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Absa'act--The extraction o f  symbolic knowledge from trained neural networks and the direct encoding o f  (partial) 
knowledge into networks prior to training are important issues. They allow the exchange o f  information between 
symbolic and connectionist knowledge representations. The focas o f  this paper is on the quality o f  the rules that are 
extracted from recurrent neural networks. Discrete-time recurrent neural networks can be trained to correctly 
classify strings o f  a regular language. Rules defining the learned grammar can be extracted from networks in the 
form of  deterministic finite-state automata (DFAs) by applying clustering algorithms in the output space o f  
recurrent state neurons. Our algorithm can extract different finite-state automata that are consistent with a training 
set from the same network. We compare the generalization performances o f  these different models and the trained 
network and we introduce a heuristic that permits us to choose among the consistent DFAs the model which best 
approximates the learned regular grammar. 
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1. INTRODUCTION 

There has been much interest in the integration and 
extraction of  knowledge from neural networks 
(Towell et al., 1990; Frasconi et al., 1991; Hanson 
& Burr, 1991; Giles et al., 1992; Watrous & Kuhn, 
1992; Fu, 1994). One reason is that the lack of 
understanding of  the rules that underlie neural 
network performance has limited their use in some 
application domains. Another is that some intelligent 
processing naturally requires the use o f  symbolic and 
rule-based knowledge. Recurrent neural networks 
with discrete-time inputs readily lend themselves to 
certain types of  knowledge encoding and extract ion--  
in particular the ordered triple of  a discrete Markov 
{state; input --, next-state} process (Giles et al., 1992; 
Omlin & Giles, 1992). What this paper addresses is 
the validity and usefulness of  extracting this 
information based on a representation of  the 
neurons'  activation. 
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1.1. Background 

Recently, the training o f  recurrent neural networks 
that recognize finite state languages has been 
discussed by several authors (Cleeremans et al., 
1989; Williams & Zipser, 1989; Elman, 1990; Giles 
et al., 1992; Watrous & Kuhn,  1992). The motivation 
for this work has been multifold; from understanding 
how these neural networks process natural language 
to quantifying and understanding their computa- 
tional characteristics. Cleeremans (1989) and Elman 
(1990) trained recurrent networks by predicting the 
next symbol using a truncation of  the backward 
recurrence. Cleeremans et al. (1989) concluded that 
the hidden unit activations represented past histories 
and that clusters of  these activations can represent 
the states of  the generating automaton. The work 
reported by Giles et al. (1992) is an extension of  
Cleeremans et al. (1989) in that  complete determinis- 
tic finite-state automata are extracted from recurrent 
networks. Watrous and Kuhn (1992) implemented an 
alternative approach to state machine extraction. In 
related work, Crutchfield and Young (1991) extract 
finite-state automata from general dynamical systems 
though the systems do not have dynamical inputs. 

1.2. Motivation 

Grammars and automata are intimately related. 
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Grammars  generate the languages that automata 
recognize. The computational power of  recurrent 
networks has been proven by relating these networks 
to automata. Recurrent networks have recently been 
shown to be computationally quite powerful, i.e., 
Turing equivalent (Siegelmann & Sontag, 1992). The 
representational limitations of recurrent network 
models have been explored by showing their relation- 
ships to automata (Goudreau et al., 1994, Giles et al., 
1995b). Thus, it is natural to see how well recurrent 
networks learn what they can be proven to represent. 

This being said, it is not evident that recurrent 
networks are the best tools for learning regular 
grammars. However, regular language inference 
requires state information to be stored over indefinite 
periods of  time and no feature extraction is necessary 
for learning. Thus, grammatical inference is a good test 
bed in which to investigate issues related to the 
representation of  symbolic knowledge in recurrent 
networks and to explore their computational cap- 
abilities. For  example, Giles and Omlin (1994) show 
how grammar learning can be useful in quantifying the 
computational power of  a pruning algorithm of 
recurrent neural networks. Jim et al. (1995) show 
that training noisy recurrent networks with gramma- 
tical strings is a good measure of the effect of different 
types of noise insertion methodologies on networks 
generalization and convergence performance. The 
performance of  recurrent networks on long temporal 
sequences is naturally explored by using grammatical 
strings (Manolios & Fanelli, 1994). Frasconi et al. 
(1995) used grammar learning and representation to 
explore a new recurrent network architecture. 
Furthermore,  recent results by Giles et al. (1995a) 
and Clouse et al. (1994) imply that neural networks 
under certain constraints can learn extremely large 
grammars and may be competitive with other methods. 

