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1 Introduction 
Recurrent neural networks are dynamical network structures which have the capabil- 

ities of  processing and generating temporal information. To our knowledge the earliest 
neural network model that processed temporal information was that of MeCulloch and Pitts 
[McCulloch43]. Kleene [Kleene56] extended this work to show the equivalence of finite 
automata and McCulloch and Pitts' representation of nerve net activity. Minsky [Min- 
sky67] showed that any hard-threshold neural network could represent a finite state 
automata and developed a method for actually constructing a neural network finite state au- 
tomata. However, many different neural network models can be defined as recurrent; for 
example see [Grossberg82] and [Hopfield82]. Our focus is on discrete-time recurrent neu- 
ral networks that dynamically process temporal information and follows in the tradition of 
dynamically (nonautonomous) recurrent network models defined by [Elman90, Jordan86, 
Narendra90, Pollack91,Tsoi94]. In particular this paper develops a new model, a neural 
network pushdown automaton (NNPDA), which is a hybrid system that couples a recurrent 
network to an external stack memory. More importantly, a NNPDA should be capable of 
learning and recognizing some class of  context-free grammars. As such, this model is a sig- 
nificant extension of  previous work where neural network finite state automata simulated 
and learned regular grammars. We explore the capabilities of such a model by inferring au- 
tomata from sample strings - the problem of grammatical inference. It is important to note 
that our focus is only on that of  inference, not of  prediction or translation. We will be con- 
cerned with problem of  inferring an unknown system model based on observing sample 
strings and not on predicting the next string dement  in a sequence. In some ways, our prob- 
lem can be thought of as one of system identification [Ljung87]. 

1.1 Motivation 

To enhance the computational power of  a recurrent neural network finite state autom- 
aton to that of an infinite machine [Minsky67] requires an expansion of resources. One 
approach is to introduce a potentially infinite number of neurons hut a finite set of uniform- 
ly distributed local connection weights per neuron [Sun91]. Another approach to 
constructing a neural network infinite machine is to permit an infinite precision of neuron 
units but keep a finite size network (finite number of neurons and connection weights) [Pol- 
lack87, Siegdmann95]. Doing so is equivalent to constructing a more general nonlinear 
dynamic system with a set of continuous, recurrent state variables. Such a system in general 
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would have rich dynamical behavior: fixed points, limit cycles, strange attractors and cha- 
os, etc. However, such systems are not easily trained. 

The model we introduce has this flavor. It enhances the neural network by giving it a 
potentially infinite memory - a stack - and constrains the learning model by permitting the 
network to operate on the stack in the standard pro-specified way - push, pop or no-opera- 
tion (no-op). As such, this model can be viewed as: (1) a neural network system with some 
special constraints on an infinite neural memory, or (2) a hybrid system which couples an 
external stack memory (conventionally a discrete memory, but here a continuous stack) 
with a finite size neural network state automaton. There are many issues in connecting and 
gaining an external computational structure such as stack to a neural network. For example 
what form does the objective function take; when and how are the push/pop/no-op opera- 
tions of  the stack incorporated into the neural net; and after training how are can learned 
rules extracted? We provide a complete procedure for training such a neural network push- 
down automata. 

1.2 Grammars and Grammatical  Inference 

Because this paper is concerned with new models of neural networks, we give only a 
brief explanation of grammars and grammatical inference. For more details, please see the 
enclosed references. Grammatical inference is the problem of inferring an unknown gram- 
mar from only grammatical string samples [Angluin83, Fu82, Gold78, Lang92, Micletg0]. 
In the Chomsky hierarchy of phrase structured grammars [Harrison78, Hopcroft79, Par- 
tee90], the simplest grammars and its associated automata are regular grammars and finite 
state automata (FSA). Moving up in complexity in the Chomsky hierarchy, the next class 
is the context-free grammars (CFGs) and their associated recognizer - the pushdown au- 
tomata (PDA), where a finite state automaton has to control an external stack memory in 
addition to its own state transition rules. For all classes of grammars, the problem of gram- 
matical inference is in the worst case at least NP [Angluin83]. As such, we feel that training 
a neural network to learn grammars is a good testbed for exploring the networks computa- 
tional capabilities. However, comparison of  a neural network pushdown automata with 
other methods for grammatical inference is not discussed. Our concern has only been with 
how such an architecture can be constructed, how it is trained and how it learns grammars 
from grammatical strings. 

13 Outline of Paper 

In next section, we review some of  the previous work on computational models of re- 
current neural networks. We argue that from the standpoint of representation, it is 
computationally more efficient to use a "real" external stack instead of the neural network 
emulator of stack memory [Pollack90]. In Section III we systematically introduce the mod- 
el of the Neural Network Pushdown Automata (NNPDA), the structure, the dynamics and 
the optimization (learning) algorithms. This model is substantiated by means of theoretical 
analysis of many of  the related issues regarding its construction. The attempt there is to give 
a rigorous mathematical description of the NNPDA structure. We then illustrate the model 
by learning the context-free languages: balanced parentheses and the 1 n O n. A modified ver- 
sion of NNPDA is then introduced to learn the more difficult Palindrome grammar. The 
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conclusion covers enhancements and further directions. In the Appendices is a detailed 
mathematical derivation of the equations necessary for the training the NNPDA. The key 
point is that in order to use the real-time recurrent learning (RTRL) algorithm [Will- 
iams89], we have to assume a recursion relation for all variables, which means that the 
NNPDA model must be approximated by a finite state automaton. In the Appendices, we 
discuss this paradox and show one solution to this problem. 

2 Related Work 

In this section we review previous work related to the NNPDA. However, the general 
area of grammatical inference and language processing will not be cover .~; see for exam- 
ple [Angluin83, Fu82, Lang92, Miclet90] and more recently the proceedings of the 
workshops on grammatical inference [GI]. We only focus on neural network related re- 
search and, even there, only on work directly related to our model. 

The computational capabilities of recurrent networks have been explored by many. 
Rather simple recurrent networks have been proved to be at least Turing equiyalent [Siegel- 
mann95] and to within a linear slowdown have output-only feedback networks 
[Sieglemann97]. However, certain growing methods such as recurrrent cascade correlation 
have been shown to be computationally limited [Giles95a, Kremer96] as have certain lo- 
cally recurrent architectures [Frasconi96b] and recurrent networks for structures 
[Sperduti97]. Finally, there are recurrent neural network architectures that are topologically 
equivalent to subclasses of finite state machines [Kohavi78b], in particular, finite memory 
and definite memory machines or automata [Clouse97, Giles95b]. 

2.1 Recurrent Neural Network State Machine 

Recurrent networks have also been explored as models for representing and learning 
formal and natural languages. Simple recurrent neural networks can be interpreted as neural 
network representations of finite state automaton (FSA) [Allen90, Cleeremans89, EI- 
man91b, Giles92eg Home92, Mozer90, Noda92, Pollack91, Sanfeliu92, Watrous92]. For 
convenience we will call these neural network finite state automata (NNFSA). It is possible 
to prove that simple recurrent networks can exactly emulate the behavior of FSA and that 
synthesis and extraction methods exist for FSA and recurrent neural networks [Casey96, 
Frasconi96a, Om_lin96a, Omlin96b] and even for fuzzy FSA [Omlin98]. We will not direct- 
ly discuss neural network finite state machines, i.e. NNFSA which have additional output 
symbols, see for example [Das91, Chen92, Goudreau95]. 

All of the recurrent network models discussed here will be higher-order. These models 
have been found to be very convenient and powerful for representing specific computation- 
al constructs in neural networks [Ghosh92, Goudreau94, Lee86, Miller93, Pao89, 
Perantonis92, Pollack87, Psaltis88, Rumelhart86, Watrous92]. Using second order connec- 
tion weights, the recurrent dynamics of the state neurons, seen in figure I., can be readily 
expressed by 

i = g (  W 0 I k+Oi ) ,  (1) 
j ,k 
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Fig.1 A second-order recurrent neural network, where I t and S t represent the current 
input and state, S t+l is the next state, and SO T the output neuron. 

where Si' is the activity of  the/~h State neuron at time step t, I~' is the ~ component of 
the input symbol at time step t, g is the nonlinear operator, usually the sigmoid function g(x) 
-- I / (l+exp(-x)) and 0 i is the bias term for the ith neuron. When a temporal sequence of 
length T: {I 1, 12, 13 ........ 1 T} is fed into the recurrent net, the input symbol I t at each time 
step together with the current state S t (initial state is assigned) are the "input" to the net- 
work and the "output" would be the next time state S t+l. The recurrent network therefore 
acts like a real-time machine. At the end of  an input string, an end symbol is given to the 
network and the output in the last state neuron is checked to determine the classification 
category of the input string. This neural network finite state automaton (NNFSA) can be 
used to recognize strings that belong to a regular grammar. Various work [Cleeresman89, 
Elman91b, Giles92a, Giles92b, Omlin96b, Pollackgl, Watrous92, Zeng94] has shown the 
possibility of using neural networks to perform grammatical inference on regular gram- 
mars, i.e. to find a "useful set" of  production rules P from only a finite set of sample training 
strings (and even noisy strings [Carrasr 

One of the limitations of NNFSA is its difficulty in processing higher level languages. 
A "brute-force" method to enhance the computational power ofa  NNFSA is to increase the 
size of the existing neural network structure (or increase the precision of the neuron units 
in the network) while training on a more complex language, say a context-free grammar 
[Allen90]. The assumption is that the size of  the neural networks has no bound, but the 
knowledge gained as the network grows gives clues to the representation of the underlying 
grammar and it associated machine ([Crutchfield91] uses this approach to show that con- 
text-free grammars are generated by a nonlinear system on the edge of chaos). But in 
practice gaining this knowledge is difficult. What usually happens is that the trained NNF- 
SA will only recognize the language up to a certain string length [Wiles95] (in effect, a 
regular grammar approximation to a say a context free grammar). For the NNFSA to gen- 
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eralize correctly on longer unseen strings, the NNFSA needs to be re-trained on those 
strings. Another way to view this is that a FSA approximation to a DFA is being produced. 
The issue is: how good is that approximation? 

2.2 Recurrent Network Models: Extensions Beyond Finite State Machines 

There has been a great deal of  effort to enhance the power of recurrent neural networks 
by increasing the precision or size of  the network or by coupling it with an external, poten- 
tially inf'mite, memory. The work of  [Williams89] coupled a recurrent neural network to a 
memory tape to emulate a Turing machine and to learn the state automaton controller for 
the balanced-parentheses grammar (a context-free grammar). More specifically, a recurrent 
network was trained to be the correct finite-state controller of a given Turing machine by 
supervising the input-output pairs, where the input is the tape reading from a target Turing 
machine and the output is the desired action of  the finite controller. The important distinc- 
tion between NNPDA model and that of  [Williams89] is in the training - particularly, the 
behavior of their target controller was known a priori and not learned. In the most general 
case of grammatical inference the transition rules of  the target machine are not known be- 
forehand; only the classification for each training sequence is known. The NNPDA model 
we describe allows the NNPDA itself to "figure out" how to construct a neural net control- 
ler that knows both the state transition rules and, in addition, how to use and manipulate the 
tape or stack. 

ISTACK2I 

I ST/ ACKII 
(a). Push onto stack 

ISTACr I 
(b). Pop from stack 

Fig.2 A neural network emulator of  a stack proposed by [Pollack90]. (a) Coding pro- 
cess emulates a "push" action onto a stack. (b) Decoding process emulates a "pop" action 
from a stack. 

Closely related work is the R.AAM model o f  [Pollack90], which proposed an "internal" 
neural network model of stack memory as a plausible model for cognitive processing. Let 
us consider using this model to build a NNPDA. As shown in Fig. 2, the "push" and "pop" 
actions onto the stack are emulated by a coder and a decoder separately, where the 
"STACKI", "STACK2", and "STACK3" are the neuron arrays with the same size and the 
"TOP" represents the symbol(s) on the top of  the stack. The training can be performed by 
concatenating the network in Fig2(b) with the network in Fig2(a) and using error back-- 
propagation. The desired outcome requires "STACK3" to be identical to "STACKI".This 
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recursive distributed representation of  a stack memory may be of particular interest to cog- 
nitive models of  language processing. However, as a computational model this structure 
has drawbacks. First, this recursive structure is identical to a NNFSA, where the 
"STACK's" configurations correspond to internal neural states. In other words, this model 
transfers the complexity of a stack manipulation to NNFSA state transitions.For a stack 
with limited length, this model is equivalent to training a FSA with a small number of  
states. But in general, such a model will be limited since, theoretically, the stack represents 
a potentially infinite number of  states. Even for a limited length stack, this model is ineffi- 
cient. To illustrate this, consider a stack with length L and number of symbols N. Thetotal 
number of possible configurations o f  the stack is 

L N L + l -  1 N L " (2)  
= N-I 

l = 0  

ffwe wish to build a distributed memory of internal states that behaves like a stack, we 
need to construct (or learn) a NNFSA with N L internal states. The required memory size of 
neurons (or weights) will scale as - N L which severely limits the usefulness of the internal 
neural network stack. 

Other closely related work is the connectionist "luring machine models of [Siegal- 
mann95, Pollack87]. They showed that a stack can be simulated in terms of binary 
representations of a fractional number which are manipulated by neural network generated 
actions. The focus of  this work was initially on "representational" issues and not on a"prac- 
tical" learning system. Their proposed stacks use a fractional number represented in terms 
of a sequence of  binary symbols "0" and ' T ' .  A "pop" action removes the leading bit from 
the fraction and can be simulated by two consecutive numerical operations: multiplication 
by two and subtraction of the leading bit. A "push" is represented by adding "0" or "1" to 
the original stack and dividing the sum by two. This stack model is clearly as efficient as 
the conventional discrete stack. An additional feature is its simple representation -- a frac- 
tional number. However, for learning, these stack models have the problem that they are 
not easily coupled to gradient-based learning algorithms. This is because, although a frac- 
tional number is continuous, any small porturbation of the fraction causes a discrete change 
of the stack content that this fraction is representing. Extensions of these models to graph- 
ical structures has also been explored [Sperduti95]. Recent work has also shown that a 
recurrent network can be coupled to an standard external stack for syntax analysis [Chen]. 

