recurrent neural network coupled to an external stack memory. It is not evident
that this method will scale or this is an efficient way to learn context free grammars. What
is the required accuracy of the analog stack? The additional knowledge required to learn
the palindrome grammar shows that the intelligent use of topology, such as order of con-
nection weights, and a priori knowledge, such as supervising the control of the stack,
significantly effects successful training and testing. Because of the number of variables, the
training results were illustrative not exhaustive or complete. What was interesting is that
such good results were obtained! Another question is how this architecture scales. One
would expect that because of the additional states offered by the stack, that it would scale
better that a stack-less recurrent network. However, this remains to be determined.

Finally, there is nothing that restricts this model to symbol learning. Real numbers
could have just as easily been used as inputs. We speculate that this model could also be
used in learning more complex hidden state processes for real-valued problems.

A c k n o w l e d g m e n t s

We acknowledge useful discussions with D. Chen, H.H. Cben, S. Das, Y.C. Lee, Y.D.
Liu and M. Mozer.

A p p e n d i x A : T h e d e r i v a t i o n o f ~ R t / ~ W

In this appendix we derive 9Rtt,/gWijk for the case where there is only one action neu-
ron NA=I. The generalization to the case with more action neurons is straightforward.

The stack reading at time t is in general a function of the entire stack history

1~ = F(AI , A 2 At, II, l 2 I t) , (A-l)

where A ~ ~ [- 1, 1], 1 -<'r < t, is the continuous action value which operates on the stack.
The input symbol/r, 1 _< "c _< t, at time "c is read from the input sequence. As previously de-
fined, an action to be performed on the stack is either a push, pop or no-operation (no-op)
depending on the sign and magnitude ofA ~. The amount of the stack to be pushed or popped
is equal to the absolute value ofA ~, which also determines what amount of that the current
input symbol/~ is read into the stack.

332

To complete the forward-propagation of the sensitivity matrices OStlOW and OAt/OW
as in Eq.(19), the derivative ORtlOW has to be known. If a recursive relation for ORtlOW
exists, i.e.

OR t+l (OR t ~S t ~A t .'~

- o w " (A-2)

where M is an unknown vector function, the recursive evaluation of OStlOW and
3AtI~W is straightforward. However, a rigorous recursion equation of Eq.(A-2) does not
exist. The reason is as follows.

The stack operation and stack reading R t defined in Section 111 does not include any
derivative o f R t with respect to W. Therefore, Eq.(A-2) implies the following relation

R t+l = H (R t , S t , A t , f) , (h-3)

where H is another vector function. But, in general, relation (,4,-3) should not hold for
a PDA. The reason is that the current stack reading R t depends on the whole history of the
stack, not on the history a few time steps in the past. If, we assume that relation (A-3) is
true, then the read operation can couple with the dynamics of the neural network controller,
as in the two equations in Eq.(3). This yields

Zt+l = K (Z t , l t) , (A-4)

where the vector Z represents the concatenation of the three vectors R, S, and A, or Z =
(S~A~R) , and K is the combination o f the functions: H in (A-3), G and F in Eq.(3). Since
in the discrete limit the vector Z is represented by finite description, the relation of Eq.(A-4)
indicates that the whole system is a finite state automaton with extended internal states rep-
resented by Z.

The fallacy of assuming that Eq.(A-3) is correct can also be seen from a simple exam-
ple. Suppose that the input sequence contains 20 symbols and the stack is empty. The PDA
is constrained to have two actions: from t = 1 to t = 10 only pushes and from t = 11 to t =
20 only pops. Then, after the nineteenth action (pop) there would be only one symbol left

20 on the stack. The content of the stack reading R is the first symbol of the input string
2u pushed onto the stack at time t = 1. This is a counter-example to (A-3), sinceR not only

19 19 19 1 depends on the previous reading R , previous action A and state S but also on I and
A l, the stack history at time t= I.

Generally speaking, the exact calculation of Ol~+lt, l~Wij t will involve the storage of
the entire history of the stack and actions on the stack, which demands a large memory size
and increased computation. In order to simplify this problem, we derive an efficient ap-
proximation to ORt+lk,/~Wij k which can be used recursivety in a manner that closely
approximates the recursion set of Eq.(19). Since the input symbol I t does not depend on
the weight W, Eq.(A-1) implies that

333

OR t _ ~ ORt OA ~

~-~ - OA x " -~-W'
"r

(A-5)

where the summation over ~ in general contains all time steps starting at t = 1. But not
all of the history ofA x affects the current stack reading R t. Since R t contains only the con-
tents of depth 1 from the top of the stack, the number of terms in the summation (A-5) can
be reduced by removing all of the actions {A x, 1 <x _<t} which do not contribute to the gen-
eration o f R t.

