
Pergamon

0893-60s~gs)00086.0

Neural Networks, Vol. 9, No. 1, pp. 41-52, 1996
Copyright O 1996 Elsevier Science Ltd. All tights reserved

Printed in Great Britain
0893-6080/96 $15.00 + .00

CONTRIBUTED ARTICLE

Extraction of Rules from Discrete-time Recurrent Neural
Networks

CHRISTIAN W . OMLIN AND C. LEE GILES

NEC Research Institute

(Received 28 August 1992; revised and accepted 6 June 1995)

Absa'act--The extraction o f symbolic knowledge from trained neural networks and the direct encoding o f (partial)
knowledge into networks prior to training are important issues. They allow the exchange o f information between
symbolic and connectionist knowledge representations. The focas o f this paper is on the quality o f the rules that are
extracted from recurrent neural networks. Discrete-time recurrent neural networks can be trained to correctly
classify strings o f a regular language. Rules defining the learned grammar can be extracted from networks in the
form of deterministic finite-state automata (DFAs) by applying clustering algorithms in the output space o f
recurrent state neurons. Our algorithm can extract different finite-state automata that are consistent with a training
set from the same network. We compare the generalization performances o f these different models and the trained
network and we introduce a heuristic that permits us to choose among the consistent DFAs the model which best
approximates the learned regular grammar.

Keywords---Recurrent neural networks, Grammatical inference, Regular languages, Deterministic finite-state
automata, Rule extraction, Generalization performance, Model selection, Occam's razor.

1. INTRODUCTION

There has been much interest in the integration and
extraction of knowledge from neural networks
(Towell et al., 1990; Frasconi et al., 1991; Hanson
& Burr, 1991; Giles et al., 1992; Watrous & Kuhn,
1992; Fu, 1994). One reason is that the lack of
understanding of the rules that underlie neural
network performance has limited their use in some
application domains. Another is that some intelligent
processing naturally requires the use o f symbolic and
rule-based knowledge. Recurrent neural networks
with discrete-time inputs readily lend themselves to
certain types of knowledge encoding and extract ion--
in particular the ordered triple of a discrete Markov
{state; input --, next-state} process (Giles et al., 1992;
Omlin & Giles, 1992). What this paper addresses is
the validity and usefulness of extracting this
information based on a representation of the
neurons' activation.

Acknowledgements: The authors acknowledge useful discus-
sions with E. B. Baum, K. Lang, and L. Valiant.

Requests for reprints should be sent to C. L. Giles, NEC
Research Institute, 4 Independence Way, Princeton, NJ 08540,
USA; E-mail: giles@research.nj.nec.com

1.1. Background

Recently, the training o f recurrent neural networks
that recognize finite state languages has been
discussed by several authors (Cleeremans et al.,
1989; Williams & Zipser, 1989; Elman, 1990; Giles
et al., 1992; Watrous & Kuhn, 1992). The motivation
for this work has been multifold; from understanding
how these neural networks process natural language
to quantifying and understanding their computa-
tional characteristics. Cleeremans (1989) and Elman
(1990) trained recurrent networks by predicting the
next symbol using a truncation of the backward
recurrence. Cleeremans et al. (1989) concluded that
the hidden unit activations represented past histories
and that clusters of these activations can represent
the states of the generating automaton. The work
reported by Giles et al. (1992) is an extension of
Cleeremans et al. (1989) in that complete determinis-
tic finite-state automata are extracted from recurrent
networks. Watrous and Kuhn (1992) implemented an
alternative approach to state machine extraction. In
related work, Crutchfield and Young (1991) extract
finite-state automata from general dynamical systems
though the systems do not have dynamical inputs.

1.2. Motivation

Grammars and automata are intimately related.

41

42 C. W. Omlin and C. L. Giles

Grammars generate the languages that automata
recognize. The computational power of recurrent
networks has been proven by relating these networks
to automata. Recurrent networks have recently been
shown to be computationally quite powerful, i.e.,
Turing equivalent (Siegelmann & Sontag, 1992). The
representational limitations of recurrent network
models have been explored by showing their relation-
ships to automata (Goudreau et al., 1994, Giles et al.,
1995b). Thus, it is natural to see how well recurrent
networks learn what they can be proven to represent.

This being said, it is not evident that recurrent
networks are the best tools for learning regular
grammars. However, regular language inference
requires state information to be stored over indefinite
periods of time and no feature extraction is necessary
for learning. Thus, grammatical inference is a good test
bed in which to investigate issues related to the
representation of symbolic knowledge in recurrent
networks and to explore their computational cap-
abilities. For example, Giles and Omlin (1994) show
how grammar learning can be useful in quantifying the
computational power of a pruning algorithm of
recurrent neural networks. Jim et al. (1995) show
that training noisy recurrent networks with gramma-
tical strings is a good measure of the effect of different
types of noise insertion methodologies on networks
generalization and convergence performance. The
performance of recurrent networks on long temporal
sequences is naturally explored by using grammatical
strings (Manolios & Fanelli, 1994). Frasconi et al.
(1995) used grammar learning and representation to
explore a new recurrent network architecture.
Furthermore, recent results by Giles et al. (1995a)
and Clouse et al. (1994) imply that neural networks
under certain constraints can learn extremely large
grammars and may be competitive with other methods.