Finally, an entirely different method for learning context-free grammars with a neural 
network has been proposed. [90] maps directly the production rules of the CFG, both ter- 
minals and nonterminals, directly in neural networks and shows some preliminary results 
for character recognition. 

The original NNPDA model with an external continuous stack and its learning algo- 
rithm were originally proposed in short papers [Gilesg0, Sun90]. Recently [Das92] 
benchmark experiments with different order connection weights of NNPDA showed that 
third order weights were better than first or second order. [Das93] showed the advantage of 
using hints in learning CFGs. Recent work [Mozer93] also shows that the continuous stack 
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can be used to manipulate the "continuous rewrite rules" necessary to parse context-free 
grammars. [Zeng94] showed that when a recurrent network controlling an external stack is 
trained by a pseudo-gradient method and discretized during training, the trained NNPDA 
can successfully classify strings of  arbitrarily long length. 

3 Neural Network Pushdown Automata 

In this section, the NNPDA model is thoroughly described. As will be seen, this model 
fits into the real-time recognition models that are more similar to NNFSA and dynamical 
recognizers [-Moore]. The schematic diagram of the neural network pushdown automata 
(NNPDA) is shown in Fig. 3. This NNPDA, after being trained, will hopefully be able to 
represent the underlying grammar of the given training set (we assume that for each of our 
training sets there is a unique underlying grammar) and be able to correctly classify all un- 
seen input strings generated by an unknown CFG. To use the NNPDA as a classifier, input 
strings are fed into the NNPDA one character a time, and the "error function" at the end of 
each string sequence decides the classification. It is important to note that all grammars and 
automata discussed in this paper are deterministic. 

Lt+ 1 
~ ~  i e r ror  f u n c t i o ~  (length of stack at time t+l) 

I ~  / / /  push or pop with depth IAI 

_ ~/ ",3 (action on stac~ -~ . . . . . .  I I r / t  
Q-._O O O - - - ~ - ' ~ O .  ~.D.--------~.-I jtu.4~) 

e . i 

(state neuron (input symboi)(reading from B(0.67) , 
at time t) top of stack AI0.33) 

with unit depth.~ continuous 
stack 

Fig.3 The schematic diagram of the Neural Network Pushdown Automata NNPDA. 
where a high-order recurrent network is coupled with an external continuous stack. The in 
puts to the neural net are the current internal states (St), input symbols (I t ) and the stack 
reading (Rt). The outputs from the neural net are the next time internal state (~+1) and the 
stack action (At+l). This action will be performed on the external stack, which in turn will 
renew the next stack reading (Rt+l). The weights of the recurrent neural network controller 
will be trained by minimizing the error function, which is a function of the final state and 
the stack length at the end of input string. 
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The proposed NNPDA consists of  two major components: a recurrent neural network 
controller and an external continuous stack memory. The structure and working mechanism 
of these two components will be described in detail in subsections 3.1 and 3.2. A brief in- 
troduction of the NNPDA dynamics follows. The neural network controller consists of four 
types of neurons: input neurons, state neurons, action neurons and stack reading neurons; 
and the stack is simply a conventional stack with analog symbol "length". At each time 
step, the recurrent neural network can be considered an input-output mapping. The input to 
the mapping is: the current internal state S t, input symbol I t and the stack reading R t. And 
the output are the next time internal state S t+l and the stack action A t+l. This action will be 
performed onto the external stack, which in turn will renew the next time stack reading 
R t+l. This new stack reading together with new internal state S t+l and new input symbol 
I t+l will serve as a new input for another input-output mapping. At the end of input se- 
quence the content of  internal state and stack will determine whether or not the input string 
is legal. 

During the training stage, the weights o f  the recurrent neural net will be modified to 
minimize the error function, which is fully discussed in subsections 3.4 and 3.5. In some 
sense the learning can be thought o f  as unsupervised or reinforcement style learning, be- 
cause (a) no credit assignment is made before the end of input sequences and Co) the system 
can extract the classification rules automatically from the input examples. 

3.1 Neural Network Controller 

The neural network controller is an extended version of the neural network finite state 
automata (NNFSA) previously described in [Giles92a]. It is still a high order recurrent neu- 
ral network (Fig.3). The difference is that the NNPDA introduces additional input and out- 
put neurons (and, of  course, the external stack). The "hidden" recurrent neurons {S i, 
i=l,2,...,Ns} represent the internal states of  the system to be learned. The input neurons {1 i, 
i=l,2,...,Nl}, are each associated with a particular input symbol (a localist or one-hot en- 
coding scheme). These two groups of  neurons are the same as that of NNFSA. The addi- 
tional "nonrecurrent" input neurons {R/, i=I,2,...,NR} represent the stack content read from 
the top of stack memory. The additional "nonrecurrent" output neurons {4 i, i=l,2,...,N A } 
represent the action values that operate the stack (pushes, pops or no-operations). The state 
neurons are feedback into themselves after one time step delay (Fig. 3). 

The discrete time dynamics o f  the neural network controller can be written in general 
form as 

s ,  + t = G ( S' ,  R ' ,  t '  ; re ' )  (3) 

A t+l = F ( S t ,  Rt, l t ;Wa)  " 

where S t, R t and 1 r are vectors of  internal state, stack reading and input symbol at time 
t, and W s and W a represent the weight matrices for the state dynamics and action mappings. 
It is seen from Eq.(3) that for a full description of  the dynamic, we need another equation 
for the stack reading R t. In general, this function could be written as 
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1~ = F ( A 1 , A  2 . . . . .  A ' ,  I l, I z . . . . .  1~) . (4) 

The combination of Eqs. (3) and (4) describes a dynamical process for the system 
"state variables" {S t, R t, A t } that evolves in time as a function of an input sequence {11,12, 
13 ....... J r} ,  given a set of  initial values of  S ~ R ~ and A O. However, this is not a state ma- 
chine, because Eq.(4) indicates that there does not exist a simple recursive function for the 
stack reading R t. The  value of R t depends on the entire history of input and actions (or 
equivalently, R t depends on weight matrices and input history). This mapping o f R  t is high- 
ly nonlinear and is determined by the definition of the stack mechanism, which will be later 
discussed in detail. To be exact, the so called neural network controller is defined only by 
Eq.(3). 

To decide the proper structure of  neural network controller, both the neural represen- 
tations and the target mapping functions need to be known. For discrete pushdown autom- 
ata, the mappings (or transition rules) are third-order in nature, by which we mean that each 
transition rule is a unique mapping from a third-order combination: { S t x R t x  I t} tO its out- 
put, the next time state S t+l and stack ac f ionA t+l . Assume that unary representations of/t,  
R t and S t are employed. For instance let It=(1, 0, 0), (0, 1, 0) and (0, 0, 1) represent symbols 
a, b and c,  and S t =(1, 0) and (0, 1) the two different states. It is easily seen that any tran- 
sition rule: {,~ t, Rk t / i  t} ~ Si t+l orAi  t+l could be coded into two four-dimensional matrices 
WSijkl and W'ijk 1, each component being a binary value 0 or 1(for WSijkl), or ternary value 
1, 0 ,  - 1(for Waijkl). For example, the state transition rule { S(j), R(k), l(1) } --~ S(i) means that 
if the input symbol is the lth symbol, the stack reading is the kth symbol and the internal 
state is tbejt h state, then the next state will be the ith state. And, this rule would be coded as 
WSijkl=l and W~mjk~'O, m:~i. Similarly, waijld = [1, 0, -1] implies a mapped action: [push, 
no-op, pop] o fAi  t+l. In this way we show that any deterministic PDA could be implement- 
ed by a third order, one layer recurrent neural network with discrete neural activity func- 
tion. Particularly, if the NNPDA's  neural network controller is represented by third-order 
nets of the form 

-,st.+ I = g ktSjR,t.lt + 
At . t  

(5) 
t ! 

j , k , I  

the existence of a solution to any given PDA would be guaranteed upon proper quan- 
tization of the nonlinear functions g(x) andf(x). During learning, the sigmoid function g(x) 
is used andf(x) is defined as f(x) = 2g(x) -1. 

However, this proof does not exclude solutions with other neural net structures and 
does not necessarily guarantee the best learning behavior with third-order weights for all 
problems. In practice, second-order weights were used for some problems and good train- 
ing results were achieved. The recurrent updating formula for second-order networks can 
be written as 
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S[ +~ g ( ~  ' ' ' = ~ks} (R ~l)k+0,'.) 
i,k 

(6) 

(g'~r)k = ~ R~ if o < k<-NR 

lit_,,. if N R < k <_NI+N R 

(7) 

Experiments and comparisons between NNPDAs with different orders of connection 
weights were discussed in [Das92]. In most cases the third-order weights gave better learn- 
ing results. 

The existence proof of  the NNPDA controller discussed above is based on the assump- 
tion of unary representations of  internal states and symbols (beth input and reading 
symbols). For the stack reading R t and input/t, a unary representation (or linear indepen- 
dent vector representation) is necessary. This will be discussed in next subsection. 
However, unary representation of  internal states may not be necessary. Moreover, to extract 
a discrete PDA, the procedure o f  state quantization is performed after learning and the 
quantized state vectors (often expressed in a binary form) are neither unary, nor linearly in- 
dependent. But, during learning (especially hard problems), we often encounter the cases 
where we need to adjust independently the transitions between these linearly dependent 
state vectors. With third order weights the degrees of freedom are limited and each weight 
parameter does not associate with only one particular state transition as in the case of  unary 
representations. Therefore, learning could be often trapped at a local minimum. To solve 
this problem, we propose a "full-order" connected network and find it very useful in learn- 
ing some hard problems, like the Palindrome grammar. A "full-order" network is defined 
one is which the order of the correlation is the produce of all independent state neurons. The 
"full-order" network we used for one action output is 

At+l f (  E t t t = W~{j} kl S {j} R~kll + 0 a) , (8)  
{j},k.t 

where the subscript {j }~{Jl, J2 ..... Jn }, represents all 2 n possible n-bit binary numbers 
(ira=0, I; m=l, 2 ..... n), and n is the number of  state neurons. The s t a t e  vectorSt{j} is an nth 
order product of St's components defined as 

= f l  (jmStm + (1 --Jm) (1 t _ Sm )t ) (9) St/} 
m = l  

For example St{ll01l = sItS2t(1-s3t)s4 t for a 4-state neuron net. In learning the palin- 

At.+, = f(E VC~ijeSJ (Rt ~ It) k +oa) l 
j,k 

where (Rt~ It)k is the concatenation of the two vectors R t and/t, whose components 
are given by 
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drome grammar, the combination of Eq.(8) and the third order state dynamics of Eq.(5) led 
to successful training. 

3.2 External Continuous Stack Memory  

One of novel features of the NNPDA is the continuous stack memory. The continuous 
(or analog) stack was motivated by a desire to manipulate a stack with a gradient descent 
training algorithm. In order to minimize the error function along the gradient descent direc- 
tion, the weight modification is proportional to the gradient of the error function 

A W ~  ~w(ErrorFunction)  (10) 

To couple the neural net with a stack memory, the stack variable must be included in 
the error function. One way of doing this is to make the stack variables a continuous func- 
tion of the connection weights, so that an infinitesimal change of weights will cause an in- 
finitesimal change of action values, which in turn cause an infinitesimal change of stack 
readings. Any discontinuity among these relations may cause the derivative to be infinity, 
thereby interfering with the learning process. 

3.2.1 Continuous Stack Action 

To fully describe the mechanism of the continuous stack, we discuss in detail: (1) the 
continuous stack action and stack operation; (2) how to read the stack and (3) the neural 
representation of the stack reading. Consider a conventional stack, as shown in Fig. 4(a), 
where there arc stored a number of discrete symbols. The discrete stack actions includcpop, 
push and no-op. Without affecting the generality of a stack function, it is assumed that each 
action only deals with one symbol. The pop simply removes the top symbol and the push 
places the symbol read from input suing onto the top of stack. When the continuous stack 
is introduced, we have to replace both the discrete symbols in the stack by continuous sym- 
bols and the discrete pop and push actions by continuous actions. Therefore, we define the 
continuous length of every symbols. In Fig. 4(a), the stack is filled with discrete symbols 
and each symbol is interpreted as having equal length L=l. In the general case, as shown 
in Fig.4(b), the stack is filled with continuous symbols, each having a continuous length: 
1 >- L ~ 0. These continuous symbols are generated by the continuous stack actions. As de- 
scribed in the neural network controller in Eqs.(5), (6) and (8), the output of the action 
neurons Ait are calculated by the function J~x) with analog values distributed within the in- 
terval [-1, 1]. The value ofAi t is interpreted as the intensity of the actions to be taken on the 
conventional stack [Harrison78]. When Ait takes on continuous values, the natural general- 
ization of the discrete dynamics is to interpret each continuous action A/as an uncertainty 
about the action to be taken. We represent this uncertainty in terms of the.length of the dis- 
crete symbols to be pushed or popped. Therefore, at each time step only pan of a discrete 
symbol is pushed or popped onto the stack with length determined by JAit[. Whether to 
push or pop is determined by the sign of Air: push ifAi t > E and pop if A/< -E where ~ is a 
small number close to zero; otherwise a no-operation (no-op) takes place. After such ac- 
tions, the stack construction would appear as in Fig.4 (b). 
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L = 0 . 9  a 
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L = 0 . 6  
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..... : ..... I 
(b) 

Fig.4 Stack symbols with continuous lengths: (a) discrete stack is filled with discre! 
symbols which can be viewed as all having length = 1, (b) continuous stack is filled wit 
discrete symbols having continuous length:0 < L < 1. 