I (K)

e

/(2)

/(1)

Fig.A1 The reading R t of the continuous stack at time t consists of K sections of con-
tinuous symbols, C i, i = 1, 2 K, each of which contains only one symbol, and each pair
of adjacent sections, C i and Ci+ 1, contains two different symbols. The length of each section
C i is denoted by l(i) marked beside the stack.

Assume that R t consists of K sections of continuous symbols, as shown in Fig. A1,
where each section contains only one symbol denoted by C i with length/(i), each generated
at time x i, i = I, 2,... K. Each pair o f adjacent sections, C i and Ci+ 1, contains different sym-
bols. Note that each of the sections {C i, i= 1, 2 K) may not be generated by only one
action (push) at time "q. It may be fast generated partially at time ci and then be popped or
pushed several times. Finally, (before time "q+l when the next symbol Ci+ l was generated)
the symbol C i with length/(i) is left on the stack. Under these assumptions, the actions be-
fore %1: { A~, l<x<xl} do not contribute to the formation of R t, and therefore can be
removed from the summation. The expression Eq.(A-5) can be written as

0R' ~ 0R' 0A ~
- = E E - ~W i= Ix~-<~<~,.i 0AT 0W ' (A-6)

where the bold-faced A z have been replaced by A x (without lose of generality, only one
action neuron is used).

334

In order to calculate the derivatives in Eq.(A-6), assume that there is an infinitesimal
perturbation of the weight matrix AW, which then produces infinitesimal perturbations of
actions {A/t x, 1_<~<t} for every time step calculated from the second equation in Eq.(3).
These new actions {AX+AA x, 1 _<x<t} can be used to reconfigure the stack, which in turn
creates the change in the stack reading ARt. The partial derivative ORtegA x is defined as

OR~ ARt
k

-- lim
~A ~ aA" ~ O AA x

(A-7)

where the change in the stack reading ARtk is induced by only AA x, while all other A z',
x ~ # ~, are fixed.

Since the stack reading R t consists of K sections of continuous symbols
{C i, i=l , 2 K}, the change AR t would also be computed from {AC i, i= l , 2 K},
the change in each of the sections. The major approximation made in this derivation is the
following. We assume that for xi<x<xi+ 1, an infinitesimal perturbation AA x would only
produce the change of the length, A/(i), in the ith section C i. In general, this is not true, be-
cause there exists a perturbation 6A x which not only changes the length of its symbol
section but also changes the content o f the section (i.e. brings in a part of the new symbol
to this section). This can be seen from a counter example. Suppose that the section ~ con-
tains only the symbol a with length 0.5 and it is produced by a sequence of actions: (1) at
x=x i, A~-0.1 (push) of symbol a , (2) at x=xi+l, AX--O.2(push) of symbol b , (3) at %=xi+2,
AZ= -0.2 (pop). (4) at %=zi+3, AX--O.4 (push) of symbol a . Although the net result is to push
a symbol a with length 0.5 onto the stack, during the sequence an equal amount of symbol
b was pushed and popped onto and from the stack. In this case an infinitesimal perturbation
AAr'>0 when x=xi+l or xi+2 would create an infinitesimal portion of symbol b with length
equal to the absolute value of AA x, sandwiched between the two parts of symbol a . We ig-
nore this situation because of the following reasoning.

Assign an occurrence probability p(A x) to each action A x and replace the derivative
~RttlaA x by its probability weighted value:

art
0A x ~ ~-qp (A) . (A-8)

If an action A x is free to take any values in the domain [-1, 1], assign it occurrence
probability one. In Eq.(A-6) all the terms on the right hand side of the summation are sup-
posed to have a value of occurrence probability equal to one. However, we argne that there
do exist some actions with zero occurrence probability and that these can be removed from
the summation in Eq.(A-6). A special group of such actions are the pops which pop sym-
bols at their boundaries, i.e. the border lines inside the stack which separate two different
symbols. For instance, in the above example the action AX= -0.2 (pop) at x=xi+2 belongs to
this category. In general, for the stack example shown in Fig.A1, if the next time action is
A t+! =-B(i), B(i)=-l(K)+l(K-1)+...+l(i+l)+l(i) for any i= 1,2, 3 K, we would say that the
action A t+z has a zero occurrence probability. In fact, if the action A t+l is uniformly distrib-