The extraction of (symbolic) rules from both feed-
forward as well as recurrent neural networks has
become an active area of research (Cleeremans et al.,
1989; Towell et al., 1990; Giles et al., 1992; Fu, 1994).
The following question is the focus of our work: How
good are the rules extracted from recurrent networks?
This is an important one and, to our knowledge, has
not been discussed anywhere else in the literature.

1.3. Overview

We train discrete second-order recurrent neural
networks to recognize strings of a regular language
given a finite set of positive and negative example
strings. The DFAs extracted from trained networks
depend on a clustering parameter and different,
minimized DFAs may be obtained for different
values of the clustering parameter. Several among
the different DFAs may correctly classify all strings
of the training set. Given a set of extracted DFAs

which may accept different regular languages, the
question arises which DFA best approximates the
unknown source grammar, i.e., which extracted DFA
assigns the same label as the unknown source
grammar to as many strings as possible. A model
selection heuristic is introduced which allows us to
choose among the different DFAs the one that best
models the regular language.

The remainder of this paper is organised as
follows: we give a brief introduction to regular
languages and grammatical inference in Section 2,
followed by a presentation of the neural network
architecture and training in Section 3; we also include
some generalization results of trained networks on
long test strings. The rule extraction algorithm and
the problem of selecting among the extracted DFAs
the best model are discussed in detail in Section 4. A
summary of the empirical results, followed by a short
discussion of related work and possible future
research directions conclude this paper.

2. REGULAR LANGUAGES

2.1. Definitions

Regular languages represent the smallest class of
formal languages in the Chomsky hierachy (Hopcroft
& Ullman, 1979). Regular languages are generated by
regular grammars. A regular grammar G is a 4-tuple
G = (S, N, T, P) where S is the start symbol, N and
T are non-terminal and terminal symbols, respec-
tively, and P are productions of the form A -~ a or
A ~ a B where A, B E N and a c T. The regular
language generated by G is denoted L(G).

Associated with each regular language L is a
deterministic finite-state automaton (DFA) M which
is an acceptor for the language L(G), i.e.,
L(G) = L(M). DFA M accepts only strings which
are a member of the regular language L(G). Formally,
a D F A M is a 5-tuple M = (~, Q, R, F, 6) where
E = {a l , . . . ,ak} is the alphabet of the language L,
Q = {sl , . . . , sM} is a set of states, R E Q is the start
state, F c_ Q is a set of accepting states and tS:
Q × E ~ Q define state transitions in M. A string x is
accepted by the DFA M and hence is a member of the
regular language L(M) if an accepting state is reached
after the string x has been read by M. Alternatively, a
D F A M can also be considered a generator which
generates the regular language L(M).

2.2. Grammatical Inference

Grammatical inference, the problem of inferring
grammar(s) from samples of strings of an unknown
regular language, is an NP-complete problem (Gold,
1978; Angluin & Smith, 1983). The problem of
grammatical inference can be stated informally as

Discrete-time Recurrent Neural Networks 43

follows. Given a finite set of strings along with a label
indicating whether or not a string is a member of the
language, find the rules which define the language.
For example, we may be given the following two sets
of positive and negative example strings:

Positive examples Negative examp&s

10010 100010
1011101 001110001
O0 000
111 100110111000
100100100111 1001001000111
1010011 100001
001111 00001111
I01010 1010001010

In this example the rule might be to reject strings
which contain three or more consecutive 0s and to
accept all other strings. It is intuitively clear that the
inferred grammar will better model the underlying
language if more example strings - - both positive and
negative - - are provided as input to the inference
algorithm.

Our algorithm extracts rules from (trained) net-
works in the form of DFAs, which can be readily
transformed into a regular grammar where each state
of the DF A corresponds to a non-terminal symbol and
the D F A transitions correspond to production rules.

3. RECURRENT NEURAL NETWORK

3.1. Architecture

Recurrent neural networks have been shown to have

powerful capabilities for modeling many computa-
tional structures; an excellent discussion of recurrent
neural network models and references can be found in
Hertz et al. (1991). To learn grammars, we use a
second-order recurrent neural network (Lee et al.,
1986; Giles et al., 1990; Gun et al., 1990; Pollack,
1991). The network architecture is illustrated in Figure
1. This net has N recurrent hidden neurons labeled Sj;
L special, nonrecurrent input neurons labeled Ik; and
N 2 x L real-valued weights labeled Wqk. As long as
the number of input neurons is small compared to the
number of hidden neurons, the complexity of the
network only grows as O(N2), the same as a linear
network. We refer to the values of the hidden neurons
collectively as a state vector S in the finite N-
dimensional space [0,1] jr. Note that the weights Wijk
modify a product of the hidden Sj and input Ik
neurons. This quadratic form directly represents the
state transition diagrams of a state process - - {input,
state} ~ {next state}. This recurrent network accepts
a time-ordered sequence of inputs and evolves with
dynamics defined by the following equations:

S}t+ l) = g(--i), Ei =- ~ "ijkoj(')'(O'k
j,k

where g is a sigmoid discriminant function. Each
input string is encoded into the input neurons one
character per discrete time step t. The above equation
is then evaluated for each hidden neuron Si to
compute the next state vector S of the hidden neurons
at the next time step t + 1, With unary encoding the
neural network is constructed with one input neuron

FIGURE 1. A second-order, single layer recurrent neural nelwork. S~ 0 and I(, 0 represent the values of the ith and kth state and Input
neuron, respectively, at time T. ® represents the operation Wijk × S~ 0 ×l(kO; gO is the sigmoidal discriminant function.