In the above description of  the stack operation, only one component of the vectorA~ 
is used and all three actions pop, push and no-op are represented by one variable. However, 
one could integrate continuous actions into a conventional discrete stack in many different 
ways. For instance, separate action neurons could be used to represent the different types 
of  actions, i.e. one neuron with output 0 < Atz < 1 to represent the value ofpush and anoth- 
er neuron with output 0 < A~_ < 1 to represent the value of pop action. In this case both Atl 
and A~ could simultaneously have nonzero output and the order in which the two actions 
(push andpop) are executed must be assigned in advance. If  we first take apop action and 
then push, we in effect introduce four types o f  actions in the discrete limit: (1)push 
(A~ = l a n d a [  = O),(2)pop(a~ = OandA[  = l),(3)noaction(atl = 0andA[  = 0) 
and (4) replace (A~ = 1 and A[ = 1 ). 

3.2.2 Reading the Stack 

How to read from a continuous stack must be defined. For simplicity, we assume only 
one action neuron is used. In the conventional discrete stack a read operation only reads one 
symbol from the top of stack and sees nothing below. This reading method is not suitable 
for the continuous stack, since there will be a discontinuity in the content of the stack read- 
ing. We treat the stack as a one-way tape and the reading can be performed without popping 
the stack. More specifically, a reading discontinuity may happen in either of the following 
two cases: (1) after performing the action A t, a symbol with an infinitesimal length is left 
on the top of the stack; or (2) the top symbol has a infinitesimal (or zero) part being re- 
moved by the previous pop action A t . In these two cases an infinitesimal perturbation to the 
action value A t could generate a discrete jump in the stack readings. See the example shown 
in Fig. 4(b). IrA t = -0.9, the symbol "a" will be popped entirely from the top of the stack. 
And the next reading Rt+lwould be the symbol "b" with length = 0.6. However, if there is 
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a small perturbation to the connection weights such that the value ofA t increases by only 
0.001, then At=-0.899. The top symbol "a" with length L---0.899 will be popped and a small 
portion of "a" remains on the top of  stack. In that case the next readingR t+l would be the 
symbol "a" with length = 0.001. A similar discrete jump will happen for the case whereat= 
0. To avoid this discontinuity we impose the condition that each time the continuous stack 
is read with depth equal to 1 from the stack's top. 

The advantages of  this reading method are outlined below. First, a continuous reading 
function will be constructed with respect to the connection weights - any infinitesimal 
change of weights will cause an infinitesimal change of stack readings. In the example of 
Fig.4(b), for At=-0.9 the symbol "a'" on the top is popped. The next readlng contains two 
parts: symbol "b" with length = 0.6 and symbol "c" with length = 0.4 (the total length = 0.6 
+ 0.4 = 1.0). If the action value was changed to At=-0.899 due to a small perturbation of the 
connection weights, the symbol "a'" is not totally popped off and a small fraction is left. In 
this case the next reading would contain: a small fraction of symbol "a" with length = 0.001, 
a part of symbol "b" with length = 0.6 and a part of  symbol "c" with length = 0.399 (total 
length = 0.001 + 0.6 + 0.399 = 1.0). This example shows that the change of the next stack 
reading R t+l is proportional to the change of  previous action values A t. When AA t ap- 
proaches zero, the change of  readings AR t+l also approaches zero. It should be noted that 
this continuity of the reading function does not automatically guarantee that it is differen- 
tiable; and, even if it is differentiable, its derivative may not be a function feasible for 
numerical implementation. The complication of  the derivatives ORtlO Wand ORtlO,~ will 
be discussed in Appendix A. 

The other advantage of  the proposed reading method is its correspondence with a prob- 
abilistic interpretation of  the continuous action value; a stochastic machine. The continuous 
action values can be interpreted as a type of uncertainty compared to the deterministic dis- 
crete push and pop. If  the maximum of  the absolute action value is one, i.e. IA[I -< l ,  the 
length of a symbol to be pushed or popped can be interpreted as the probability of this dis- 
crete action. Consequently, the reading of  the stack with a total length equal to one implies 
the normalization of the total probabilities i.e. the summation of all the probabilities for 
reading each discrete symbol normalized to one. In other words, as in the previous example 
of Fig.4 0a), if the stack reading (with total length equals to one) contains: 'a '  with length 
= 0.001, 'b '  with length = 0.6 and "c" with length = 0.399, we can interpret that the stack 
symbol is being read with uncertainty: the probability of the read symbol to be "a" is very 
small as 0.001, the probability to be "b" is 0.6 and to be "c" is 0.399. When the stack length 
is less than 1, the reading may be only an 'a '  with length = 0.1, this could be interpreted that 
the probability to read 'a '  is 0.1 and the probability to read empty stack is 0.9. 

3.2.3 Neural Representation 

In the last subsections, the stack reading R t and the input/t  are often described as a 
symbol. In this subsection, the actual neural representation of these two vectors will be dis- 
cussed. 

The neural representations of  the input string symbol/t and the stack readings R t are 
determined under the following considerations. First, in the discrete limit (by quantization 
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of the analog neurons to discrete levels) the learned neural network pushdown automata is 
required to behave the same way as a conventional pushdown automata. In this limit, since 
both sets { l  t} and {R t } (each element of  which corresponds to a symbol) represent the same 
set of discrete symbols, the neural representations of  each I t and R t need to be identical. In 
this regard, there are no restrictions on their neural representations as long as they are the 
same. For instance, consider the symbols 'a ' ,  ' b '  and 'e ' ,  the set [/t} or {R t} can be repre- 
sented either by two neurons as (0, I), (I ,  0) and (I,  1) i fa  binary code is used or by three 
neurons as (1, 0, 0), (0, 1, 0) and (0, 0, 1) if an orthogonal code is used. 

Second, during training, the stack reading should consist of  continuoas neuron values 
and each reading neuron R t should be able to represent the contents inside a segment of the 
continuous stack with total length = 1. This is in general a distribuw.d mixture of the three 
possible symbols, each with a analog length less than 1. For effective neural information 
representation, it is important to require that there exist a unique one-to-one mapping be- 
tween each vector R t and the stack symbol component it represents. 

The general mapping from the three continuous lengths to R t can be written as 

1~ = f (  ll ,  12, 13, ~, b, ~) (11) 

l +12+13<_1, l,>O, 12>_O, 13>_O' 

where/1, 12 and l 3 are the three continuous lengths of discrete symbols 'a' ,  'b ' ,  and 'e '  
contaaned m R t and a, b, e are the vector representations of 'a ' ,  'b ' ,  and 'e'  in neuron space. 
The condition/i+/2+ l 3 < l(not 11+12 + 13 =1) includes the case of partial empty stack during 
training where the total length of  symbols stored in the stack is less than one. 

The first requirement for the discrete limit can be stated as 

R t = ~  i f  l I = 1,/2 = 0,/3 = 0 ;  

1~ = b i f  12 = 0, l 2 = 1, l 3 = 0; (12) 
1~ = ~ i f  13 = O, l 2 = O, 13 = 1 

One simple way to satisfy this condition is to write R t as a linear combination of  three 
basis vectors a, b, 

1~ = l l a  + 12b + 13~ . (13) 

For the second requirement, uniqueness, the necessary, and sufficient condition for the 
mapping in Eq.(13) is that the three neural vectors ~, b, e be linearly independent. (By the 
uniqueness we mean that if there exists another set of coefficients l '  1, l '  2 and l '  3 such that 
l ' l ~ + l ' 2 b + l ' 3 ~  = ll~t+12b+13~ then l' 1 = I I, 1' 2 = 12 and l' 3 = 13")If there are m 
symbols used in the input strings, then at least m analog neurons are needed to represent the 
input string symbol/t and the stack readings R t because any m vectors in the lower, less than 
m, dimensional space would be linearly dependent on each other. In the three symbol ex- 
ample, this excludes the use of  binary vectors (0, 1), (1, 0) and (1, 1) to represent symbols 
'a' ,  'b '  and 'e'. For simplicity the unary neural representation, i.e. ~ = (1, 0, 0 ) ,  
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/7 = (0, 1, 0) and ~ = (0, 0, 1) are used for the three symbols 'a' ,  'b'  and 'e ' .  In this 
case the stack readings R t a re  represented by a three-dimensional vector  (/1,/2,/3),  indicat- 
ing that in the current stack reading the lengths of  letters 'a ' ,  'b '  and 'e'  are/l, 12, l 3 respec- 
tively. 

To conclude this section, a novel continuous stack is introduced. One interpretation of 
the continuous stack is the concept o f  a magnitude associated with a discrete symbol. This 
new concept stresses two aspects: (1) generalization of a discrete stack to a continuous 
stack and (2) identification of the stack readings and actions as neural network input and 
output with a probabilistic interpretation. 

3.3 Dynamics of the Neural Network Pushdown Automata 

For simplicity the following assumptions are made: (a) only deterministic pushdown 
automata are considered; (b) only one action neuron output A t is used; (c) the same set of 
symbols represent both the input and stack symbols, so that an action push only pushes the 
current input I t onto the stack. These assumptions will restrict the class of CFG languages 
that the NNPDA can learn and recognize. 

We illustrate the NNPDA dynamics by examples. Consider two symbol strings of 'a '  
and 'b' .  To mark the end of  an input string the end symbol 'e '  is introduced. A possible 
input string may be: "aababbabe." Each time a string symbol 'a '  (or 'b ')  is fed into the neu- 
ral network controller, this same symbol 'a '  (or 'b ' )  could be pushed onto the stack (or the 
stack could be popped from the top) with magnitude IAtl according to the sign ofA t. The 
last symbol 'e '  indicates the end of  the input string. Upon receiving the end symbol, the 
neural network pushdown automata would generate a proper output to tell whether the in- 
put string was legal or illegal. 

Numerically, two arrays are used to represent the stack: an integer army stacksym- 
bol[] to store the symbols { 'a ' ,  'b ' ,  'e '  } and a real number arraystacldength[] for their 
lengths. A record of  the number o f  symbols stored on the stack is kept in an integertop. 
Assume that four state neurons are used such that S t = (s 1, s 2, s 3, st), where 0<Sl, s 2, s3, 
s t -  < 1 are the four neurons output. 

The NNPDA ooerations are outlined for successive time steos. 

(1) t = 0. 

Initially, the stack is empty, so that top = 0 and the stack reading at t = 0 is R ~ = (0, 0, 
0). If  the first symbol of the string is letter 'a ' ,  the initial input neural vector would be/0 = 
(1, 0, 0). Assume the initial state to be S O = (1, 0, 0, 0). The stack is shown in Fig. 5(a). 

(2) t =  I. 

Initialize the NNPDA with the values S 0,/o and R ~ (as shown in Fig.3). After one it- 
eration of Eq.(3), the new state S l and new action A l are obtained. Assume that the action 
output is A 1 = 0.6, then push symbol "a' with length = 0.6 onto the stack. The new status of 
the stack can be represented as stacksymbol[  1 ] = 'a ' ,  stacklength[ I ] = 0.6 and top= 1. Then 
the next reading R 1 would be (.6, 0, 0). The stack is shown in Fig. 5(b). 
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(a) 
Fig.5 Stack status at (a) t = 0 and (b) t = 1. 

a 0.6 (b) 
If  the next symbol in the input string is 'b ' ,  then P = (0, 1, 0). Substituting the new 

values S 1, I 1 and R ! into Eq.(3) generates the next time values. Repeat the procedure. 

(3) some later time t. 

After several possible pushes, pops and no-ops, the current stack memory may have 
stored several continuous symbols as in Fig. 6(a): top = 4 (four symbols are stored), 
stacksymboi[.] = ( 'a ' ,  'a ' ,  'b ' ,  ' a ' )  and stacidength[] = (0.32, 0.2, 0.7, 0.4). Since the stack 
is read down from the top with depth = 1, the current stack reading would be R = (0.4, 0.6, 
0) as shown in Fig. 6(a). Assume the input symbol is 'a ' ,  so that/t = (1, 0, 0). The state 
vector can also be read from the state neuron output as S t . 

top t 
R t 
I a a 0.4 This portion is 

ii2 p'~ b 10,46 ~p~_o0.n86 b to | 0.24 

[ a  Rt+I ab i 00.~22 
a . ,[, a 

(a) time t (b) time t+l 

Fig.6 Continuous stack at (a) time t and (b) time t+l. 

(4) time t+l. 

Substitute S t, I t and R t into Eq.(3) and the next time values are obtained. If  the action 
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A t+l =-.86, a segment of the stack with content of  length = 0.86 is popped. This "popped 
segment" includes 0.4 of 'a '  and 0.46 of  'b '  and the stack now hastop = 3 (three symbols 
are left), stacksymbol[] = ( 'a ' ,  ' a ' ,  'b ' )  and staeldength[] = (0.32, 0.2, 0.24). The next 
stack reading would be R t+l = (.52,.24, 0) (formed by 0.32 of 'a '  plus 0.2 of 'a '  plus 0.24 
of 'b'). 

This procedure is repeated until the end of  the input string. The classification of an in- 
put string is determined by examining the final state neuron output and the stack length. The 
criterion for training and classification will be discussed in the next two sections. 