335

uted within [-1, 1], then the occurrence probabi l i ty ofA t+! can be measured by the possible
range of values ofA t+l divided by 2, the measure of whole region [-1, 1]. IrA t+l is apop
which occurred around a boundary of one of the stack sections shown in Fig.A1, say
~4t+l+B(i)l<e, then the measure o f the occurrence probability ofA t+l will be r When

--~ 0 (or when A t+l ---> -B(i), i= 1,2,3 K) this probability goes to zero.

With the above approximation we have two useful outcomes. First, in the summation
on the right-hand side of Eq.(A-6), all terms within the in'st section whose actionA ~ occurs
between time "~1 and "r 2, i.e. xl <x< 'c 2, can be removed and the equation becomes

OR t K OR' OA x

3-"-tP = E Z O A , ' O W ; (A-9)
i.~ 2"[i~g <gi§ I

because for all actions {A x, "~l ~ ~ < "c2 }' ORt[OA~ are zero. The reason is that the content
of the stack reading R t is formed by reading the stack in the top-down manner with a fixed
length 1 and is actually independent of the infinitesimal change of the length on the first
section. As shown in Fig.A2, as long as the lower boundary of section C l does not exactly
coincide with the lower boundary of R t, the content o fR t will not change. In the case where
the lower boundary of section C l does coincide with the lower boundary of R t, any negative
change of the section Cl'S length (A/<O) will introduce an infinitesimal change in R t. Tiffs
case was excluded because it has zero occurrence probability.

C2
C1

1(2)
l (1)

I
C 2

C1

(h)

I(K)

i(2)
l(1)+Al(1)

Fig.A2 When the stack reading R t has a fixed length = 1, its content is independent of
Al(1), an infinitesimal change of the length in first section C 1, unless (i) the lower boundary
of section C 1 coincides with the lower boundary of R t and (ii) Al(1) < 0. (a) Stack reading
R t before any changes. (b) Stack reading R t after an infinitesimal change of the length in
the section C I. The reading content has no change..

336

From Figure A2, a method for determining ORtlOA ~ within each section C i, i =2,3
k, can be calculated as follows. According to the definition in Eq.(A-7), we need to calcu-
late the ratio ARti/AA x and take the limit AAr-->O. Suppose x i-< x <xi+ 1. It is known that the
perturbation AA ~ only changes the length of the section C i. But, the stack reading R t will
still have a fixed length (a distance of one) regardless of this change. Therefore, the con-
tents of the stack reading would not only include A/(i), the change in the length of symbol
C i, but also -A/(1), the change of symbol C 1. See Fig.A3. This implies

1
- lim - lira (A l (i) - A l (1)) k .

~A x ~ ' . . , O&A x aA'~OAA "~

Since the magnitudes of A/0) and A/(1) are the same as A/l x, the ratio A/(i)k/&4 x (or
A/(1)t/AA ~) will be either one or zero depending on whether or not the symbol C i (or CI) is
the same as the kth symbol. This result can be expressed as

~Rtk = 5 ik- -51k "~i~'l~<"[i+ I
~A ~

(A-10)

where 5ik is Kronecker delta function.

C K

i:
(a)

l (K)

/(i)

l (1)

C K /(K)

...... .'.C..j.../(i)+A/(i)

L. . -~ .LI l (1)

I:
Co)

Fig.A3 When the stack reading R t has a fixed length = 1, the change of its content
would include not only Al(i), the change of the length of the symbol C i, but also -AI(1), the
change in the length of symbol C 1.

Inserting Eq.(A-10) into Eq.(A-9) yields

337

= _ , : ,< , ,+ , ~W) (A-f1)

If we further assume that/(--2, i.e. the current stack reading with length equal to 1 con-
rains at most two sections of symbols; the approximation to Eq.(A-11) would be

~g' ,%, 3A"
O--W = (8it - 8'k) ,., ~.~ <, OW (A-12)

In this paper we also assume ~2 = t and obtain

OR t OA ~
OW - (Sik- ~'~) ~-W" (A-13)

This approximation implies that instead of considering the case where a section of the
symbol in the stack is the cumulated results of many actions, the section C 2 is assumed to
be generated by only one action.