44 C. IV. Omlin and C. L. Giles

TABLE 1
Network GeneralizaUon Perlormance

Test Set Training Set Size Average p 90% Confidence Interval

Strings of length 1-15 1000 0.84% 0.6% ~< # <~ 1.00%
700 1.63% 1.26% ~< p ~< 1.99%
300 9.74% 8.34% ~< # ~< 11.14%
100 38.09% 36.23% ~< # ~ 39.96%
50 57.96% 56.29% ~< p ~< 59.64%

1000 4.61% 3.57% ~< # < 5.66%
700 7.07% 5.67% ~< # ~< 8.47%
300 26.23% 23.38% ~< # ~< 29.07%
100 48.50% 47.47% ~< # ~< 49.52%
50 61.17% 59.36% ~< # ~ 62.98%

1000 4.59% 3.58% ~< # ~< 5.59%
700 7.68% 6.08% ~< # ~< 9.28%
300 25.89% 23.02% ~< # ~< 28.76%
100 47.47% 46.43% ~< # ~< 48.50%
50 60.24% 58.05% ~< # <~ 62.43%

1000 random strings of length
100

1000 random strings of length
1000

The table shows some statistics (t-student) on the generalization performance of networks
with eight recurrent state neurons on two different test sets. The training sets contained the
first 1000, 700, 300, 100, and 50 strings in alphabetical order; starting with strings of length
1 the strings alternated between positive and negative examples. The average performance
and the 90% confidence intervals clearly show how the network performances improve
with increasing training set s ize~and thus string lengths--particularly for the test set
containing strings of lengths 100 and 1000. The networks generally perform poorer on
longer str ings~maximum string length 15 compared to string length 100 and 1000~due to
the increasing instability of the internal DFA representation with increasing string length,
leading to misclassification of strings.

for each character in the alphabet of the relevant
language. This condition might be too restrictive for
grammars with large alphabets.

3.2. Training Procedure

A special recurrent neuron is selected as the
network's output neuron. A network learns by
comparing its actual output with the desired
classification at the end of a string. Weight updates
are computed using a second-order form of the
RTRL net of Williams and Zipser (1989) which
computes the partial derivative of a quadratic error
function with respect to all weights Wqk.

3.3. Network Performance

We consider a regular language over the alphabet
{0, 1} that is recognized by a randomly generated
minimal 10-state DFA. From a data set consisting of
1000 alternating positive and negative example
strings starting with strings of length 0, we formed
five different training sets. The first training set
consisted of all 1000 example strings; the remaining
training sets consisted of the first 700, 300, 100 and 50
strings, respectively, of the 1000 example strings. This
was done in order to achieve a variety of general-
ization performances for networks of fixed size.

All the weights were initialized to random values
in the interval [-1.0, 1.0]. The learning rate a and the
momentum 7/were both set to 0.5.

We used an incremental learning strategy where a
network is first trained on a small subset of all
training strings ("working set"); this subset only
contains the shortest strings. When a network has
either learned to correctly classify all the strings of a
working set or a maximum number of epochs has
expired for the current working set, new strings from
the training set are added to the working set and the
network is trained on this expanded working set. The
working set is expanded until a network correctly
classifies all the strings of the training set. This
incremental training heuristic aims at overcoming the
problems that arise from training on long strings with
a gradient descent learning algorithm (Bengio et al.,
1994).

We trained 25 networks with eight state neurons on
each of the five training sets and performed a
statistical analysis on the networks' average general-
ization performances (Table 1) on three test sets
consisting of all strings of length up to 15 (65k strings),
1000 random strings of length 100, and 1000 random
strings of length 1000. We observe that the average
generalization performance improves with increasing
training set size which contain strings of increasing
length; the 90% confidence intervals are non-over-
lapping. This result is not surprising since networks
trained on smaller data sets have less information and
thus learn a poorer model of the source grammar.
Networks generally perform poorer when tested on
strings that are longer compared to the training sets; a
network's internal DFA representation becomes

Discrete-time Recurrent Neural Networks 45

increasingly unstable with increasing string length
which leads to string misclassification.

The next section addresses the issue of how DFA
extraction can be made computationally feasible and
the quality of the extracted rules, i.e., how well do
extracted DFAs generalize compared to the net-
work's generalization performance; we also compare
the performance of DFAs that are extracted with
different quantization levels from the same network.