3.4 Objective Function 

The objective function to be minimized is defined as a scalar error measure which is 
a function of both the end state and the stack length. For a conventional pushdown autom- 
ata, either the end state or the stack length alone is a sufficient criterion to determine the 
acceptance of input strings [Harrison78]. I f  either the end state reaches a desired final state, 
or the stack is ended empty, the input string is legal; otherwise illegal. However in training 
the NNPDA we find that a combination of  these two criteria seems necessary. (Initially, we 
tried only one of these criteria in training, but training was unsuccessful. For the stack-emp- 
ty only criterion, the stack actions always converged to pop. For the final-state only 
criterion, the stack actions were not affected.) We speculate that this is because of the ex- 
istence of too many local minimum in phase space. Thus, an objective function consisting 
of only one criteria of final state or stack length will have a very complex phase space con- 
figuration so that the local learning algorithm - gradient descent- would not be able to drive 
the system from the local minima. Therefore, a legal string is required to satisfy both con- 
ditions: (1) at the end the NNPDA reaches a desired final state and (2) the stack is empty. 

Define the stack length at time t to be L t. Then, L t can be evaluated recursively in terms 
of the action value A t 

L TM = L t + A  t , (14) 

because only the push or pop actions can change the length of stack. The initial condi- 
tion is L t = 0 and the constraint L t >__ 0 should be imposed at all the times. Let T-1 be the 
final time at the end of input string. For legal strings the straightforward error functionE to 
be minimized could be 

E = ( S I -  S r) 2 + (L r) 2 , (15) 

where S/is the desired final state. However, this error function could not be used to 
train illegal strings. For illegal strings the desired value of function E is not known. Maxi- 
mizing the same error E as in Eq.(15), in general, would not give a correct answer because 
Eis an unbounded function and an illegal string may not end with a long stack length. How- 
ever, replacing S / i n  Eq.(15) with a desired end state for illegal strings and then minimizing 
E presents the same problem since illegal strings are required to end with an empty stack 
(in effect avoid using stack). The main difficulty is that there is not enough information to 
decide the desired value of stack length for illegal strings. 
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In general, the following reasoning is applied. Since a legal suing requiresboth (a) the 
desired final state Sar---S/~ and (b) an empty stack (L t = 0); an illegal suing should require 
the opposite: either (a) the final state be a large measurable distance from S/~ or  (b) a non-- 
empty stack (L t > 1). Although other training requirements could be defined, in practice, 
both of these conditions are successfully used. 

One way to implement the above requirement is to introduce a unified error function 
E which can be used to train both legal and illegal strings. For simplicity we assign the final 
state(s) in such a way that only one neuron SNs output is to be checked at time Tat the end 
of  input suing. We require SNsT= 1 an t /L / '=  0 for legal strings and sNsT= 0 orLr>_. 1 for 
illegal strings. In this case the unified error function to be minimized for both legal and il- 
legal strings can be defined as 

E = ( v + L r - S ~ c ) 2 - - - e  2 , (16) 

where v is a parameter assigned as a target value for each training example. For legal 
strings v = 1 and for illegal strings v = rain{0, SNsLLT}. The learning algorithm is derived 
by minimizing this error function with the proper value of v for each input suing. Correct- 
ness of the error function(16) can be checked separately for each string. If  the input suing 

I" T is legal, v = 1. Then, minimizing E corresponds to the requirement that SNs = 1 and L =0 
the desired final state and empty stack. If  the input suing is illegal, we require 

v = rain{0, SNsLLT}. There are two possible cases, First, when SNsT>L T, let v = 0, which 
implies that minimizing E corresponds to driving L r to approach SNs T. The minimum of E 
can be reached if SNsT=L T. This means that for each input suing (neuron activity SNs r is 
discretized to 0 or 1) one of the following requirements is met: Sjvsr= 0 or LT= 1. Second, 
ifL/'is already greater than SNs T, then v = rain{ 0, S~r-Lr}--SNsr-if .  This leads to E-0, im- 
plying "do not care" or "no error". Thus, in the discrete limit, the combination of  the two 
cases corresponds a requirement for illegal strings: either SN7 = 0 (illegal state) or L T >_ 1 
(non-empty stack). 

From the above analysis for analog values ofSNs T the expression H=-.SNsr-Lrcould be 
considered as a continuous measure of  how well both of  the two conditions SNs I" = 1 and 
LT=0 are satisfied. The desired value for legal suing is H=I and for illegal strings H_<0. 
This H function also provides a simple test measure for new input suing strings. After train- 
ing we will use the same measure H=-.SNs1"-L T to test the generalization capability of the 
NNPDA on unseen input strings. The measure H will be evaluated for each input suing. A 
suing is classified as legal if H>.5,  otherwise illegal. 

Another criterion to assist learning is the "trap state," one of the "hints" used by 
[Das93]. This "trap state" is used in training the non-trivial Palindrome grammar; details 
are discussed in Section W. 

3.5 Trainiug Algorithm 

The training algorithm is derived by minimizing the error function using a gradient de- 
scent optimization method. There are currently two ways to implement gradient descent 
optimization in recurrent neural networks: the chain-rule differentiation can be propagated 
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forward or backward in time. The forward propagation method is also known as Real Time 
Recurrent Learning (RTRL) [Williams89], which propagates a sensitivity matrix forward 
in time until the end of an input sequence. Then, error correction is performed and the 
weights are modified according to the error message and the sensitivity matrix. Back-prop- 
agation-through-time [Williams95] can be applied to recurrent network training by 
unfolding the time sequence of mappings into a multilayer feed-forward net, each layer 
with identical weights. This method requires memorizing the state history of input se- 
quence and, whenever the error is found, the error must be propagated backward in time to 
the starting point. Due to the nature of  the backward path, it is an off-line method. In prin- 
ciple, both methods can be generalized to couple the external stack memory with recurrent 
neural network and train the NNPDA. RTRL is desirable for on-line training because the 
weights can be modified immediately after the error is detected without waiting for back-- 
propagation. But it has a complexity of O(N 4) compared to the complexity of O(N 3) for 
back-propagation through time (1'4 is the number of neurons and first order connection 
weights are assumed). For the task of grammatical inference, on-line training is not neces- 
sary because error messages are only given at the end of input strings. But, since the 
derivation of forward propagation algorithm is more straightforward for NNPDA, we first 
consider the generalization of RTRL for training the NNPDA. 

From Eqs.(10) and (16), the weight correction for gradient descent learning becomes 

, , , , :  - ,  (a,-.+ '+ +,,,0"+', 
kc3w b - f f )  ' 

(17) 

where 11 is the learning rate and the partial derivatives of L r and SrNs with respect to 
weight matrix W can be calculated recursively. The formula for aLtlaW is easily derived 
from Eq.(14) 

aL t+t aL t aA t 
- t. - -  (18) 

aw aw aw 

The reeursions for astl a w  and OAt/aw are found by differentiating the controller dy- 
namical equations. For example the second-order connection weights of Eq.(5) yield 

a ,  = ,,,.(sl.> 

(19) 

-- Y-, 

It should be noticed that Eq.(19) is an abbreviation of four equations fol~St+li,/aWSijk, 
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aS t+ I i, / a Wajk, am t+ l [ a WSijk and aA t+ l i a VCajk . For simplicity the notations of S t and A t are 
combined into one equation. The (Ns+ 1)th component of  vector S t is A t. The function hi(x) 
represents derivatives g'(x) for i = I  to N s and f (x )  for i = Ns+ I. B a and W ~ are similarly 
combined such that WUt represents W/jr s for i=l to N s and 14~t a for i=Ns+l. (Note the as- 
sumption that NA=I and NR=Nt). The learning algorithm formulas for the third order state 
transition and "full order" action mapping are presented in Appendix B. 

From these recursions and knowing the initial conditions of as~ OA~ their 
values at a later time can be evaluated by Eq.(19). But, the recursion is not complete until 
aRt+llaw is expressed in terms of  astlaW, aAtlaW and aRtlaW. This relation may not be 
easy to find, since the stack reading is a highly nonlinear function of all the previous actions 
and input symbols, as shown in E,q.(4), Rt=F(A l, A 2 ..... At; I 1,12 . . . . .  It). The approximate 
recursive relation for aR t+llaW can be derived (for details see Appendix A). To the lowest 
order in its expansion, we have (from the derivation in Appendix A) 

aR~, a a '  

awi~ k = (sk, ~ - 8k,4) awi~ ~ , 
(20) 

where rl t and !"2 t are the ordinal numbers of  neurons that represent the top and the bot- 
tom symbols respectively in the reading R t. Consider for example the case where after the 
execution of the action A t, the stack is (from bottom to top): (0, 0.9, 0), (.2, 0, 0), (0, .7, 0) 
and (0, 0, .15). Then rlt=3 and r2t=l, because the symbol (0, 0, .15) on the top is the third 
symbol and the symbol (.2, 0, 0) on the bottom of R t is the fh'st one. 

The complete recursive equations Eqs.(18), (19) and (20), together with the NNPDA 
dynamical equations can be forward propagated with initial conditions aS~ 
aAolaw---o and aR~ The initial values of  A ~ and R ~ are zero and the initial state S O 
could be assigned any constant. At the end of  the input string, the weight correction Eq.(17) 
is evaluated. The final weight correction can be performed using either batch or stochastic 
learning. 

However, there is the case o f  "pop empty stack." If  the total length of the remaining 
symbols in the stack is less than the value of  a pop action (Lt'l<lAtl), a "pop empty stack'" 
occurs. For a well designed conventional pushdown automata "pop empty stack" never oc- 
curs. But, in learning a PDA, whether with a NNPDA or another method, such an action 
seems almost inevitable. We devise two possible ways to deal with this case. First, the input 
sequence can be interrupted whenever a "pop empty stack" occurs and weight corrections 
are made to increase the stack length (AW - aLtlaW). And, second, when we have "pop 
empty stack" and the input string is illegal, no weight correction is made. Conversely, 
weight corrections are made for legal input strings. 

3.6 Extraction of PDA from a Tra ined  NNPDA 

There has been a great deal of  work on extracting symbolic representations from 
trained networks [Casey96, Frasconi95, Giles92a, Omlin96b, Pollack91, Shavlik94, Tick- 
le]. The interest here is can we extract from the trained NNPDA a useful reprensentation of 
what the NNPDA has learned. 
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After training with examples of  a context free grammar, the NNPDA in general could 
recognize correctly the training set up to a certain length of strings. But, because of the an- 
alog nature of NNPDA, the recognition results are not "correct" in a symbolic sense. The 
final state output are analog values between 0 and 1, which are usually reduced to the binary 
values of 0 and 1 by a threshold of  0.5. But, analog errors from intermediate states still exist 
and could accumulate as the input strings become longer. To extract from the trained NNP- 
DA a PDA which represents the underlying CFG, we devise a quantization procedure that 
converts an analog NNPDA to a discrete PDA. To simplify the state structure of the extract- 
ed discrete PDA, a minimization procedure for the PDA must be devised. 

The quantization can be performed as follows. First, the action neuron(s) is quantized 
into three discrete values: -1, 0 and 1 according to the rule 

0, if (IAI <.4") 
f 

A = ~-1, if (A<-A*)  , (21) 
t 1, if (A>A*)  

where the threshold A* was chosen to be 0.5 for most of our numerical simulations 
(However, our experience indicates that the quantization results do not seem sensitive to 
the selection of A* values and other values besides 0.5 could be used). In this way the con- 
tinuous stack will behave like a discrete stack and generate the discrete actions: push, no-op 
and pop actions. Next we perform a cluster analysis of the internal states. All input strings 
that have been recognized correctly are fed into the trained NNPDA and a set of analog in- 
ternal states is generated. This set is divided into several clusters using a standardK-mean 
clustering algorithm [Duda73]. The number of  clusters K is determined by minimizing the 
averaged distance from each state to its cluster center (in case the clusters are not well sep- 
arated more training with these strings may be needed). After the cluster analysis store the 
cluster centers as the representative points of  quantized internal states, then a PDA with dis- 
crete states is created and the number of  states is equal to the number of clusters. During 
further testing, each analog internal state is quantized to its nearest cluster representative 
points and the discrete transition rules can be extracted. Now construct a transition diagram 
and this is the extracted PDA. It should be noted that other extraction methods have been 
demonstrated [Das94, Tino95]. 

In some cases, instead of  quantizing the whole state vectors, quantizing each of the 
state neurons is also useful. If  the state neuron's output is distributed near their saturation 
values (0 or 1), a binary quantization is natural, i.e. Sti is quantized to one ifSti > 0.5 and 
zero otherwise. If the state neural activity is uniformly distributed, more quantization levels 
are needed. The quantized NNPDA is tested with training or test strings again. If the rec- 
ognition is incorrect, a finer re-quantization is needed (see [Giles92a, Casey96] for a 
discussion of a similar method for FSA extraction for trained NNFSA). 

When a linear "full order" mapping is used for the action output (linear "full order" 
mapping is the linear form of Eq.(8)), then the quantization rule of Eq.(21) can be replaced 
by quantizing the connection weights by: 
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0, if (l l_<w f 
W ~ = ~-1, if ( W ~ < - W * ) ,  (22) 

L 
1, if ( I ~ > W * )  

where W ~ are the connection weights for action output and W* is the threshold. For de- 
tails, see the numerical simulation for learning the Palindrome grammar. 

After extraction of the discrete PDA, we reduce the state structure by pruning equiva- 
lent states. It is known that, in general, there exists no minimization algofi .thin (as for FSAs) 
for obtaining the unique minimal PDA; and that there exists no algorithm to tell whether or 
not two context flee grammars or the two PDAs which accept two context free grammars 
are equivalent [Hopcroft79]. But, for a given specific structure of a PDA, the minimal size 
can be obtained by exhaustive search. For instance, assume a specific swacture of a deter- 
ministic PDA, which pushes and pops only one symbol per input and the stack symbols are 
the same as input symbols. For this type of  PDA each state transition can be characterized 
by a three-tuple condition ( ~  [3,T), where r is input symbol, [3 is stack reading symbol and 
y=1, -1, 0 represents push, pop and no-op. I f  we consider each combination of ~ , y )  as 
an equivalent input symbol of a regular grammar, the extracted PDA transition diagram is 
equivalent to a finite state automaton transition diagram where a transition occurs each time 
a "symbol" (r is seen, Thus, the minimization algorithm for FSA can also be effec- 
tively used to reduce the extracted PDA. For detailed examples, see the next section. 