The two approximations in Eqs.(A- 12) and (A-13) are valid for the following two con-
ditions: (1) when the action activity values are close to their saturation values 1 and -1 (or
IAtl>0.5). (2) or the total number of actions (i.e. the length of input stdnD is small. This
corresponds to imposing a restriction on the learning strategy. During the initial stage of
learning when the action activity values are far from their saturation values 1 and -1, short
strings are used as the training examples and the string length is increased after the short
strings have been learned.

A p p e n d i x B: D e r i v a t i o n o f R T R L f o r t he N N P D A M o d e l

The forward-propagation recurrent learning algorithm known as Real Time Recurrent
Learning (RTRL) can be derived by taking the derivative with respect to weights of the
neural controller dynamics of Eqs. (23) and (24), and using Eq. (A- 13) derived in Appendix
A for the stack dynamics. For a complete appendix we first list these equations as follows

�9 -' (x:x:x t,, ,) _, = g Wi:k~(SjRJ~) + 0
~= l k = l l = l

A'" ' -- "E F_., Y-.
d = l k = l l = l (B-l)

and

338

~s

~, = 1 - I (as'+ (l-a.) (~-s'~))
m = i

The derivative of the first equation in Eq. (B-l) is

(B -2)

a~i,--~=g.,.<o ,,.{s;R':,)+ y_., X X w',~.,,.,.4.1R',. ' . + ~ . . ~ H
lk~'= l l'= i : : C aw'qk, J ~w'm,,))

~s~ + ' ", ", ",-' : ~s:, , aR'~,

- tR ~ +s.,__, ~-,) g'i "(t) Z Z Z W~i~ "k'̀ 'l$" ti'~ J ~Wa kt,l
~WaJkl j" = kl lit__, l / ' = 1

~esi = g'i "(t) 8ii" + Z Z Z uls ,, I n , J ' ~,ij,k,t,,rt~,.~i+Sj, 90,i))
f i=lk*=ll ' . .~l

where g'i,(t) = s i , t + l (1 - Si ,t+l) is the derivative of Sigmoid function. Similarly, the de-
rivatives of second equation in Eq.(B-1) are written as

~'e+' :" " "- ' JR' a~>5, , ~'~,
- p g _ _ ~14#ijk, Z Z Z Wark't'I~ +

aAt+ I :, I~, u,-, : t ~pt, t ~etk" "~

~Walkl J'= l k'= I 1"= I ~WaJktJ

ciAt+i 2" u' "-! IR ~R~'I
J ' = I k ' = I t ' = 1 t OOsi " ~Osi)

(B-4)

To complete the derivation we need two more relations which are obtained from the
derivative of Eq.(B-2) and the derivative of stack reading in Eq.(20)

339

aP',_

8 R'r ~a '

~W = (Sk" ,', - 8r:~)

fB-5)

where i'1 t and r2 t are the ordinal numbers of neurons that represent the top and the bot-
tom symbols respectively in the reading R t. The initial conditions for all the derivatives in
Eqs.(B-3) to 03-5) are set to zero.

R e f e r e n c e s

[Allen90] R.B. Allen, "Connectionist Language Users," Connection Science, 2(4):279,
1990.

[Angluin83] D. Angluin, C.H. Smith, "Inductive Inference: Theory and Methods',ACM
Computing Surveys, 15(3):237-269, 1983.

[Carrasco95] R.C. Carrasco, M.L. Forcada, "Second-order recurrent neural networks can
learn regular grammars from noisy strings," From Natural to Artificial Neural
Computation, Proceedings of the International Workshop on Artificial Neural
Networks IWANN'95, Lecture Notes in Computer Science 930, p. 605-610, 1995.

[Casey96] M.P. Casey, "The Dynamics of Discrete-Time Computation, With Application
to Recurrent Neural Networks and Finite State Machine Extraction", Neural Com-
putation, 8(6): 1135-1178, 1996.

[Chen92] D. Clien, C.L Giles, G.Z. Sun, H.H. Chen, Y.C. Lee, "Learning Finite State
Transducers with a Recurrent Neural Network," UCNN International Joint Con-
ference on Neural Networks, Beijing, China, Publishing House of Electronics In-
dustry, Beijing, Vol. 1. pp. 129, 1992.

[Chen] C-H. Chen, V. Honavar, "A Neural Architecture for Syntax Analysis.'lEEE Trans-
actions on Neural Networks. (accepted).