1.0

0.75

0 . 5

0 . 2 5

0 . 0 I I I
0.00.250.50.751.0

Neuron 0

4. RULE EXTRACTION

4.1. Algorithm

We describe our heuristic for extracting rules from
recurrent networks in the form of DFAs (Giles et al.,
1992). Different approaches are described in Cleere-
mans et al. (1989), Watrous and Kuhn (1992) and
Tino and Sajda (1995). The heuristic is not restricted
to second-order networks and can be applied to any

01

I=
0
k

1 . 0

0.75 :

0.5 7

0.25

0 . 0 I

0 . 0 0 . 2 5

I
0 . 5

I
0.75 1.0

Neuron 2

0

1 . 0

0.75 -

0 . 5 - -

0 . 2 5 -

0 . 0

0 . 0

I
0 . 2 5

(' I

0
k

1 . 0

I I I I I
0 . 5 0 . 7 5 1 . 0 0 . 2 5 0 . 5 0 . 7 5 1 . 0

0.75 -

0.5-

0.25 -

0.0

0.0

Neuron 0 Neuron 1

0
k
@

1 . 0

0.75 -

0.5-

0 . 2 5 -

0 . 0 I

0 . 0 0 . 2 5

o
k

1.0

0.75 -

0,5 --

0.25 -

I I 0 . 0 I I I

0 . 5 0 . 7 5 1 . 0 0 . 0 0 . 2 5 0 . 5 0 . 7 5 1 . 0

Neuron 0 Neuron 1

FIGURE 2. Clustering In network state space. A recurrent network with four state neurons was trained to accept only strings which do not
contain three consecutive 0s. The network builds an internal representation of the learned language in the space of its output neurons.
The two-dimensional projection of the slate space [0, 1] 4 into the (Si, Si)-plane for ell possible pairs ($1, Si) are shown (six projections).
The f igures show that the s ta l l vectors reached for the strings ol the test set tend to form clusters. We hypothesize that these clusters
correspond to stales of the leamed DFA and transi l ions between clusters correspond to state transit ions in the DFA.

46 C. W. Omlin and C. L. Giles

discrete-time neural network. The algorithm used to
extract a finite-state au tomaton from a network is
based on the observation that the outputs of the
recurrent state neurons of a trained network tend to
cluster as shown in Figure 2. The outputs of a trained
four-neuron recurrent network which is tested on a
small test set are shown as two-dimensional
projections into the (Si, Sj)-plane, for all possible
pairs (Si, Sj) (six projections). Our hypothesis is that
collections of these clusters correspond to the states
of the finite-state au tomaton the network has learned.
Furthermore, these clusters tend to be well separated
in networks which learned a given grammar well as
measured by their generalization performance on
unseen strings. For the D F A extractions, we consider
network states where the output of the response
neuron So is larger than 0.5 to correspond to
accepting D F A states; otherwise, the current net-
work state corresponds to a rejecting D F A state. The
problem of D F A extraction is thus reduced to
identifying clusters in the output space [0, 1] jv of all
state neurons. We use a dynamical state space
exploration which identifies the D F A states and at
the same time avoids exploration of the entire space
which is computationally not feasible.

The extraction algorithm divides the output of
each of the N state neurons into q intervals of equal
size, yielding qN partitions in the space of outputs of
the state neurons. We also refer to q as the
quantization level.

Starting in some defined initial network state, the
trained weights of the network will cause the current
network state to follow a continuous state trajectory
as symbols are presented as input. The algorithm
considers all strings in alphabetical order starting
with length 1. This procedure defines a search tree
with the initial state as its root; the number of
successors of each node is equal to the number of
symbols in the input alphabet. Links between nodes
correspond to transitions between D F A states. The
search is performed in breadth-first order. When a
transition is made into another (not necessarily
different) partition, then all paths from that new
network state are followed for subsequent input
symbols creating new states in the D F A for each new
input symbol, subject to the following three
conditions. (1) When a previously visited partition
is reached, then only the new transition is defined
between the previous and the current partition; no
new D F A state is created. This corresponds to
pruning the search tree at that node. (2) In general,
many different state vectors belong to the same
partition. We choose the state vector which first
reached a partition as the new initial state for all
subsequent symbols. This condition only applies
when two or more transitions from a partition to
another partition are extracted. (3) When a transition

leads from a partition immediately to the same
partition, then a loop is created and the search tree
is also pruned at that node. The algorithm terminates
when no new partitions are visited for the first time - -
hence no new D F A states are created - - and all
possible transitions for all D F A states have been
extracted.

The extraction would seem computationally
infeasible if all qN partitions had to be visited.
However, the clusters corresponding to D F A states
are often local and can be covered with fewer
partitions. Also, we aim to extract DFAs with the
smallest possible quantization level which explains
the training data. These properties along with the
pruning of the search tree makes D F A extraction
feasible even for DFAs with larger alphabets.

Clearly, the extracted D F A depends on the
quantization level q chosen, i.e., in general, different
DFAs will be extracted for different values of q.
Furthermore, because of condition 2, different DFAs
may be extracted depending on the order in which the
successors of a node in the search tree are visited. In
general, however, these distinctions are not signifi-
cant because of the subsequent standard minimiza-
tion algorithm (Hopcroft & Ullmann, 1979). This
algorithm yields a unique, minimal representation of
the extracted DFA. Many different D F A extracted
thus collapse into equivalence classes.