4 Numerical Simulations of Grammar Learning 

To illustrate the learning capabilities of  the NNPDA, we train the NNPDA on a finite 
number of positive and negative strings o f  three context-free grammars. Different types of 
NNFDA and training procedures arc discussed for each particular problem set. For all prob- 
lems the external stack of the NNPDA is initially empty. All simulations were performed 
with 64 bit, double precision. For training we started with short strings and gradually in- 
creased the string length [Elman91a]. For some simulations only 5 significant figures arc 
presented. 

4.1 Balanced Parenthesis G r a m m a r  

We train a second-order NNPDA to correctly recognize a given sequence of "bal- 
anced" parentheses. Input sequences consist of  two input symbols '( '  and ') '  and an end 
symbol 'e ' .  Unary input representations are used with three input neurons, where (1,0,0), 
(0,I,0) and (0,0,1) represent respectively ' ( ' ,  ' ) ' ,  and 'e' .  The stack action is controlled by 
one action neuron A t . T h e  number o f  state neurons is chosen empirically to be three, since 
the correct PDA controller is known to be a two state machine. The initial state is (1, 0, 0). 
At the end of the input string the value of  third state neuron S 3 is checked. During training, 
the target value of S 3 is 1.0 for legal strings and 0.0 for illegal strings. 
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start 

(0, ~, . ~ 0 , ~ , - 1 )  

Quantized states: 

(T)  = (1, O, O) 

( ~ ) =  (1., .25, .25) 

0 =  (1, .25, .25) 

( ~ ) =  (.75, .25, .75) 

Fig.7 The pushdown automaton (PDA) extracted from the NNPDA after the balance, 
parenthesis grammar was learned. The discrete states (1), (2), (3) and (4) are obtained bl 
quantizing the numerical values of state neurons into five levels: 0, .25, .5, .75, and 1. Stat. 
(1) is start state. State (4) is the legal end state. Just before the end symbol, a legal strin. 
must end at state (2) with an empty stack. 

The training set consists of fifty strings: all thirty possible strings up to length four and 
twenty randomly selected longer swings up to length eight. The training criterion and algo- 
rithm (RTRL) are the same as described in Sections 3.4-5. For each mn the initial weights 
are randomly chosen from the interval [-I,1]. For 5 different runs approximately one hun- 
dred training epochs are needed for the NNPDA to converge, i.e. learn the entire training 
set. To speed up training, we introduce the empirical condition that the input sequence is 
stopped and the stack length is reduced (AW- - ~LtlOW) if a "pop empty stacl(' occurs dur- 
ing input of an illegal string. In this case, after only twenty epochs of training, the training 
set is learned. During testing, all the strings up to length twenty can be correctly recognized 
(totally 221 strings). The acceptance criterion is discussed in Section 3.4. Due to analog er- 
ror accumulation, longer strings could not be correctly recognized. To extract a discrete 
PDA the state neuron activation [0, 1] is quantized into five segments: (0, 0.125), (0.125, 
0.375), (0.375, 0.625), (0.625, 0.875), (0.8755, 1) or five discrete values:S/= 0, 0.25, 0.5, 
0.75 and 1.0, each corresponding to one segment. After quantization, the analog NNPDA 
becomes a discrete PDA. To check its performance, randomly chosen longer strings (length 
50 to 100) were tested. All strings incorrectly classified by the analog NNPDA were now 
correctly recognized by the discrete PDA. 

The transition diagram is extracted by tracing all possible paths of state transition nu- 
mericaUy. This is easily done using a tree search method. Denote each node of the tree as 
a combination of state and stack reading. Starting from the root node, the initial state and 
empty stack, input all possible symbols at each node and trace the path of each symbol by 
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calculating the next time state, stack reading and stack operation in terms of quantized 
NNPDA. Each time a new node is calculated, this node is checked to see if it has already 
been created in the previous level of  the tree. If  it is not, create this node and construct a 
transition line from the old node to the new node. Label the stack operation for this transi- 
tion. Repeat this procedure at the new node until no additional new node occurs. The result 
of the tree structure can be translated to a transition diagram with each state as a node. As 
shown in Fig.7, each circle represents one quantized neural state and the arrows represent 
the state transitions. The notation (a,b,c) in Fig.7 represents a transition that occurs when 
the input symbol is/ t= 'a ' ,  the stack reading Rt= 'b '  and action neuron output is At=c. The 
two parentheses ' ( '  and ' ) '  are denoted by '1 '  and '0 '  and an empty stackreading by 1~'. It 
is seen from Fig.7 that when a "1' is presented to the NNPDA, a '1 '  is pushed onto the stack 
(due to rules (l,(l),l) and (1,1,1)). l.fa '0 '  is presented to the NNPDA, a ' I '  is popped from 
the stack (due to (0,1,-1)). Whenever a '0 '  is presented and the stack is empty, the "pop 
empty stack" occurs. An input string will be classified as legal if, just before the presenta- 
tion of the end symbol, the PDA is at state 2 and the stack is empty. Otherwise the input 
suing is illegal, i.e. either "pop empty stack" occurs or the stack is not empty).This is in- 
deed the desired PDA. In addition to the start state (state 1), only one state (state 2) is 
needed. States 3 and 4 are only needed to check if the stack is empty at the end of string. 

4.2 The lnO n grammar.  

The language of  the ln0 * grammar is a subset of  the parenthesis grammar. The ln0 n 
PDA needs at least 2 internal states in order to filter out the strings legal for the balanced 
parenthesis grammar but illegal for the ln0 n grammar [Hopcroft79]. The neural controller 
we used to learn the ln0 n grammar had 5 state neurons. 

A small training set, 27 short strings with 12 legal and 15 illegal strings shown below 
was initially used for training: 

nl, nl I, nl000 y1100, nlO11, y l0 ,  yl0,  y1100, n110010, yl0, 
n0,nl00, n 1111, y l  1110000, n1101, yl0,  yl0,  y 1 I00, n110100, 
n00, nl001, nl 1 I0, y l  111100000, yl0,  y1100, nl01 I00, nl010, 

where the letter 'n '  and ' y '  in front of  the strings denote the classifications "no" and 
"yes". The ln0 n grammar contains very few legal strings; among 2 L strings of length L 
there is only one legal suing 1 I...100...0. Hence, the training set replicates some of the short 
legal strings "10" and "1100" between illegal strings in order to give balanced training set. 
For this example, the empirical rules (or "hint") of  "pop empty stack" or "dead state" are 
not used. Whenever a negative stack length appears, we stop and modify the weights to in- 
crease the stack length L t ( A W -  ~Ltl'OW). This is equivalent to increasing the "push" action 
value A t tO avoid "pop empty stack". 

After 100 training epochs, the NNPDA correctly classified the training set and was 
tested on unseen strings. Up to length eight, all strings are classified correctly except the 
following six strings: 

n11000, n1100100, nO1110000, nl0101000, n11011000, n11001100. 

These strings are then added to the training set and the NNPDA is retrained for another 
100 epochs. Testing found 8 errors for all strings up to length nine. The misclassified 
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strings are again added to the training set. After repeating this procedure five times, the 
trained NNPDA correctly classified all 2,097,150 strings up to length twenty and 20 ran- 
domly chosen strings up to length 160. 

To analyze the learned NNPDA, the state neurons are quantized into two levels: 0 (if 
S=<0.5) and 1 (otherwise), and the action neuron is quantized into three levels: -1, 0 and 1 
as before. Starting from the initial state (1,0,0,0,0) and empty stack, all possible state tran- 
sitions could be identified by inputting different strings. The resultant transition diagram is 
shown in Fig.8, where six binary states: (1,0,0,0,0), (1,0,0,0,1), (0,0,0,0,1), (1,1,1,1,I), 
(0,0,0,1,1) and (1,0,1,1,1) were found to form a close loop for any input strings of '0 '  and 
' 1'. For clarity, the transitions for inputting an end symbol are not shown. Without end sym- 
bol, the state (1,1,1,1,1) is the desired final state for legal strings. All other states are illegal 
final states. This is because that starting from (1,1,1,1,1) with an empty stack, an end sym- 
bol input will lead to state (0,0,0,0,1). But, in all other cases (either starting from state 
(1,1,1,1,1) with non-empty stack or starting from other states) an end symbol input will lead 
to an illegal final state (*,*,*,*,0), a state with last neuron activity being zero. 

(o, ~ ,  1)  . . . . . . . . . . . . . . . . . . . . . . . .  

/1 / ' ,  ; + i 
' / o / :  

t . 
. . . . . . . . . . . . . . . . . . .  51goi 

Cl, 1, 1 ) (  ~ ( 1 ~ ,  1) r i l ,  1, 1) -~1" 

f . . . . . . .  r . . . . . . . .  . * _ i  I I I  

/o / i  I I I  
il Iolcl, l , t ) lgl i  co,1,1  III 

i N . / i l  I , 1  �9 ; . . . . .  I I  

(1, O, 1) 

Fig.8 The state transition diagram extracted from the trained NNPDA where the 
training examples were from the context-free grammar ln0 n. In the figure, each five-- 
component column vector represents a state of  the PDA which is obtained by quantizing 
each of the state neurons to the binary values: 0 and 1. 

The state transition diagram of  the extracted PDA can be reduced using procedures 
previously discussed. The reduced transition diagram is shown in Fig.9, where the states 1, 
2, 3 and 4 represent the quantized states (1,0,0,0,0), (1,0,0,0,I), the combination of states 
{(1,1,1,I,1), (1,0,1,1,1)} and the combination {(0,0,0,0,1), (0,0,0,1,1)} respectively. In the 
reduced diagram, state 3 is the desired final state. Recall that acceptance of a legal string 
requires both a desired final state and an empty stack. 
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(o, ~, 1) 

I (o,,,-,) 

(o, 1, 

(1, 1, 1) [ ,W-j~' 

Fig.9 The reduced PDA transition diagram of  the la0 n grammar. This diagram is ob- 
tained by grouping together the equivalent states in Fig.8 and assigning one representation 
to each state group, where the states 1, 2, 3 and 4 represent respectively the quantized states 
(1,0,0,0,0), (I,0,0,0,1), the combination {(1,1,1,1,1), (1,0,1,I,1)] and the combination 
{(0,0,0,0,1), (0,0,0,1,1)}. 

4-3 Palindrome g ram m a r  

The language of the deterministic Palindrome grammar contains all strings in the form 
of WcW', where W represents an arbitrary string of  given symbols (here, we use two sym- 
bols 'a '  and 'b'), W" is the reversed order of  W, and 'c '  is an additional symbol to mark the 
boundary symbol between W and W'. For example, strings "abaaabbcbbaaaba" or "bbabba- 
cabbabb" are legal. 

The minimal (to our knowledge) palindrome PDA is shown in Fig. 10. Starting with 
state (1), every input symbol 'a '  or "b' is pushed onto the stack and the PDA remains in 
state (1). After an input symbol 'c" the PDA moves to state (2). When in state (2) the PDA 
pops every stack symbols if the stack reading ( 'a '  or 'b ' )  matches the input symbol; other- 
wise it moves to a trap state. The input string is classified as legal only if the PDA ends at 
state (2) with empty stack. In this example no end symbol is used. 

This grammar has been found difficult to learn [Das92]. In our numerical simulations, 
both second order and third order nets were not able to learn a correct PDA for palindrome 
grammar. Two major difficulties were found. Fast, we lack sufficient information to super- 
vise the stack actions for illegal su-ings. In most simulations the NNPDA did not learn to 
push correctly every symbol into the stack for illegal strings like "ab" and "babbaa" since 
it was not told what should be the target stack length during training. After seeing 'c '  as in 
strings "abcba" (legal) or "babaacaab" and "babaacabb" (both illegal), the NNPDA is sup- 
posed to compare input symbols with stack readings and perform a pop if they match. But, 
since those symbols before 'c '  were not stored in the stack as discrete symbols, the NNPDA 
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could not compare the right stack symbols with input and perform the correct pops. Al- 
though, in learning the balanced parenthesis grammar a NNPDA had been able to learn a 
correct pop, this is a different level of stack operation. Comparing the two transition dia- 
grams in Figs.7 and I0, it can be found that the palindrome grammar involves a more 
sophisticated level of stack manipulations than those in the balanced parenthesis grammar 
PDA. The stack of balanced parenthesis grammar is in fact only a counter. As shown in 
Fig.7, all the state transitions and stack actions can be decided totally by the combination 
of input symbol and current state, they do not really depend on the contents the stack is 
reading. (In this sense, only a second order correlation is needed.) But, the stack actions for 
the palindrome grammar require a third order correlation and actual dependence on the 
stack contents. 