[Cleeremans89] A. Cleeremans, D. Servan-Schreiber, J. McClelland, "Finite State Autom-
ata and Simple Recurrent Neural Networks", Neural Computation, 1 (3):372-381,
1989.

[Clouse97] D.S. Clouse, C.L, Giles, B.G. Home, G.W. Cottrell, "Time-Delay Neural Net-
works: Representation and Induction of Finite State Machines," IEEE Trans. on
Neural Networks, 8(5): 1065, 1997.

[Crutchfield91] J.P. Crutchfield, K. Young, "Computation at the Onset of Chaos",Pro-
ceedings of the 1988 Workshop on Complexity, Entropy and the Physics of Infor-
mation, pp. 223-269, Editor W.H. Zurek, Addison-Wesley, Redwood City, CA.
1991.

340

[Das91] S. Das, R. Das, "Induction of discrete state-machine by stabilizing a continuous
recurrent network using clustering," Computer Science and Informatics, 21(2):
35-40, 1991.

[Das92] S. Das, C.L. Giles, G.Z. Sun, "Learning Context-free Grammars: Limitations of a
Recurrent Neural Network with an External Stack Memory", Proceedings of The
Fourteenth Annual Conference of the Cognitive Science Society, Morgan Kauf-
mann Publishers, p.791-795, San Mateo, CA. 1992.

[Das93] S. Das, C.L. Giles, G.Z. Sun, "Using Hints to Successfully Learn Context-Free
Grammars with a Neural Network Pushdown Automaton" Advances in Neural In-
formation Processing Systems 5, Eds: S.J. Hanson, J.D. Cowan, C.L. Giles, Mor-
gan Kaufmann, San Mateo, CA., p. 65, 1993.

[Das94] S. Das, M.C. Mozer, "A Unified Gradient-descent/Clustering Architecture for Fi-
nite State Machine Induction", Advances in Neural Information Processing Sys-
tems 6, Eds: J.D. Cowan, G. Tesauro, J. Alspector, Morgan Kaufmann, San
Mateo, CA, p. 19, 1994.

[Duda73] R.O. Duda, P.E. Hart, Pattern Classification and Scene Analysis, Wiley, New
York, N.Y. 1973.

[Elman90] J.L. Elman, "Finding Structure in Time", Cognitive Science, 14:179-211, 1990.

[Elman91a] J.L. Elman, "Incremental learning, or the importance of starting small", CRL
Tech Report 9101, Center for Research in Language, University of California at
San Diego, La Jolla, CA. 1991.

[Elman91b] J.L. Elman, "Distributed Representations, Simple Recurrent Networks, and
Grammatical Structure", Machine Learning, 7(2-3):195-226, 1991.

[Frasconi95] P. Frasconi, M. Gori, M. Maggini, G. Soda, "Unified Integration of Explicit
Rules and Learning by Example in Recurrent Networks, IEEE Trans. on Knowl-
edge and Data Engineering, 7(2):340-346, 1995.

[Frasconi96a] P. Frasconi, M. God, M. Maggini, G. Soda, "Representation of Finite State
Automata in Recurrent Radial Basis Function Networks", Machine Learning,
23:5-32, 1996.

[Frasconi96b] P. Frasconi, M. God, "Computational Capabilities of Local-Feedback Re-
current Networks Acting as Finite-State Machines", IEEE Trans. on Neural Net-
works, 7(6): 1521-1524, 1996.

[Fu82] K.S. Fu, Syntactic Pattern Recognition and Applications, Prentice-Hall, Englewood
Cliffs, N.J. 1982.

[Ghosh92] J. Ghosh, Y. Shin, "Efficient higher-order neural networks for function approx-
imation and classification," International J. of Neural Systems, 3(4): 323-350,
1992.

[GI] Proceedings of the 2nd and 3rd Workshops on Grammatical Inference, Springer-Ver-
lag, 1994-1996.

341

[Giles90] C.L. Giles, G.Z. Sun, H.H. Chen, Y.C. Lee, D. Chen, "High Order Recurrent Net-
works and Grammatical Inference", Advances in Neural Information Processing
System 2, p. 380 - 387, Editor D. S. Touretzky, Morgan Kanfman, San Mateo, CA.
1990.

[Giles92a] C.L. Giles, C.B. Miller, D. Chen, H.H. Chen, G.Z. Sun, Y.C. Lee, "Learning and
Extracting Finite State Automata with Second-Order Recurrent Neural Net-
works", Neural Computation, 4(3):380. 1992.