The extraction of  (symbolic) rules from both feed- 
forward as well as recurrent neural networks has 
become an active area of  research (Cleeremans et al., 
1989; Towell et al., 1990; Giles et al., 1992; Fu, 1994). 
The following question is the focus of our work: How 
good are the rules extracted from recurrent networks? 
This is an important  one and, to our knowledge, has 
not been discussed anywhere else in the literature. 

1.3. Overview 

We train discrete second-order recurrent neural 
networks to recognize strings of a regular language 
given a finite set of positive and negative example 
strings. The DFAs extracted from trained networks 
depend on a clustering parameter and different, 
minimized DFAs may be obtained for different 
values of  the clustering parameter. Several among 
the different DFAs may correctly classify all strings 
of  the training set. Given a set of extracted DFAs 

which may accept different regular languages, the 
question arises which DFA best approximates the 
unknown source grammar, i.e., which extracted DFA 
assigns the same label as the unknown source 
grammar to as many strings as possible. A model 
selection heuristic is introduced which allows us to 
choose among the different DFAs the one that best 
models the regular language. 

The remainder of this paper is organised as 
follows: we give a brief introduction to regular 
languages and grammatical inference in Section 2, 
followed by a presentation of the neural network 
architecture and training in Section 3; we also include 
some generalization results of trained networks on 
long test strings. The rule extraction algorithm and 
the problem of selecting among the extracted DFAs 
the best model are discussed in detail in Section 4. A 
summary of  the empirical results, followed by a short 
discussion of  related work and possible future 
research directions conclude this paper. 

2. REGULAR LANGUAGES 

2.1. Definitions 

Regular languages represent the smallest class of 
formal languages in the Chomsky hierachy (Hopcroft  
& Ullman, 1979). Regular languages are generated by 
regular grammars. A regular grammar G is a 4-tuple 
G = (S, N, T, P) where S is the start symbol, N and 
T are non-terminal and terminal symbols, respec- 
tively, and P are productions of the form A -~ a or 
A ~ a B  where A, B E N  and a c  T. The regular 
language generated by G is denoted L(G). 

Associated with each regular language L is a 
deterministic finite-state automaton (DFA) M which 
is an acceptor for the language L(G), i.e., 
L(G) = L(M). DFA M accepts only strings which 
are a member of  the regular language L(G). Formally, 
a D F A  M is a 5-tuple M =  (~, Q, R, F, 6) where 
E = {a l , . . .  ,ak} is the alphabet of the language L, 
Q = {sl , . . . , sM} is a set of  states, R E Q is the start 
state, F c_ Q is a set of accepting states and tS: 
Q × E ~ Q define state transitions in M. A string x is 
accepted by the DFA M and hence is a member of the 
regular language L(M) if an accepting state is reached 
after the string x has been read by M. Alternatively, a 
D F A  M can also be considered a generator which 
generates the regular language L(M). 

2.2. Grammatical Inference 

Grammatical inference, the problem of inferring 
grammar(s) from samples of strings of an unknown 
regular language, is an NP-complete problem (Gold, 
1978; Angluin & Smith, 1983). The problem of 
grammatical inference can be stated informally as 
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follows. Given a finite set of  strings along with a label 
indicating whether or not a string is a member of  the 
language, find the rules which define the language. 
For  example, we may be given the following two sets 
of  positive and negative example strings: 

Positive examples Negative examp&s 

10010 100010 
1011101 001110001 
O0 000 
111 100110111000 
100100100111 1001001000111 
1010011 100001 
001111 00001111 
I01010 1010001010 

In this example the rule might be to reject strings 
which contain three or more consecutive 0s and to 
accept all other strings. It is intuitively clear that the 
inferred grammar will better model the underlying 
language if more example strings - -  both positive and 
negative - -  are provided as input to the inference 
algorithm. 

Our algorithm extracts rules from (trained) net- 
works in the form of  DFAs, which can be readily 
transformed into a regular grammar where each state 
of  the DF A corresponds to a non-terminal symbol and 
the D F A  transitions correspond to production rules. 