The second problem is the limitation of neural network structures. [Das92] shows that 
second and third order neural network structures are not able to learn certain grammars 
without "hints." Moreover, our simulations show that even with hints using second and 
third order networks, the palindrome grammar cannot be learned. The limitation of the neu- 
ral network structure for learning the palindrome is now discussed. For example, the 
Palindrome grammar requires the action rules (a, a, 1) before seeing 'c '  and (a, a, -1) after 
seeing 'c ' .  For these two rules, the input and the stack reading are the same but the action 
is different: one is push and the other is pop. So, according to the third order dynamics, the 
stack actions could be written A =3~W-S + O) where the summation over input symbols and 
stack readings for these two cases have already been performed and W is the result of the 
"equivalent weights". The problem becomes one of leaxning the weightsW and O such that 
A=I for one set of states {$1} (before seeing 'c ' )  and A=-I for another set of states {$2} 
(after seeing 'c'). Clearly, two arbitrary sets of state vectors may not be linearly separable 
unless they all have a unary representation (or mutually orthogonal in general). (This is the 
assumption for justifying the usefulness of third order networks.) However, during learning 
the numerical neural states most likely to occur are neither unary nor mutually orthogonal. 
To overcome this problem we introduced the idea of a"full order" linear net for stack action 
mapping. 

~, *, 1) (a, a, -1) 
,* ,1 )  ~ )  (*, . ,  1 ~  

start  ~ . ~ /  (c, *, O) (cx, [3, 1) 

final state trap state 

Fig.10 The simplest PDA transition diagram for palindrome grammar, where r and 
I] represent any combinations of input symbols and stack readings other than (a, a) and (b, 
b). 

(1). Full Third-order Network Structure. 

The third order connection weights for state dynamics as in Eq.(5) are used, and the 
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stack action is governed by a linear "full order" mapping. The parameters are: (i) number 
of state neurons Ns=4, (Equivalent to the number of  binary states = 16); (ii) Number of in- 
put symbol N1=3, number of  stack reading symbols NR=4. Three input neurons for symbols 
'a ' ,  'b '  and 'c '  (no end symbol) and an additional neuron is introduced to represent the emp- 
ty stack. This is necessary to supervise the learning to avoid the "empty stack" situation. 
(iii) One action neuron, NA=I. In this case, the state transition weights as in Eq.(5) are a 
four-dimensional matrix W~[4] [4] [4][3] and the stack action weights are a three-dimension- 
al matrix Wa[16][4][3]. The dynamics of  the neural controller are 

Sti +1 = g Wijkt( SjRkll) + Osi 
~=ik=il=l 

2xs ~V~, ~V, 

At+I = Z Z Z W~j,, (p~RtJD 
J = 1 k-- I t = I , (23) 

where the nonlinear function3'(x) in Eq.(8) has been replaced by a linear function f(x) 
= x and the extended state vector Pj is defined as 

~s 

P~ = H ($mS~+ (1 -S in )  (1 -St,,)).  (24) 
m = l  

In Eq.(24), the symbol Sra inside the product represents the binary values of 0 and 1, 
which are determined by the rant bit of  the binary number (J-l). For example, if J-1 = 10, 
its binary form is 1010, which sets Sin: 51=1, $2 --0, $3 =1 and ~--0. The summation of all 
components of the extended state Pj is equal to one, i.e. 

2xs 

~ P ~ ,  = 1, (25) 
1 = 1  

where Pc can be interpreted as the probability for a NNPDA to be in each of the 2 A's 
binary states. To guarantee that the action output be in the range: -l<_.At<I, the stack action 
weights are truncated to the range -1< Wa<l. 

It can be seen that Eq.(25) plus the truncation of  ~ to [-1, 1] will automatically guar- 
antee the action output in Eq.(23) to be within the range -l<_At+l<l. Later, upon 
performing the post-learning quantization of  14 ~ to three levels: -1, 0 and 1, each of the ac- 
tion weights Vr ~ will represent an action rule, which were used in Figs.7- 10. For example, 
wa[3][2][1] = -1 means that, starting from the third binary state, e.g. (0,0,1,0), if the input 
symbol is the first one, e.g. 0, and the stack reading is the second one, e.g. 1, the stack action 
will be a pop, i.e. a rule (0, 1, -1) marked besides the transition arrow from state (0,0,1,0) 
to the other state. 
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(2) Learning Criterion. 

Some modifications have been made to the learning objective function previously dis- 
cussed in Section 3.4. Both state and stack length are used to discriminate the legal and 
illegal strings. But, instead of using the usual desired final state and non-desired final state, 
we introduce the "trap state" and "non-trap state" to discriminate the "potentially legal 
string" and "definitely illegal string" [Das93]. Input strings "abbbacbab", "abbbacbbaba- 
baaab' ,  . . . .  can now be classified before seeing the end of the string. This is because 
whenever symbol 'b '  occurs after ' c ' ,  an ' a '  in front of  a 'c '  is not matched and siring is 
illegal irrespective of  the remaining symbols. In that case, we force the NNPDA to go to 
the "trap state" and stop further learning. This requires prior knowledge ~aout the underly- 
hag language in order to successfully supervise training. Here, we assigned the last state 
neuron to be 0 for the "trap state" and 1 for the "non-trap state". For input strings not 
trapped into the "trap state," training is as usual. The weight updates become 

= - S ) ~ - ~  + ( L *  - L t) , ( 2 6 )  

where S* and L* are the target values of  state and stack length. The target state is de- 
termined by the "trap state" or "non-trap state", and the target stack length is zero for a legal 
string. Since the target stack length for an illegal string is not known, a small driving force 
is used empirically to slightly increase the stack length for all illegal strings ending at a 
"non-trap state", i.e., L * - L  t = 0.1 if Lt->0.9 and L*= 1 if Lt<0.9. This error supervision is 
based on the following. Although the exact length of an illegal string is not known, it must 
be greater than or equal to one if the string ends up at a "non-trap state". For illegal strings 
ending at a "trap state", the stack length is unaffected. 

(3)Trainin~ Set. 

Two training sets are used. The first training set includes all 39 strings up to length 
three. The second contains 363 strings up to length five. Since the number of legal strings 
is much smaller than the illegal strings, the training set is balanced by adding all four legal 
strings up to length five to the first training set and all eight legal strings up to length seven 
to the second training set. In each training set the legal and illegal strings are put in two sep- 
arate groups. During training, we present a legal string between every five illegal strings 
and make the learning rate for legal strings five times larger than that of illegal strings. Each 
training set was trained for 200 epochs. 

(4)Training Algorithm. 

The RTRL learning algorithm is generalized to the dynamics of Eqs.(23) to (26) which 
can be derived from the "chain rule" and forward propagating the error rate. Details are list- 
ed in Appendix B. 

(5) Training Simulations. 

The t'trst training set described above was used to train the NNPDA for 200 epochs. 
Then, the second training set was used for another 200 epochs. The "averaged classification 
error" for each training set was monitored during training. After a total 400 epochs of train- 
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ing, it converged to - 0.06. At  the end of  each string the error is determined by 

---- (S* --S~s) 2+ (L* - L r )  2 (27) 

The values of S* and L* are specified as before. The only difference from before is that 
for illegal strings the error (L* - L T) is set to zero if  L T is already greater than one. 

The trained NNPDA is tested on  new input strings. In testing the "trap state" monitor 
is not used to stop any sequence. The classifications criterion is: LEGAL ifboth STs >0.5 
andL T< 0.5; ILLEGAL otherwise. The  29,523 test strings include all possible strings con- 
structed with symbol ' a ' ,  ' b '  and ' c '  up to length nine. [The following results are given for 
5 significant figures, though 64bit  f loating point  double precision was used.] The test result 
shows only four errors: three legal str ings "ababcbaba" (sT~-0 .9898,  Lr=1.0776), "abba- 
cabba" (STu~-0.9973, LT---0.7301) and "bbbacabbb" (sT~--0.9994, LT---0.5302) are 
classified as illegal because LT>0.5 and one illegal string "abcbbbcbb" (STNs---0.9744, 
LT--0.4543) is classified as legal because ST s > 0 .5  and Lr<0.5To illustrate the inner work- 
ings of  the NNPDA for classification after training, consider the examples in Table 1, 
strings "acabc", "bacab" and "bacba".  The processing status at each time step is displayed 
using the data listed in the five columns.  For  all the cases, the initial neural state is (1, 0, 0, 
0) and the initial stack reading is "empty  stack". At each time step the first, second, third, 
fourth and fifth columns are the input  symbol,  the four-dimensional neural states t , the ac- 
tion neuron outputA t, and the stack segment  length and symbol, respectively. For example, 
the combination of (1.0000, 0.1323) in the fourth column and (a, c) in the fifth column rep- 
resent a stack configuration: symbols  ' a '  at the bottom with length = 1.0000 and 'c '  at the 
top with length = 0.1323. 

Input string = "acabe", final stack length -- 1.8805 > 0.5 -> classification Illegal. 
input state 

a (0.0079, 0.9952, 0.0160, 0.9580) 
c (0.0010, 0.0162, 0.9994, 0.9599) 
a (0.0026, 0.9982, 0.9971, 0.9995) 
b (0.2055, 0.9749, 0.6775, 0.0003) 
c (0.0030, 0.9977, 0.4301, 0.9684) 

a~loll 
1.00(30 
0.1323 

- 0.9869 
0.7667 
0.9684 

stack segment lengths stack symbols 
(1.0000) ( a ) 
(1.00130, 0.1323) ( a, c ) 
(0.1454) ( a ) 
(0.1454, 0.7667) ( a, b ) 
(0.1454, 0.7667, 0.9584) ( a, b, e ) 

Table la.  

Tables la-c. A demonstration of the step by step working process of the trained NNPDA. The three ex- 
ample strings are "acaba", "abeba" and "abcab'. The state of the NNPDA at each time step is displayed in each 
row using the data listed in the five columns. For all the cases, the initial neural state is (1, 0, 0, 0) and the 
initial stack reading is "empty stack". The first column is the input symbol, the second is the output of internal 
neural state St represented as a four-dimensional vector, the third one is the action neuron output At, and the 
fourth and fifth ate the stack status at each time step. The actual accuracy of the calculation was 64bit double-- 
precision, but only 5 significant figures are shown. 

See the first example in Table  la .  The whole string is an illegal pattern "acabc", but 
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the first three symbol consists of a legal string "aca". When "aca" is fed in, the trained NNP- 
DA first pushes 'a '  with length 1.00130 into the stack, then pushes again the second input 
symbol 'c '  with length 0.,1323 and finally po.,ps the stack with total length 0.9869. In the 
stack remains a symbol 'a with final length L '  = 0.1454(<0.5). The internal state varies and 
reaches a final state such that neuron ST~--0.9995(>0.5). Therefore, the string "aca" is clas- 
sifted as le4$al (STs>0.5 and LT<0.5). Notice that all three states are a "non-trap state" 
(because S'/vs > 0.95 for all cases). But, when an additional symbol 'b '  is read, the state 
changed to a "trap state" indicating that "acac" is an illegal string. During the training we 
ignored the rest of  the sequence and concluded that no matter what the next symbol, the 
entire string would be illegal. But, in the test sequence, the "trap state" monitor is not used 
and classification of  any strings will be decided at the end of each string. After feeding in 
another symbol 'c ' ,  the state becomes a "non-trap state" (not a desired state). But due to 
training, the stack actions in the last two steps become pushes and the final stack length/s 
LT=1.8805>0.5, classifying the entire string as illegal. 

In Table lb, the trained NNPDA deals with a legal string "bacab" nearly perfectly. The 
controller first pushes 'b '  and 'a" onto the stack and then moves to a special state (0.0030, 
0.1921, 0.9995, 0.9990) after seeing ' c '  (but does not push much of 'c '  into the stack since 
0.0625 is a tolerable error). It pops "a' and 'b '  out of  the stack when the input symbol 
matches the stack readings. Concurrently, the state remains in the "non-trap state" as de- 
sired. 

Input string = "bacab", final state -- 0.9993 > 0.5, final stack length = 0.0318 < 0.5 -> classification Legal. 

[input state acuon 

b (0.9183, 0.0831, 0.9777, 0.9708) 1.0000 

�9 'a (0.9934, 0.9875, O. 1103, 0.9999) 0.9540 
c (0.0030, 0.1921, 0.9995, 0.9990) 0.0625 

a (0.0021, 0.9989, 0.9961, 0.9998) - 0.9989 
b (0.0031, 0.9089, 0.9994, 0.9993) - 0.9858 

stack segment lengths stack symbols 

(I.OOOO) ( b ) 
(1.0000, 0.9540) ( b, a ) 

(1.0000, 0.9540, 0.0625) ( b, a, c ) 
(1.0000, 0.0176) ( b, a ) 
(0.0318) ( b ) 

Table lb. 

The Table lc shows what happens if we reverse the order of last two symbols 'a '  and 
'b '  in the last example. Again, the trained NNPDA behaves nearly perfectly. When the 
fourth symbol 'b '  is fed in, the stack reading is almost a complete 'a'  (a combination of 'c '  
with length 0.0625 and 'a '  with length 0.9375). Since the input 'b '  does not match the stack 
reading 'a ' ,  the NNPDA enters a "trap state" and the string "bacb" is classified as illegal. 
Furthermore, if another symbol 'a '  is seen, the NNPDA moves to another "trap state". So, 
"hacba" is still illegal. Concurrently, the stack actions generated from the "trap state" are 
all pushes. These increase the stack length so that the classification is "far" from legal. 

Although the classifications for these three examples are all correct, in the sense of a 
correct discrete PDA, there are still some numerical errors. These numerical errors will ac- 
cumulate over time and possibly misclassify an input string that is too long. One of the four 
incorrect classifications in our test result, the string "ababcbaba", is illustrated in Table 2, 
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Input string = "bacba", final state = 0.0054 < 0.5, final stack length = 3.6539 > 0.5 -> classification Illegal. 
input Internal state action 

b (0.9183, 0.0831, 0.9777, 0.9708) 1.0000 
a (0.9934, 0.9875, O.1103, 0.9999) 0.9540 
c (0.0030, 0.1921, 0.9995, 0.9990) 0.0625 
b (0.2890, 0.9472, 0.9021, 0.0260) 0.6850 
a (0.0190, 0.99602, 0.4490, 0.0054) 0.9524 

stack segment lengths stack symbols 
(1.0000) ( b ) 
(1.0000, 0.9540) ( b, a ) 

(1.0000, 0.9540~ 0.0625) 
(1.0000, 0.9540, 0.0625, 0.6850) 

1.0000, 0.9540, 0.0625, 0.6850, 0.9524) 

(b,a,c) 
(b ,a , c ,b )  
(b,a, c, b, a) 

Table  lc .  

where the general behav io r  o f  the  l ea rned  N N P D A  is the same as that  of  a discrete PDA. 