[Giles92b] C.L. Giles, C.B. Miller, D. Chen, H.H. Chen, G.Z. Sun, Y.C. Lee, "Extracting
and Learning an Unknown Grammar with Recurrent Neural Networks", Advances
in Neural Information Processing System 4, pp. 317-324, Edited by J. Moody, S.
Hanson, IL Lippmana, Morgan Kaufmann, San Mateo, CA, 1992.

[Giles93] C.L. Giles, C.W. Omlin, "Extraction, Insertion and Refinement of Symbolic
Rules in Dynamically-Driven Recurrent Neural Networks," Connection Science,
5(3-4):307, 1993.

[Giles95a] C.L. Giles, D. Chen, G.Z. Sun, H.H. Chen, Y.C. Lee, M.W. Goudreau, "Con-
structive Learning of Recurrent Neural Networks: Limitations of Recurrent Cas-
cade Correlation and a Simple Solution, IEEE Trans. on Neural Networks,
6(4):829-836, 1995.

[Giles95b] C.L. Giles, "Learning a Class of Large Finite State Machines with a Recurrent
Neural Network", Neural Networks, 8(9): 1359-1365, 1995.

[Gold78] E.M. Gold, "Complexity of Automaton Identification from Given Data",Infor-
marion and Control, 37:302-320, 1978.

[Goudreau94] M.W. Goudreau, C.L. Giles, S.T. Chakradhar, D. Chen, "First-Order Vs.
Second-Order Single Layer Recurrent Neural Networks," IEEE Trans. on Neural
Networks, 5(3):51 I, 1994.

[Goudreau95] M.W. Goudrean, C.L. Giles, "Using Recurrent Neural Networks to Learn
the Structure of Interconnection Networks", Neural Networks, 8(5):793-804,
1995.

[Grossl~rg82] S. Grossberg, Studies of Mind and Brain, Chapter 3, p. 65-167, Kluwer Ac-
ademic, Boston, MA. 1982.

[Harrison78] M.H. Harrison, Introduction to Formal Language Theory, Addison-Wesley
Publishing Company, Inc., Realding, MA. 1978.

[Hopcroft79] J.E. Hopcroft, J.D. Lrllman, Introduction to Automata Theory, Languages,
and Computation", Addison-Wesley. Reading, MA. 1979.

[Hopfield82] J.J. Hopfield, "Neural Networks and Physical Systems with Emergent Col-
lective Computational Abilities", Proceedings of the National Academy of Sci-
ences, USA, 79:2554, 1982.

[Home92] B. Home, D.R. Hush, C. Abdallah, "The State Space Recurrent Neural Network
with Application to Regular Grammatical Inference," UNM Technical Report No.

342

EECE 92-002, Department of Electrical and Computer Engineering, University of
New Mexico, Albuquerque, NM, 87131, 1992.

[Jordan86] M.I. Jordan, "Attractor Dynamics and Parallelism in a Connectionist Sequential
Machine", Proceedings of the Ninth Annual conference of the Cognitive Science
Society, Lawrence Erlbaum, pp. 531-546, 1986.

[Kleene56] S.C. Kleene, "Representation of Events in Nerve Nets and Finite Automata",
Automata Studies, Editor C.E. Shannon and J. McCarthy, Princeton University
Press, p. 3-42, Princeton, N.J. 1956.

[Kohavi78] Z. Kohavi, Switching and Finite Automata Theory, McGraw-Hill, NY, NY,
1978.

[Kremer96] S.C. Kremer, "Finite State Automata that Recurrent Cascade-Correlation Can-
not Represent", Advances in Neural Information Processing Systems 8, Eds: D.
Touretzky, M. Mozer, M. Hasselno, M1T Press, pp. 612-618. 1996.

[Lang92] K.J. Lang, "Random DFA's can be Approximately Learned from Sparse Uniform
Examples", Proceedings of the Fifth A CM Workshop on Computational Learning
Theory, 45-52, ACM Press, 1992.

[Lee86] Y.C. Lee, G. Doolen, H.H. Chen, G.Z. Sun, T. Maxwell, H.Y. Lee, C.L. Giles,
"Machine Learning Using a Higher Order Correlational Network", Physica D,
22-D(1-3):276-306, 1986.

[Ljung87] L. Ljung, System Identification: Theory for the User, Prentice Hall, Englewood
Cliffs, N.J. 1987.