3. RECURRENT NEURAL NETWORK 

3.1. Architecture 

Recurrent neural networks have been shown to have 

powerful capabilities for modeling many computa- 
tional structures; an excellent discussion of  recurrent 
neural network models and references can be found in 
Hertz et al. (1991). To learn grammars, we use a 
second-order recurrent neural network (Lee et al., 
1986; Giles et al., 1990; Gun et al., 1990; Pollack, 
1991). The network architecture is illustrated in Figure 
1. This net has N recurrent hidden neurons labeled Sj; 
L special, nonrecurrent input neurons labeled Ik; and 
N 2 x L real-valued weights labeled Wqk. As long as 
the number of  input neurons is small compared to the 
number of hidden neurons, the complexity of the 
network only grows as O(N2), the same as a linear 
network. We refer to the values of  the hidden neurons 
collectively as a state vector S in the finite N- 
dimensional space [0,1] jr. Note  that the weights Wijk 
modify a product  of  the hidden Sj and input Ik 
neurons. This quadratic form directly represents the 
state transition diagrams of  a state process - -  {input, 
state} ~ {next state}. This recurrent network accepts 
a time-ordered sequence of  inputs and evolves with 
dynamics defined by the following equations: 

S}t+ l) = g(--i), Ei =- ~ . . . .  "ijkoj(')'(O'k 
j,k 

where g is a sigmoid discriminant function. Each 
input string is encoded into the input neurons one 
character per discrete time step t. The above equation 
is then evaluated for each hidden neuron Si to 
compute the next state vector S of  the hidden neurons 
at the next time step t + 1, With unary encoding the 
neural network is constructed with one input neuron 

FIGURE 1. A second-order, single layer recurrent neural nelwork. S~ 0 and I(, 0 represent the values of the ith and kth state and Input 
neuron, respectively, at time T. ® represents the operation Wijk × S~ 0 ×l(kO; gO is the sigmoidal discriminant function. 



44 C. IV. Omlin and C. L. Giles 

TABLE 1 
Network GeneralizaUon Perlormance 

Test Set Training Set Size Average p 90% Confidence Interval 

Strings of length 1-15 1000 0.84% 0.6% ~< # <~ 1.00% 
700 1.63% 1.26% ~< p ~< 1.99% 
300 9.74% 8.34% ~< # ~< 11.14% 
100 38.09% 36.23% ~< # ~ 39.96% 
50 57.96% 56.29% ~< p ~< 59.64% 

1000 4.61% 3.57% ~< # < 5.66% 
700 7.07% 5.67% ~< # ~< 8.47% 
300 26.23% 23.38% ~< # ~< 29.07% 
100 48.50% 47.47% ~< # ~< 49.52% 
50 61.17% 59.36% ~< # ~ 62.98% 

1000 4.59% 3.58% ~< # ~< 5.59% 
700 7.68% 6.08% ~< # ~< 9.28% 
300 25.89% 23.02% ~< # ~< 28.76% 
100 47.47% 46.43% ~< # ~< 48.50% 
50 60.24% 58.05% ~< # <~ 62.43% 

1000 random strings of length 
100 

1000 random strings of length 
1000 

The table shows some statistics (t-student) on the generalization performance of networks 
with eight recurrent state neurons on two different test sets. The training sets contained the 
first 1000, 700, 300, 100, and 50 strings in alphabetical order; starting with strings of length 
1 the strings alternated between positive and negative examples. The average performance 
and the 90% confidence intervals clearly show how the network performances improve 
with increasing training set s ize~and thus string lengths--particularly for the test set 
containing strings of lengths 100 and 1000. The networks generally perform poorer on 
longer str ings~maximum string length 15 compared to string length 100 and 1000~due to 
the increasing instability of the internal DFA representation with increasing string length, 
leading to misclassification of strings. 

for each character in the alphabet of the relevant 
language. This condition might be too restrictive for 
grammars with large alphabets. 

3.2. Training Procedure 

A special recurrent neuron is selected as the 
network's output neuron. A network learns by 
comparing its actual output with the desired 
classification at the end of a string. Weight updates 
are computed using a second-order form of the 
RTRL net of Williams and Zipser (1989) which 
computes the partial derivative of a quadratic error 
function with respect to all weights Wqk. 

3.3. Network Performance 

We consider a regular language over the alphabet 
{0, 1} that is recognized by a randomly generated 
minimal 10-state DFA. From a data set consisting of 
1000 alternating positive and negative example 
strings starting with strings of length 0, we formed 
five different training sets. The first training set 
consisted of  all 1000 example strings; the remaining 
training sets consisted of  the first 700, 300, 100 and 50 
strings, respectively, of the 1000 example strings. This 
was done in order to achieve a variety of general- 
ization performances for networks of  fixed size. 

All the weights were initialized to random values 
in the interval [-1.0, 1.0]. The learning rate a and the 
momentum 7/were both set to 0.5. 