4.2. Example

We will illustrate in detail how the extraction
algorithm builds the corresponding D F A using a
simple example. Assume a recurrent network with
two state neurons and two input neurons is trained
on some data set. The network state vector has
dimension 2 and the range of possible values of So
and Sl can be represented as a unit square in the (Sl,
S2)-plane. For reasons of simplicity, we choose
quantization level q = 3, i.e., the output of each of
the two state neurons is divided into three equal
length intervals, defining 32 = 9 discrete partitions.
Each of these partitions corresponds to a hypothe-
tical state in the unknown DFA. We will assign labels
1, 2, 3 to the partitions in the order in which they
are visited for the first time.

The start state is defined by the initial network state
vector used for training the network; it lies in partition
1 (Figure 3a). The state vector reached in partition 1
falls within the accepting region (the output of the
response neuron is larger than 0.5); thus, this initial
state is marked as an accepting state (shaded circle).
The start state represents the totally unknown DFA.
On input "0" and "1", the network makes a transition
into partitions 1 and 2, respectively. This causes the
creation of a transition to a new accepting D F A state 2
and a transition f rom state 1 to itself. In the next step,

Discrete-time Recurrent Neural Networks 47

S

I A

1 - -

!

0
0

sl ,t

0 0.5

0

S I

i 2 ~!::~i~ ~ "!~i~':'~:"~i

0.5 1 OO//
i " %"i,

1

i ~ i i ~ ~i '~:~ii

l

~ ~.

0.5 1

- - -3

D,..

So

So

So

o, ~,~,~:.®~.,'~J _~
0 0.5 I S 0

(a)

(b)

(c)

(d)

FIGURE 3. DFA extraction. Example of extraction of a DFA from a recurrent network with two state neurons. The state space is
represented as a unit square in the (So, S1)-plane. The output range of each state neuron has been divided into three Intervals of equal
length resulting in nine partitions in the networks state space. The figures show the transitions performed between partitions and the
(partial) extracted DFA at different stages of the extraction algorithm. (a) The initial state 1 and all possible transitions; (b) all transitions
from state 2; (c) all transitions from states 3 and 4; (d) all possible transitions from states 5 and 6.

transitions from partition 2 into partitions 3 and 4 on
input "0" and "1", respectively, occur and the
resulting partial DFA is shown in Figure 3b. The
D F A in Figure 3c shows the current knowledge about
the D FA after all state transitions from states 3 and 4
have been extracted from the network. In the last step,
only one more new state is created (Figure 3d). Since
no known state has left any undefined transitions, the
extraction algorithm terminates. Notice that not all
partitions have been assigned to DFA states. The

algorithm usually only visits a subset of all available
partitions for the D F A extraction. Many more
partitions are reached when large test sets (especially
when they contain many long strings) are used (e.g.,
when measuring the generalization performance on a
large test set). The extracted D F A and its unique,
minimized representation are shown in Figure 4. The
DFAs accept all strings which do not contain three
consecutive 0s (notice that both DFAs accept exactly
the same regular language).

48 C, W. Omlin and C. L. Giles

I
/
I
I
I
I
I
I
I

t
t
l
l

FIGURE 4. DFA minimization. (a) Extracted OFA and (b) its unique representation obtained through minimization. Both DFAs accept the
same language, consisting of all strings which do not contain the substrlng "000".

I f several DFAs are extracted with different
quantization levels qi, then one or more of the
extracted D F A Mq~ may be consistent with the given
training set, i.e., several D F A Mq, may correctly
classify the training set. Clearly, we need to make a
choice between different consistent DFA. The
heuristic for choosing a D F A will be discussed next.

4.3. Model Selection

Let M denote the unknown D F A and L(M) the
language accepted by M. By choosing a particular
quantization level qi, we extract a minimized
finite-state automaton, which we consider to be a
hypothesis Mq,, for the grammar to be inferred.

A D F A M is called a consistent DFA if it correctly
classifies all strings of the training set; otherwise,
it is called an inconsistent model of the unknown
source grammar. Given a set of consistent hypo-
theses Mq,, Mq2,... , MqQ, we need criteria that
allow us to choose the hypothesis that best
approximates the unknown language L(M). We
refer to the process of choosing a D F A Mq, as
model selection. A possible heuristic for model
selection would be to split a given data set into two
disjoint sets (training and testing set), to train the
network on the training set and to test the
network's generalization performance on the test
set. However, by disregarding a subset of the
original data set for training, we may be eliminating

TABLE 2
DFA Generalization Performance

Smallest Consistent DFA Other Consistent DFAs

Test Set Training Set Size Average # 90% Confidence nterval Average # 90% Confidence Interval

Strings of length 1-15 1000 0.01% 0.00% ~< # ~< 0.03% 0.18% 0.13% ~< # ~< 0.23%
700 0.10% 0.03% ~< # ~< 0.16% 0.52% 0.45% < # ~< 0.60%
300 3.21% 2.00% ~ # ~< 4.42% 4.93% 4.44% ~ # ~< 5.43%
100 38.19% 36.77% ~< p <~ 39.62% 38.63% 38.19% ~< p ~< 39.07%
50 39.53% 38.68% ~< # ~< 40.39% 38.54% 38.10% ~< # ~< 38.99%

1000 random strings of 1000 0.02% 0.00% ~< # ~< 0.04% 2.00% 1.50% ~< # ~< 2.49%
length 100 700 1.35% 0.54% ~< # ~< 2.16% 3.24% 2.81% ~< # ~< 3.50%