But, due to the accumula t ion  o f  numer i ca l  errors ,  at t =7 when  the input  symbol  is ' a ' ,  the 

NNPDA reads not  a comple te  ' a '  in  the stack. Instead,  i t  reads with depth unity an ' a '  with 

length 0.6467 and a ' b '  wi th  l eng th  0 .3533.  Therefore ,  the action output  is not a full "pop" 
but a "pop"  with l eng th  0.2757. Thus ,  accumula ted  final stack length is 1.0776 > 0.5 and 
the string is classif ied as illegal. 

Input string = "ababcbaba", final stack length = 1.0776 > 0.5 -> classification Illegal. 
input lntcraal state 

a (0.0077, 0.9952, 0.0160, 0.9580) 

b (0.9855, 0.9364, 0.9868, 0.9784) 
a (0.9627, 0.9961, 0.1055, 0.9811) 
b (0.9987, 0.8105, 0.9719, 0.9995) 
c (0.0002, 1.0000, 0.0239, 0.9992) 

b (0.0053, 0.9977, 0.9881, 0.9996) 
a (0.0016, 0.9996, 0.9209, 0.9993) 

b (0.0246, 0.9377, 0.9986, 0.9937) 
a (0.0128, 0.9994, 0.7910, 0.9898) 

action 

1.0000 

0.9716 
0.9936 (1.0000, 0.9716, 0.9936) 
0.9932 (1.0000, 0.9716, 0.9936, 0.9932) 
0.0810 (1.00(30, 0.9716, 0.9936, 0.9932, 0.0810) 

- 0.9981 (1.0000, 0.9716, 0.9936, 0.0761) 

- 0.8207 (1.0000, 0.9716, 0.2491) 
- 0.8674 (1.0000, 0.3533) 

- 0.2757 (1.0000, 0.0776) 

stack segment lengths stack symbols 
( 1.00(30) ( a ) 
(1.0000, 0.9716) ( a, b ) 

( a ,b , a )  
(a, b ,a ,b)  
(a, b, a, b ,c)  

(a,b,a, b)  
( a ,b , a )  
( a , b )  
( a , b )  

Tab le  2 

Table 2. The step by step operations of a numerically trained NNPDA for the example string "ababcbaba". 

The general behavior of the analog NNPDA is correct. But, due to the cumulated numerical round-off error, the 
action output deviates gradually from the d i sc t~  pop so that the final classification is wrong. 

(6). Ouant izat ion o f  the T r a i ned  N N P D A .  

The state neuron activi t ies are quan t i zed  to two levels. The stack action weightsW a are 
quantized to three levels." 
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0, if (Iw~l_<0.5) f 
W a = ~-1, if (wa<-0 .5)  �9 (28) 

t 
1, if (Wa>0.5) 

After quantization, we test the NNPDA with all possible swings up to length fifteen. 
The classification rule is as follows. The "trap state" monitor is used to monitor the last 
state neuron S~s. Whenever S~ ,  becomes zero, we stop the sequence and classify it as an 
illegal string; otherwise, we proce~! to the end of  the input sequence. At .the end, ifLT=0, 
the input is classified as legal; otherwise it is illegal. The test result is that all the 21,523,359 
strings are classified correctly. But, this does not mean that the quantize~l NNPDA repre- 
sents the Palindrome grammar. We have to extract the correct discrete PDA and verify that 
it recognizes the Palindrome grammar. 

(7)- Extraction of the Learned PDA. 

Using the quantized NNPDA with the initial state (1, 0, 0, 0), we check all possible 
paths of the quantized NNPDA by reading input symbols as described in Section 4.1. The 
transition diagram of these paths is drawn in Fig.1 I. Every path was terminated whenever 
a "trap state" occurred. Each bracketed action rule in the form of (input, reading, action) is 
marked besides the transition arrows. This diagram looks more complicated than might be 
expected. Though it did not turn out to be the simple diagram of Fig.10, the neural net gen- 
erates some rather novel transitions. 

First we find all equivalent states. All "trap states" are equivalent. Also, the two states 
(1,0,1,1) and (0,0,1,1) make equivalent transitions and actions. After grouping these equiv- 
alent states, seven states are finally selected and labelled as in Fig.12. The first six states 
are "non-trap states" and the seventh is the "trap state". Let us see how this PDA shown in 
Fig.12 could recognize the Palindrome grammar. The start state is state (I) and the start 
reading is an "empty stack" represented by "qb'. I f  the first input symbol is 'c ' ,  it will move 
to state(3), and then either stop there with an empty stack (the string "c" is legal) or goes to 
the "trap state"--state(7) if more symbols are read (i.e. an illegal string). When an input 
string starts with 'a '  or 'b ' ,  the neural net controller pushes the read symbol onto the stack 
and moves to either state(2) (for input 'b ' )  or state(3) (for input 'a'). Then, before seeing a 
symbol 'c ' ,  it will push all the read symbols onto the stack and, concurrently, move among 
a symmetric structure of  the four states (2), (3), (4) and (5). These four states are manipu- 
lated in a very complicated manner. Whenever a symbol 'b '  is read, it is pushed onto the 
stack and the PDA moves to either state(2) or state(5). Whenever a symbol 'a '  is read, it is 
pushed onto the stack and the PDA moves to either state(3) or state(4). If a symbol 'c '  is 
read, it will transit to either state(2) (if the last symbol is 'a ') or state(3) (if the last symbol 
is 'b'). Then, the controller will examine whether the next input symbol matches the top 
symbol on the stack. If  every read symbol matches the stack reading, the PDA will pop and 
move to state(6) and stay there until the stack is emptied. If any input symbol does not 
match the top stack symbol, the PDA will go to the "trap state"-- state(7) and the string is 
classified as illegal. 
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(a,a, D 

Fig. l l  The extracted discrete PDA obtained from the trained NNPDA by quantizatio! 
of the neural activities of  the continuous NNPDA. Using the quantized NNPDA, start witt 
the initial state (1, 0, 0, 0) and cover all possible paths by feeding in various strings when- 
ever needed. Here, all paths are terminated whenever a "trap state" occurs. Each bracketec 
action rule in the form of (input, reading, action) is marked by the transition arrows. 

As noted in Fig.12, the self-loop for state('/) indicates that there is no escape from a 
"trap state." This is assumed because of  our pre-knowledge about the "trap state". Howev- 
er, the discrete NNPDA-generated "trap states" may not form closed loops. We have 
checked all the possible transitions from the "trap states" and find that there do exist 
"leaks". For example, the illegal string "bbebabacabab" is found to end at a "non-trap state" 
(1,1,1,1) and the string "aaacabbeb" ends at (1,0,1,1). Thus, it is good idea to use the "trap 
state" monitor in recognition as well as in training. 

5 Conclusions 

A recurrent neural network pushdown automata (NNPDA) was specified and used to 
learn simple but illustrative deterministic context-free grammars (CFGs). The NNPDA it- 
self is a hybrid model consisting of  a recurrent neural network state automaton controller 
and an external continuous stack memory connected through a common error function. 
This is to be contrasted to connectionist models that construct stacks (and their associated 
state structure) from internal hidden layers or from the dynamic range of the nonlinearity 
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(b•2 
(a, a, ol) 

0 

?'( a ~ ,  1 ~  Co, b, -1) 
/ 

Qffi(l,O,O,O)startstate, Q = ( O , I , O , 1 ) ,  

Q -- {(1,0,1,1),(0,0,1,1)}, Q = (1,1,0,1), 

(b, a, 1) 
(c, a, D 

i 
r... Co, a, 1 ) ~  ~ )  

(*, *, 1) 

(c, *, I) 

a*' ~' 1) 
�9 b, 1) 

(c, b, 1) 

Q=(I,1,1,1),(~={ (0,1,1,0),(0,0,1,0) 
x ~ ,  (0,1,0,0),(1,1,0,0) Q = (0,1,1,1), (O,O,O,O)}trapstate. 

Fig.12 The equivalent reduced PDA that recognizes the palindrome grammar. It is ob- 
tained by grouping the equivalent states of the PDA in Fig.11 into seven representative 
states and completing their transitions. The correspondence between the original 12 states 
and the reduced 7 states is listed in the seven equalities below the transition diagram. 

of the neural network. To train the NNPDA an enhanced forward-propagating real time re- 
current learning algorithm (RTRL) was derived and used to learn CFGs from positive and 
negative string examples. However, the NNPDA model is quite general and can be trained 
using other gradient descent approaches such as a modified back-propagation through time 
algorithm. What should be noted is that during training the NNPDA simultaneously learns 
to construct its internal state controller and to figure out how to control with the proper ac- 
tions (push, pop and no-operation) the use of the external stack memory. 

The external continuous stack memory is constructed of two arrays; one for symbols 
and one for real values associate with those symbols. The input symbol alphabet is also the 
stack alphabet (this somewhat restricts the class of learnable CFGs). A gradient-descent 
training algorithm is derived for the continuous stack. One interpretation of the continuous 
stack memory is that the real values associated with the symbols stored on the stack reflect 
an uncertainty in the content of stack reading of the NNPDA. This allows more than one 
symbol to be read from the top of stack and each with different probabilities. 

For all languages of the learned grammars (the balanced parenthesis, ln0 n and palin- 
drome grammars), the size of the positive and negative string training set was less than 512. 
The number of epochs required for successful training was approximately 100 and usually 
less than 1000. The trained NNPDA exhibited very good generalization capabilities and 
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were able to correctly classify large sets (usually millions) of unseen strings. Its perfor- 
mance appears to be much better than other connectionst stack models used to learn simple 
context-free grammars. 

We devised an algorithm for extracting a discrete pushdown automaton (PDA) from 
the trained NNPDA. For all the grammars used in training, correct PDAs were extracted 
(For all languages the strings were generated by "known" PDAs). The advantage of this 
quantization process is that the extracted PDA was often able to outperform the trained 
NNPDA in correctly classifying any unseen strings (similar results were shown for FSA 
extracted from trained NNFSA [Giles92a, Omlin96b]). However, the extracted PDAs 
could be quite complex and not necessarily a simple PDA. 

There are manv open issues. We only demonstrated the principle of simultaneously 
training a recurrent neural network coupled to an external stack memory. It is not evident 
that this method will scale or this is an efficient way to learn context free grammars. What 
is the required accuracy of  the analog stack? The additional knowledge required to learn 
the palindrome grammar shows that the intelligent use of topology, such as order of con- 
nection weights, and a priori knowledge, such as supervising the control of  the stack, 
significantly effects successful training and testing. Because of the number of variables, the 
training results were illustrative not exhaustive or complete. What was interesting is that 
such good results were obtained! Another question is how this architecture scales. One 
would expect that because of the additional states offered by the stack, that it would scale 
better that a stack-less recurrent network. However, this remains to be determined. 

Finally, there is nothing that restricts this model to symbol learning. Real numbers 
could have just as easily been used as inputs. We speculate that this model could also be 
used in learning more complex hidden state processes for real-valued problems. 

A c k n o w l e d g m e n t s  
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A p p e n d i x  A :  T h e  d e r i v a t i o n  o f  ~ R t / ~ W  

In this appendix we derive 9Rtt,/gWijk for the case where there is only one action neu- 
ron NA=I. The generalization to the case with more action neurons is straightforward. 

The stack reading at time t is in general a function of the entire stack history 

1~ = F(AI ,  A 2 . . . . .  At, II, l 2 . . . . .  I t) , (A-l) 

where A ~ ~ [- 1, 1 ], 1 -<'r < t, is the continuous action value which operates on the stack. 
The input symbol/r, 1 _< "c _< t, at time "c is read from the input sequence. As previously de- 
fined, an action to be performed on the stack is either a push, pop or no-operation (no-op) 
depending on the sign and magnitude ofA ~. The amount of  the stack to be pushed or popped 
is equal to the absolute value ofA ~, which also determines what amount of that the current 
input symbol/~ is read into the stack. 
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To complete the forward-propagation of  the sensitivity matrices OStlOW and OAt/OW 
as in Eq.(19), the derivative ORtlOW has to be known. If a recursive relation for ORtlOW 
exists, i.e. 

OR t+l (OR t ~S t ~A t .'~ 

- o w "  (A-2)  

where M is an unknown vector function, the recursive evaluation of OStlOW and 
3AtI~W is straightforward. However, a rigorous recursion equation of Eq.(A-2) does not 
exist. The reason is as follows. 

The stack operation and stack reading R t defined in Section 111 does not include any 
derivative o f R  t with respect to W. Therefore, Eq.(A-2) implies the following relation 

R t+l = H ( R  t , S t , A t , f )  , (h-3) 

where H is another vector function. But, in general, relation (,4,-3) should not hold for 
a PDA. The reason is that the current stack reading R t depends on the whole history of the 
stack, not on the history a few time steps in the past. If, we assume that relation (A-3) is 
true, then the read operation can couple with the dynamics of the neural network controller, 
as in the two equations in Eq.(3). This yields 

Zt+l = K (Z  t , l  t) , (A-4) 

where the vector Z represents the concatenation of  the three vectors R, S, and A, or Z = 
(S~A~R) ,  and K is the combination o f  the functions: H in (A-3), G and F in Eq.(3). Since 
in the discrete limit the vector Z is represented by finite description, the relation of Eq.(A-4) 
indicates that the whole system is a finite state automaton with extended internal states rep- 
resented by Z. 