[Lucasg0] S. Lucas, R. Damper, "Syntactic Neural Networks," Connection Science, 2:
199-225, 1990.

[Maass96] W. Maass, "Lower Bounds for the Computational Power of Networks of Spik-
ing Neurons", Neural Computation, 8 (1): 1-40, 1996.

[McCulloch43] W.S. McCulloch, W. Pitts, "A Logical Calculus of Ideas Immanent in Ner-
vous Activity", Bulletin of Mathematical Biophysics, 5:115-133, 1943.

[Micletg0] L. Miclet, "Grammatical Inference", Syntactic and Structural Pattern Recogni-
tion; Theory and Applications, World Scientific, Editor H. Bunke, A. Sanfehu,
Singapore, 1990.

[Miller93] C.B. Miller, C.L. Giles, "Experimental Comparison of the Effect of Order in Re-
current Neural Networks", International Journal of Pattern Recognition and Ar-
tificial Intelligence, 7(4):849-872, 1993.

[MJnsky67] M. Minsky, Computation: Finite and Infnite Machines, Prentice-Hall, Inc.,
Englewood Cliffs, NJ, 1967.

[Moore] C. Moore, "Dynamical Recognizers: Real-time Language Recognition by Analog
Computers," Theoretical Computer Science, (accepted).

[Mozerg0] M.C. Mozer, J. Bachrach, "Discovering the Structure of a Reactive Environ-
ment by Exploration", Neural Computation, 2(4):447, 1990.

343

[Mozer93] M. Mozer, S. Das, "A Connectionist Symbol Manipulator That Discover the
Structure of Context-Free Languages", Advances in Neural Information Process-
ing Systems 5, Eds: S.J. Hanson, J.D. Cowan, C.L. Giles, Morgan Kaufmann, San
Mateo, CA., 863, 1993.

[Narendrag0] K.S. Narendra, K. Parthasarathy, "Identification and Control of Dynamical
Systems Using Neural Networks," IEEE Trans. on Neural Networks, 1(1):4-27,
1990.

[Nerrand93] O. Nerrand, P. Roussel-Ragot, L. Personnaz, G. Dreyfus, S. Marcos, "Neur~
Networks and Nonlinear Adaptive Filtering: Unifying Concepts and New Algo-
rithms,'" Neural Computation, 5:165-199, 1993.

['Noda92] L Noda, M. Nagao, "A Learning Method for Recurrent Networks Based on Min-
imization of Finite Automata," IJCNN International Joint Conference on Neural
Networks, Vol. I, pp. 27-32, I ~ . ~ Press, Piscataway, NJ, 1992.

[Omlin96a] C.W. Omlin, C.L. Giles, "Constructing Deterministic Finite-State Automata in
Recurrent Neural Networks", J. of the ACM, 43(6):937--972, 1996.

[Omlin96b] C.W. Omlin, C.L. Giles, "Extraction of Rules from Discrete-Time Recurrent
Neural Networks," Neural Networks, 8(4): 41-52, 1996.

[Omlin98] C.W. Omlin, K.K. Thornber, C.L. Giles, "Fuzzy Finite-State Automata Can Be
Deterministically Encoded Into Recurrent Neural Networks," IEEE Trans. on
Fuzzy Systems (accepted).

[Pao89] Y. Pao, Adaptive Pattern Recognition and Neural Networks, Addison-Wesley
Publishing Co., Inc., Reading, MA, 1989.

[Partee90] B.H. Partee, A.T. Meulen, R.E. Wall, Mathematical Methods in Linguistics, ch
18. Kluwer Academic Publishers, Norwell, MA, 1990.

[Perantonis92] SJ. Perantonis, P.J.G. Lisboa, "Translation, Rotation, and Scale Invariant
Pattern Recognition by Higher-Order Neural Networks and Moment Classifiers,"
IEEE Trans. on Neural Networks, 3(2):241, 1992.

[Pollack87] J.B. Pollack, "On Connectionist Models of Natural Language Processing,"
Ph.D. Thesis, Computer Science Depart., University of Illinois, Urbana, 1987.

[Pollack90] J.B. Pollack, "Recursive distributed representation," J. of Artificial Intelli-
gence, 46:77-105, 1990.

[Pollack91] J.B. Pollack, "The Induction of Dynamical Recognizers," Machine Learning,
7:227-252, 1991.