300 12.00% 8.47% ~< # ~< 15.48% 19.84% 18.51% ~< # ~< 21.18%
100 38.52% 37.30% ~< # < 39.74% 38.63% 38.17% ~< # ~< 39.09%
50 42.91% 41.73% ~< # ~< 44.09% 42.23% 41.72% ~< # ~< 42.75%

1000 random strings of 1000 0.02% 0.00% ~< # ~< 0.06% 4.41% 3.25% ~< p. ~< 5.57%
length 1000 700 0.92% 0.22% ~< # <~ 1.62% 6.79% 5.52% ~< # ~< 8.06%

300 12.39% 8.84% ~< # ~< 15.94% 24.93% 22.42% ~< # ~< 27.43%
100 37.38% 36.47% ~< # ~< 38.30% 40.82% 39.11% ~< # ~< 42.53%
50 41.70% 40.48% ~< # ~< 42.93% 40.97% 40.42% ~< # ~< 41.53%

The table shows some statistics (t-student) on the generalization performance of consistent DFAs on test sets containing
strings of varying lengths (DFAs which were inconsistent with the training set were disregarded); the DFAs were extracted
from trained networks with quantization levels q = 2, 3 , . . . , 10. The average performance and 90% confidence shows that
the DFAs extracted with the smallest quantization levels have increasingly superior performance over the remaining
consistent DFAs as the length of the test strings increases. This becomes the case even for networks that were trained on
small data sets (100 strings) and thus necessarily learned a poorer model of the random 10-state DFA than the networks that
were trained on larger data sets.

Discrete-time Recurrent Neural Networks 49

FIGURE 5. Model selection. Minimized DFAs extracted from a trained network with quantization levels (a) q=3 , (b) q : 6 and (c) q : 8 .
The smallest DFA was used to generale the training set consisting of the first 1000 positive and negative example strings in alphabetical
order. Thus, it correctly classifies all strings. DFAs Ms and Ms make generalization errors with Ms showing a better generalization
performance than Me.

valuable data f rom the training set which would
improve the network 's generalization performance
if the entire data set were used for training.
Clearly, we wish to make a model selection based
solely on simple properties of the extracted DFAs
and not resort to a test set.

The minimized DFAs which were extracted from a
trained network for quantization levels q = 3, q = 6
and q = 8 are shown in Figure 5. All three DFAs were

consistent with the training set, i.e., they correctly
classified all strings in the training set. Which D F A
best models the unknown source M?.

To answer this question, we extracted DFAs with
quantization levels q = 2 , . . . , 10 f rom the 25 trained
networks for each of the five training sets and
measured the DFAs generalization performances on
the same three tests as before. In some cases, DFAs
that were extracted with quantization levels 2 or 3

50 C. W. Omlin and C. L. Giles

were inconsistent with a network's training set; these
DFAs were discarded.

In all our experiments, the consistent, minimized
DFAs that were extracted with the smallest quantiza-
tion levels also had the fewest number of states.
Following Occam's razor, we measured the general-
ization performances of these smallest consistent
DFAs and compared them to the performances of
the remaining DFAs. The results of a statistical
analysis are shown in Table 2. We observe that the
smallest consistent DFAs generally outperform the
remaining consistent DFAs. In the case where DFAs
were extracted from networks trained on only 50
strings, the smallest consistent DFAs are out-
performed by the remaining consistent DFAs.
However, this is statistically not significant since the
confidence intervals for the DFAs average perfor-
mance overlap.

These simulation results lead us to conjecture
that the DFA Mq which best models the unknown
DFA M is the smallest consistent DFA; Mq can be
found by extracting DFAs M 2 , . . . , M q - l , Mq in
that order. The best model is the first consistent
D FA Mq. We further hypothesize that there always
exists a value q such that Mq is the smallest
consistent DFA. Assuming that we succeed in
extracting a DF A that is consistent with the
training set, then such a smallest q exists by the
well-ordering principle. Our intuition leads us to
believe that large DFAs tend to overfit the given
training data set. They do not capture the structure
of the unknown source grammar well leading to
poorer generalization performance.

5. CONCLUSIONS

A heuristic has been introduced that permits the
inference of good grammars from trained networks.
The rules of learned grammars are extracted in the
form of deterministic finite-state automata (DFAs).
The problem of rule extraction is reduced to a
dynamical state exploration and cluster analysis in
the N-dimensional output space of recurrent state
neurons. Clusters of state neuron activations are
found through a simple partitioning procedure,
parameterized by a partitioning or quantization level
q. Other methods such as hierarchical clustering or
unsupervised learning algorithms could be used
instead. Although different DFAs may be extracted
for different values of the quantization level q, a
standard minimization algorithm (Hopcroft & Ull-
man, 1979) can be applied yielding unique, minimal
representations of the DFAs. Furthermore, these
DFAs may be identical over ranges of the quantiza-
tion level q.

We have observed that different DFAs of minimal
representation can be extracted from a trained

network depending on the parameter q. It is quite
common that several extracted DFAs are consistent
with the training set, i.e., several DFAs correctly
classify the training set. Generalization tests on the
different minimized DFAs have shown that there
exists among the consistent DFAs one which shows
the best generalization performance. Thus, it becomes
necessary to perform a model selection among several
D F A candidates. In our experiments, the smallest
consistent DFA always outperformed the trained
network and all other extracted DFAs. It was also
always the D F A that was extracted with the smallest
quantization level and that was consistent with the
training set.