The fallacy of assuming that Eq.(A-3) is correct can also be seen from a simple exam- 
ple. Suppose that the input sequence contains 20 symbols and the stack is empty. The PDA 
is constrained to have two actions: from t = 1 to t = 10 only pushes and from t = 11 to t = 
20 only pops. Then, after the nineteenth action (pop) there would be only one symbol left 

20 on the stack. The content of the stack reading R is the first symbol of the input string 
2u pushed onto the stack at time t = 1. This is a counter-example to (A-3), sinceR not only 

19 19 19 1 depends on the previous reading R , previous action A and state S but also on I and 
A l, the stack history at time t= I. 

Generally speaking, the exact calculation of  Ol~+lt, l~Wij t will involve the storage of 
the entire history of the stack and actions on the stack, which demands a large memory size 
and increased computation. In order to simplify this problem, we derive an efficient ap- 
proximation to ORt+lk,/~Wij k which can be used recursivety in a manner that closely 
approximates the recursion set of  Eq.(19). Since the input symbol I t does not depend on 
the weight W, Eq.(A-1) implies that 



333 

OR t _ ~ ORt OA ~ 

~-~  - OA x " -~-W' 
"r 

(A-5) 

where the summation over ~ in general contains all time steps starting at t = 1. But not 
all of the history ofA x affects the current stack reading R t. Since R t contains only the con- 
tents of depth 1 from the top of  the stack, the number of terms in the summation (A-5) can 
be reduced by removing all of  the actions {A x, 1 <x _<t} which do not contribute to the gen- 
eration o f  R t. 

I (K)  

e 

/(2) 

/(1) 

Fig.A1 The reading R t of  the continuous stack at time t consists of K sections of con- 
tinuous symbols, C i, i = 1, 2 .... K, each of  which contains only one symbol, and each pair 
of  adjacent sections, C i and Ci+ 1, contains two different symbols. The length of each section 
C i is denoted by l(i) marked beside the stack. 

Assume that R t consists of  K sections of  continuous symbols, as shown in Fig. A1, 
where each section contains only one symbol denoted by C i with length/(i), each generated 
at time x i, i = I, 2,... K. Each pair o f  adjacent sections, C i and Ci+ 1, contains different sym- 
bols. Note that each of  the sections {C i, i= 1, 2 . . . .  K) may not be generated by only one 
action (push) at time "q. It may be fast  generated partially at time ci and then be popped or 
pushed several times. Finally, (before time "q+l when the next symbol Ci+ l was generated) 
the symbol C i with length/(i) is left on the stack. Under these assumptions, the actions be- 
fore %1: { A~, l<x<xl}  do not contribute to the formation of R t, and therefore can be 
removed from the summation. The expression Eq.(A-5) can be written as 

0R'  ~ 0R'  0A ~ 
- = E E -  ~W i= Ix~-<~<~,.i 0AT 0W ' (A-6) 

where the bold-faced A z have been replaced by A x (without lose of generality, only one 
action neuron is used). 
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In order to calculate the derivatives in Eq.(A-6), assume that there is an infinitesimal 
perturbation of the weight matrix AW, which then produces infinitesimal perturbations of 
actions {A/t x, 1_<~<t} for every time step calculated from the second equation in Eq.(3). 
These new actions {AX+AA x, 1 _<x<t} can be used to reconfigure the stack, which in turn 
creates the change in the stack reading ARt. The partial derivative ORtegA x is defined as 

OR~ ARt 
k 

-- lim 
~A ~ aA" ~ O AA x 

(A-7) 

where the change in the stack reading ARtk is induced by only AA x, while all other A z', 
x ~ # ~, are fixed. 

Since the stack reading R t consists of K sections of continuous symbols 
{C i, i=l ,  2 . . . .  K}, the change AR t would also be computed from {AC i, i= l ,  2 . . . .  K}, 
the change in each of  the sections. The major approximation made in this derivation is the 
following. We assume that for xi<x<xi+ 1, an infinitesimal perturbation AA x would only 
produce the change of  the length, A/(i), in the ith section C i. In general, this is not true, be- 
cause there exists a perturbation 6A x which not only changes the length of its symbol 
section but also changes the content o f  the section (i.e. brings in a part of the new symbol 
to this section). This can be seen from a counter example. Suppose that the section ~ con- 
tains only the symbol a with length 0.5 and it is produced by a sequence of actions: (1) at 
x=x i, A~-0.1 (push) of symbol a ,  (2) at x=xi+l, AX--O.2(push) of symbol b ,  (3) at %=xi+2, 
AZ= -0.2 (pop). (4) at %=zi+3, AX--O.4 (push) of  symbol a .  Although the net result is to push 
a symbol a with length 0.5 onto the stack, during the sequence an equal amount of  symbol 
b was pushed and popped onto and from the stack. In this case an infinitesimal perturbation 
AAr'>0 when x=xi+l or xi+2 would create an infinitesimal portion of symbol b with length 
equal to the absolute value of  AA x, sandwiched between the two parts of symbol a .  We ig- 
nore this situation because of  the following reasoning. 

Assign an occurrence probability p(A x) to each action A x and replace the derivative 
~RttlaA x by its probability weighted value: 

art 
0A x ~ ~-qp  ( A )  . (A-8) 

If an action A x is free to take any values in the domain [-1, 1], assign it occurrence 
probability one. In Eq.(A-6) all the terms on the right hand side of the summation are sup- 
posed to have a value of occurrence probability equal to one. However, we argne that there 
do exist some actions with zero occurrence probability and that these can be removed from 
the summation in Eq.(A-6). A special group of  such actions are the pops which pop sym- 
bols at their boundaries, i.e. the border lines inside the stack which separate two different 
symbols. For instance, in the above example the action AX= -0.2 (pop) at x=xi+2 belongs to 
this category. In general, for the stack example shown in Fig.A1, if the next time action is 
A t+! =-B(i), B(i)=-l(K)+l(K-1)+...+l(i+l)+l(i) for any i= 1,2, 3 ..... K, we would say that the 
action A t+z has a zero occurrence probability. In fact, if the action A t+l is uniformly distrib- 
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uted within [-1, 1], then the occurrence probabi l i ty  ofA t+! can be measured by the possible 
range of values ofA t+l divided by 2, the measure of  whole region [-1, 1]. IrA t+l is apop  
which occurred around a boundary of  one of  the stack sections shown in Fig.A1, say 
~4t+l+B(i)l<e, then the measure o f  the occurrence  probability ofA t+l will be r When 

--~ 0 (or when A t+l ---> -B(i), i= 1,2,3 ..... K) this probability goes to zero. 

With the above approximation we have two useful outcomes. First, in the summation 
on the right-hand side of  Eq.(A-6), all terms within the in'st section whose actionA ~ occurs 
between time "~1 and "r 2, i.e. xl <x< 'c  2, can be removed and the equation becomes 

OR t K OR' OA x 

3-"-tP = E Z O A , ' O W ;  (A-9) 
i.~ 2"[i~g <gi§ I 

because for all actions {A x, "~l ~ ~ < "c2 }' ORt[ OA~ are zero. The reason is that the content 
of the stack reading R t is formed by reading the stack in the top-down manner with a fixed 
length 1 and is actually independent of  the infinitesimal change of the length on the first 
section. As shown in Fig.A2, as long as the lower boundary of section C l does not exactly 
coincide with the lower boundary of  R t, the content o fR t will not change. In the case where 
the lower boundary of  section C l does coincide with the lower boundary of R t, any negative 
change of  the section Cl'S length (A/<O) will introduce an infinitesimal change in R t. Tiffs 
case was excluded because it has zero occurrence  probability. 

C2 
C1 

1(2) 
l ( 1 )  

I 
C 2  

C1 

(h) 

I(K) 

i(2) 
l(1)+Al(1) 

Fig.A2 When the stack reading R t has a fixed length = 1, its content is independent of 
Al(1), an infinitesimal change of  the length in first section C 1, unless (i) the lower boundary 
of section C 1 coincides with the lower boundary of  R t and (ii) Al(1) < 0. (a) Stack reading 
R t before any changes. (b) Stack reading R t after an infinitesimal change of the length in 
the section C I. The reading content has no change.. 
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From Figure A2, a method for determining ORtlOA ~ within each section C i, i =2,3 ..... 
k, can be calculated as follows. According to the definition in Eq.(A-7), we need to calcu- 
late the ratio ARti/AA x and take the limit AAr-->O. Suppose x i-< x <xi+ 1. It is known that the 
perturbation AA ~ only changes the length of the section C i. But, the stack reading R t will 
still have a fixed length (a distance of  one) regardless of this change. Therefore, the con- 
tents of the stack reading would not only include A/(i), the change in the length of symbol 
C i, but also -A/(1), the change of  symbol  C 1. See Fig.A3. This implies 

1 
- lim - lira ( A l ( i ) - A l ( 1 ) )  k . 

~A x ~ ' . . ,  O&A x aA'~OAA "~ 

Since the magnitudes of  A/0) and A/(1) are the same as A/l x, the ratio A/(i)k/&4 x (or 
A/(1)t/AA ~) will be either one or zero depending on whether or not the symbol C i (or CI) is 
the same as the kth symbol. This result can be expressed as 

~Rtk = 5 ik- -51k "~i~'l~<"[i+ I 
~A ~ 

(A-10) 

where 5ik is Kronecker delta function. 

C K  

i: 
(a) 

l ( K )  

/( i)  

l ( 1 )  

C K  /(K) 

...... .'.C..j.../(i)+A/(i) 

L. . -~ .LI  l (1 )  

I: 
Co) 

Fig.A3 When the stack reading R t has a fixed length = 1, the change of its content 
would include not only Al(i), the change of the length of the symbol C i, but also -AI(1), the 
change in the length of symbol C 1. 

Inserting Eq.(A-10) into Eq.(A-9) yields 
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= _ , : ,< , ,+ ,  ~W) (A-f1) 

If we further assume that/(--2, i.e. the current stack reading with length equal to 1 con- 
rains at most two sections of symbols; the approximation to Eq.(A-11) would be 

~g' ,%, 3A" 
O--W = (8it - 8'k) ,., ~.~ <, OW (A-12) 

In this paper we also assume ~2 = t and obtain 

OR t OA ~ 
OW - (Sik-  ~'~) ~-W" (A-13) 

This approximation implies that instead of considering the case where a section of the 
symbol in the stack is the cumulated results of many actions, the section C 2 is assumed to 
be generated by only one action. 

The two approximations in Eqs.(A- 12) and (A-13) are valid for the following two con- 
ditions: (1) when the action activity values are close to their saturation values 1 and -1 (or 
IAtl>0.5). (2) or the total number of  actions (i.e. the length of input stdnD is small. This 
corresponds to imposing a restriction on the learning strategy. During the initial stage of 
learning when the action activity values are far from their saturation values 1 and -1, short 
strings are used as the training examples and the string length is increased after the short 
strings have been learned. 

A p p e n d i x  B: D e r i v a t i o n  o f  R T R L  f o r  t he  N N P D A  M o d e l  

The forward-propagation recurrent learning algorithm known as Real Time Recurrent 
Learning (RTRL) can be derived by taking the derivative with respect to weights of the 
neural controller dynamics of Eqs. (23) and (24), and using Eq. (A- 13) derived in Appendix 
A for the stack dynamics. For a complete appendix we first list these equations as follows 

�9 -' (x:x:x t,, ,) _, = g Wi:k~(SjRJ~) + 0 
~= l k =  l l =  l 

A'" ' -- "E F_., Y-. 
d = l k = l l = l  (B-l) 

and 
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~s 

~, = 1 - I  (as'+ (l-a.) (~-s'~)) 
m = i  

The derivative of the first equation in Eq. (B-l)  is 

(B -2) 

a~i,--~=g.,.<o ,,.{s;R':,)+ y_., X X w',~.,,.,.4.1R',. ' . + ~ . . ~ H  
lk~'= l l'= i : :  C aw'qk, J ~w'm,,)) 

~s~ + ' ", ", ",-' : ~s:, , aR'~, 

- tR ~ +s.,__, ~-,) g'i "(t) Z Z Z W~i~ "k'̀ 'l$" ti'~ J ~Wa kt,l 
~WaJkl j" = kl lit__, l / ' =  1 

~esi = g'i "(t) 8ii" + Z Z Z uls ,, I n ,  J ' ~,ij,k,t,,rt~,.~i+Sj, 90,i) ) 
f i=lk*=ll ' . .~l  

where g'i,(t) = s i , t + l  (1 - Si ,t+l) is the derivative of Sigmoid function. Similarly, the de- 
rivatives of second equation in Eq.(B-1) are written as 

~'e+' :" " "- '  JR' a~>5, , ~'~, 
- p g _ _  ~14#ijk, Z Z Z Wark't'I~ . . . .  + 

aAt+ I :, I~, u,-, : t ~pt, t ~etk" "~ 

~Walkl J'= l k'= I 1"= I ~WaJktJ 

ciAt+i 2" u' "-! IR ~R~'I 
J ' =  I k ' =  I t ' =  1 t OOsi " ~Osi) 

(B-4) 

To complete the derivation we need two more relations which are obtained from the 
derivative of Eq.(B-2) and the derivative of stack reading in Eq.(20) 
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aP',_ 

8 R'r ~a ' 

~W = (Sk" ,', - 8r:~) 

fB-5) 

where i'1 t and r2 t are the ordinal numbers of neurons that represent the top and the bot- 
tom symbols respectively in the reading R t. The initial conditions for all the derivatives in 
Eqs.(B-3) to 03-5) are set to zero. 
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