[Psaltis88] D. Psaltis, C.H. Park, J. Hang, "Higher Order Associative Memories and Their
Optical Implementations", Neural Networks, 1:149, 1988.

[Rumelhart86] D.E. Rumelhart, G.E. Hinton, J.L McClelland, "A General Framework for
Parallel Distributed Processing", Chapter 2, Parallel Distributed Processing, MIT
Press, Cambridge, MA. 1986

344

[Sanfeliu92] A. Sanfeliu, Rene Alquezar, "Understanding Neural Networks for Grammat-
ical Inference and Recognition," Advances in Structural and Syntactic Pattern
Recognition, Eds. H. Bunke, World Scientific, 1992.

[ShavlilO4] J.W. Shavlik, "Combining Symbolic and Neural Learning", Machine Learn-
ing, 14(3): 321-331, 1994.

[Siegelmann95] H.T. Siegelmann, E.D. Sontag, "On the Computational Power of Neural
Nets," Journal of Computer and System Sciences", 50(1): 132-150, 1995

[Siegelmann97] H.T. Siegelmann, B.G. Home, C.L. Giles, "Computational capabilities of
recurrent NARX neural networks," IEEE Trans. on Systems, Man and Cybernet-
ics - Part B, 27(2):208, 1997.

[Sperduti95] A. Sperduti, "Stability Properties of Labeling Recursive Auto-Associative
Memory", IEEE Transactions on Neural Networks, 6(6):1452-1460, 1995.

[Sperduti97] A. Sperduti, "On the Computational Power of Recurrent Neural Networks for
Structures," Neural Networks, 10(3):395-400, 1997.

[Sun90] G.Z. Sun, H.H. Chen, C.L. Giles, Y.C. Lee, D. Chen, "Connectionist Pushdown
Automata that Learn Context-Free Grammars", Proceedings of International
Joint Conference on Neural Networks, Vol. 1: 577-580, Ed: M. Caudill, Lawrence
Edbanm Associates, Hillsdale, NJ, 1990.

[Sun91] G.Z. Sun, H.H. Chert, Y.C. Lee, C.L. Giles, '~I'uring Equivalence of Neural Net-
works with Second Order Connection Weights", Proceedings of International
Joint Conference on Neural Networks, Vol. H: 357-362, IEEE Press, Piscataway,
NJ, 1991.

[Tickle] A.B. Tickle, R. Andrews, M. Golea, J. Diederich, "The truth will come to light:
directions and challenges in extracting the knowledge embedded with trained ar-
tificial neural networks," IEEE Trans. on Neural Networks, (accepted).

[Tino95] P. Tino, J. Sajda, "Learning and Extracting Initial Mealy Machines With a Mod-
ular Neural Network Model", Neural Computation, 7(4):822-844, 1995.

[Tsoi94] A-C. Tsoi, A. Back., "Locally Recurrent Globally Feedforward Networks, A Crit-
ical Review of Architectures", IEEE Trans. on Neural Networlcs, 5(2):229-239,
1994.

[Watrous92] R.L. Watrous, G.M. Kuhn, "Induction of Finite-State Languages Using Sec-
ond-Order Recurrent Networks", Neural Computation, 4(3):406, 1992.

[Wiles95] J. Wiles, J. Elman, "Learning to count without a counter: A case study of dynam-
ics and activation landscapes in recurrent networks," Proceedings of the Seven-
teenth Annual Conference of the Cognitive Science Society. MIT Press, 1995.

[Williams89] R.J. Williams, D. Zipser, "A Learning Algorithm for Continually Running
Fully Recurrent Neural Networks", Neural Computation, l:270-280, 1989.

345

[Williams95] R.J.Williams, D. Zipser, "Gradient-based learning algorithms for recurrent
networks and their computational complexity", Back-propagation: Theory, Ar-
chitectures and Applications, Eds: Y. Chauvin, D. E. Rumelhart, Ch. 13,pp.
433-486, Lawrence Erlbaum Publishers, Hillsdale, N.J. 1995.

[Zeng93] Z. Zeng, R.M. Goodman, P. Smyth, "Learning Finite State Machines with Self--
Clustering Recurrent Networks", Neural Computation, 5(6):976, 1993.

[Zeng94] Z. Zeng, R.M. Goodman, P. Smyth, "Discrete Recurrent Neural Networks for
Grammatical Inference", IEEE Trans. on Neural Networks, 5(2):320, 1994.