Our rule extraction algorithm depends on divid-
ing the continuous state space of recurrent net-
works with sigmoidal discriminant functions into
discrete partitions. Different partitionings may
cause different, minimal DFAs to be extracted from
a network which makes a model selection neces-
sary. Two recently proposed methods avoid that
problem.

Zeng et al. (1993) define a discrete state space prior
to training rather than prior to the rule extraction.
The sigmoidal discriminant function is still used for
computing the weight updates. For string classifica-
tion, the sigmoidal discriminant function g(x)
becomes a step function h(x) = g(xi) for
Xi ~X ~Xi+l where g(xi) is the original sigmoidal
discriminant function. This yields qN discrete state
vectors in [0, 1] s , each of which
sponds to a DFA state.

Das and Mozer (1994) have
clustering learning method which

potentially corre-

proposed a self-
assumes that the

unknown source grammar requires a finite number of
discrete internal states that are corrupted due to
inaccuracies in the weights. Their networks learn to
recover these states with maximum a posteriori
probability. These clusters change during the course
of learning.

Both proposed methods report improved net-
work generalization performance based on the
stability of the internal DFA representation. How-
ever, they fail to address the issue of training
performance, i.e., DFAs which are readily learned
by networks without state space clustering may not
be learned as easily by either of the two clustering
methods.

Our results raise the issue improved performance
be obtained from some recursive combination of rule
extraction and rule insertion? We have developed a
single algorithm which maps a (partial) description of
a DFA into a second-order recurrent neural network
by programming some of the weights accordingly
(Omlin & Giles, 1992). The architecture of the
network is defined by the amount of prior informa-
tion about the otherwise unknown DFA. Significant

Discrete-time Recurrent Neural Networks 51

learning time improvements were achieved by
training networks with prior knowledge. By con-
tinuously inserting and extracting knowledge from a
network, starting with little or no prior information,
the size of the network would change after each rule
insertion/training/rule extraction cycle and be deter-
mined by the current partial knowledge of the DFA,
i.e., the extracted symbolic knowledge would control
the growth and decay of the network architecture.
Thus, this symbolically-guided training procedure
could lead to faster training and better generalization
performance.

REFERENCES

Angluin, D., & Smith, C. H. (1983). Inductive inference: theory and
methods. ACM Computing Surveys, 15, 236-269.

Bengio, Y., Simard, P., & Frasconi, P. (1994). Learning long-term
dependencies with gradient descent is difficult. IEEE Transac-
tions on Neural Networks, 1, 157-166.

Cleeremans, A., Servan-Schreiber, D., & McClelland, J. (1989).
Finite state automata and simple recurrent networks. Neural
Computation, 1, 372-381.

Clouse, D. S., Giles, C. L., Home, B. G., & Cottrell, G. W. (1994).
Learning large DeBruijn automata with feed-forward neural
networks. Technical Report CS94-398, Department of
Computer Science and Engineering, University of California
at San Diego, La Jolla.

Crutchfield, J. P., & Young, K. (1991). Computation at the onset of
chaos. In W. H. Zurek (Ed.), Proceedings of the 1988 Workshop
on Complexity, Entropy and the Physics of Information (pp. 223-
269). Redwood City: Addison-Wesley.

Das, S., & Mozer, M. C. (1994). A united gradient-descent/
clustering architecture for finite state machine induction. In J.
W. Cowan, G. Tesauro & J. Alspector (Eds.), Advances in
Neural Information Processing Systems 6 (pp. 19-26). San
Mateo: Morgan Kaufmann Publishers.

Elman, J. L. (1990). Finding structure in time. Cognitive Science,
14, 179-211.

Frasconi, P., Gori, M., Maggini, M., & Soda, G. (1991). A unified
approach for integrating explicit knowledge and learning by
example in recurrent networks. In 1991 IEEE INNS Inter-
national Joint Conference on Neural Networks. Seattle (pp. 811-
816). Piseataway: 1EEE Press.

Frasconi, P., Gori, M., Maggini, M., & Soda, G. (1995).
Representation of finite state automata in recurrent radial
basis function networks. Machine Learning, in press.

Fu, L. (1994). Rule generation from neural net~,orks. IEEE
Transactions on Neural Networks, 24, 1114-1124.

Giles, C. L., Sun, G. Z., Chen, H. H., Lee, Y. C., & Chert, D.
(1990). Higher order recurrent networks and grammatical
inference. In D. S. Touretzky (Ed.), Advances in Neural
Information Systems 2 (pp. 380-387). San Mateo: Morgan
Kaufmann Publishers.

Giles, C. C., & Omlin, C. W. (1992). Inserting rules into recurrent
neural networks. In S. Kung, F. Fallside, J. A. Sorenson & C.
Kamm (Eds.), Neural networks for signal processing lI,
Proceedings of the 1992 IEEE Workshop (pp. 13-32). Piscat-
away: IEEE Press.

Giles, C. L., & Omlin, C. W. (1994). Pruning recurrent neural
networks for improved generalization performance. IEEE
Transactions on Neural Networks, 5(5), 848-851.

Giles, C. L., Miller, C. B., Chen, D., Chert, H. H., Sun, G. Z., &
Lee, Y. C. (1992). Learning and extracting finite state automata
with second-order recurrent neural network. Neural Computa-
tion, 4, 393-405.

Giles, C. L., Home, B. G., & Lin, T. (1995a). Learning a class of
large finite state machines with a recurrent neural network.
Neural Networks, 8(9), 1359-1365.

Giles, C. L., Chen, D., Sun, G. Z., Chen, H. H., Lee, Y. C., &
Goudreau, M. W. (1995b). Constructive learning of recurrent
neural networks: limitations of recurrent cascade correlation
and a simple solution. 1EEE Transactions on Neural Networks,
6(4), 829-836.

Gold, E. M. (1978). Complexity of automaton identification from
given data. Information and Control, 37, 302-320.

Goudreau, M. W., Giles, C. L., Chakradhar, S. T., & Chert, D.
(1994). First-order vs second-order single layer recurrent
networks. IEEE Transactions on Neural Networks, 5(3), 511-
513.

Hanson, S., & Burr, D. (1991). What connectionist models learn:
learning and representation in connectionist networks. In R.
Mammone & Y. Zeevi (Eds.), Neural networks: theory and
applications. Boston: Academic Press.

Hertz, J., Krogh, A., & Palmer, R. G, (1991). Introduction to the
theory of neural computation. Redwood City: Addison-Wesley.

Hopcroft, J. E., & Ullmann, J. F. (1979). Introduction to automata
theory, languages and computation. Reading, MA: Addison-
Wesley.

Jim, K., Home, B. G., & Giles, C. L. (1995). Effects of noise on
convergence and generalization in recurrent networks. In G.
Tesauro, D. Touretzky, & T. Leen (Eds.), Advances in neural
information processing systems 7, (pp. 649-656). Cambridge,
MA: MIT Press.

Lee, Y. C., Doolen, G., Chen, H. H., Sun, G. Z., Maxwell, T., Lee,
H. Y., & Giles, C. L. (1986). Machine learning using a higher
order correlational network. Physica D, 22, 276-306.

Manolios, P., & Fanelli, R. (1994). First order recurrent neural
networks and deterministic finite state automata. Neural
Computation, 6(6), 1154-1172.

Omlin, C. W., & Giles, C. L. (1992). Training second order
recurrent neural networks using hints. In D. Sleeman & P.
Edwards (Eds.), Proceedings of the Ninth International
Conference on Machine Learning (pp. 363-368). San Mateo:
Morgan Kaufmann Publishers.

Pollack, J. B. (1991). The induction of dynamical recognizers.
Machine Learning, 7, 227-252.

Siegelmann, H. T., & Sontag, E. D. (1992). On the computational
power of neural nets. In Proceedings of the Fifth ACM
Workshop on Computational Learning Theory (pp. 440-449).
New York: ACM.

Sun, G. Z., Chen, H. H., Giles, C. L., Lee, Y. C. &Chen, D. (1990).
Connectionist push-down automata that learn context-free
grammars. Proceedings of the International Joint Conference
on Neural Networks (pp. 577-580). Hillsdale, NJ: Lawrence
Erlbaum.

Tino, P., & Sajda, J. (1995). Learning and extracting initial mealy
machines with a modular neural network model. Neural
Computation, 7(4), 882-844.

Towell, G. G., Craven, M. W., & Shavlik, J. W. (1990).
Constructive induction using knowledge-based neural net-
works. In L. A. Bimbaum, & G. C. Collins (Eds.),
Proceedings of the Eighth International Machine Learning
Workshop (p. 213). San Mateo: Morgan Kaufmann Publish-
ers.

Watrous, R. L., & Kuhn, G. M. (1992). Induction of finite-state
languages using second-order recurrent networks. Neural
Computation, 4, 406-414.

Williams, R. J., & Zipser, D. (1989). A learning algorithm for
continually running fully recurrent neural networks. Neural
Computation, 1, 270-280.

Zeng, Z., Goodman, R., & Smyth, P. (1993). Learning finite state
machines with self-clustering recurrent networks. Neural
Computation, 5, 976-990.

52 c. w. Omlin and C. L. Giles

S!')

S

WOk

N, L

gO

N O M E N C L A T U R E

output of state neuron j after time step t
output of the response neuron at the end of

an input string
network state vector
output of input neuron k at time step t
second-order weight from state neuron j and

input neuron k to state neuron i
number of state and input neurons
total input to state neuron i
sigmoidal discriminant of each neuron
A regular grammar G = (S, N, T, P)

consists of:
• start symbol S
• set of non-terminal symbols N

L(G)

L(M)
q
Mq

• set of terminal symbols T
• set of production rules P
the language generated by the regular

grammar G
A deterministic finite-state automaton

(DFA) M = (~--~, Q, R, F, 6)consists of:
• alphabet y~.
• set of DFA states Q
• start state R
• set of accepting F
• state transition functions 6: Q x ~ ---+ Q
the (regular) language accepted by D F A M
quantization level
DFA extracted with quantization level q