We used an incremental learning strategy where a 
network is first trained on a small subset of all 
training strings ("working set"); this subset only 
contains the shortest strings. When a network has 
either learned to correctly classify all the strings of a 
working set or a maximum number of epochs has 
expired for the current working set, new strings from 
the training set are added to the working set and the 
network is trained on this expanded working set. The 
working set is expanded until a network correctly 
classifies all the strings of the training set. This 
incremental training heuristic aims at overcoming the 
problems that arise from training on long strings with 
a gradient descent learning algorithm (Bengio et al., 
1994). 

We trained 25 networks with eight state neurons on 
each of the five training sets and performed a 
statistical analysis on the networks' average general- 
ization performances (Table 1) on three test sets 
consisting of all strings of length up to 15 (65k strings), 
1000 random strings of length 100, and 1000 random 
strings of length 1000. We observe that the average 
generalization performance improves with increasing 
training set size which contain strings of increasing 
length; the 90% confidence intervals are non-over- 
lapping. This result is not surprising since networks 
trained on smaller data sets have less information and 
thus learn a poorer model of the source grammar. 
Networks generally perform poorer when tested on 
strings that are longer compared to the training sets; a 
network's internal DFA representation becomes 
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increasingly unstable with increasing string length 
which leads to string misclassification. 

The next section addresses the issue of how DFA 
extraction can be made computationally feasible and 
the quality of the extracted rules, i.e., how well do 
extracted DFAs generalize compared to the net- 
work's generalization performance; we also compare 
the performance of DFAs that are extracted with 
different quantization levels from the same network. 
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4. RULE EXTRACTION 

4.1. Algorithm 

We describe our heuristic for extracting rules from 
recurrent networks in the form of  DFAs (Giles et al., 
1992). Different approaches are described in Cleere- 
mans et al. (1989), Watrous and Kuhn (1992) and 
Tino and Sajda (1995). The heuristic is not restricted 
to second-order networks and can be applied to any 
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FIGURE 2. Clustering In network state space. A recurrent network with four state neurons was trained to accept only strings which do not 
contain three consecutive 0s. The network builds an internal representation of the learned language in the space of its output neurons. 
The two-dimensional projection of the slate space [0, 1] 4 into the (Si, Si)-plane for ell possible pairs ($1, Si) are shown (six projections). 
The f igures show that the s ta l l  vectors reached for the strings ol the test set tend to form clusters. We hypothesize that these clusters 
correspond to stales of the leamed DFA and transi l ions between clusters correspond to state transit ions in the DFA. 
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discrete-time neural network. The algorithm used to 
extract a finite-state au tomaton  from a network is 
based on the observation that the outputs of  the 
recurrent state neurons of  a trained network tend to 
cluster as shown in Figure 2. The outputs of  a trained 
four-neuron recurrent network which is tested on a 
small test set are shown as two-dimensional 
projections into the (Si, Sj)-plane, for all possible 
pairs (Si, Sj) (six projections). Our  hypothesis is that 
collections of  these clusters correspond to the states 
of  the finite-state au tomaton  the network has learned. 
Furthermore,  these clusters tend to be well separated 
in networks which learned a given grammar  well as 
measured by their generalization performance on 
unseen strings. For  the D F A  extractions, we consider 
network states where the output  of  the response 
neuron So is larger than 0.5 to correspond to 
accepting D F A  states; otherwise, the current net- 
work state corresponds to a rejecting D F A  state. The 
problem of  D F A  extraction is thus reduced to 
identifying clusters in the output  space [0, 1] jv of  all 
state neurons. We use a dynamical state space 
exploration which identifies the D F A  states and at 
the same time avoids exploration of  the entire space 
which is computationally not feasible. 

The extraction algorithm divides the output of  
each of  the N state neurons into q intervals of  equal 
size, yielding qN partitions in the space of  outputs of  
the state neurons. We also refer to q as the 
quantization level. 

Starting in some defined initial network state, the 
trained weights of  the network will cause the current 
network state to follow a continuous state trajectory 
as symbols are presented as input. The algorithm 
considers all strings in alphabetical order starting 
with length 1. This procedure defines a search tree 
with the initial state as its root; the number  of  
successors of  each node is equal to the number  of  
symbols in the input alphabet.  Links between nodes 
correspond to transitions between D F A  states. The 
search is performed in breadth-first order. When a 
transition is made into another  (not necessarily 
different) partition, then all paths from that new 
network state are followed for subsequent input 
symbols creating new states in the D F A  for each new 
input symbol, subject to the following three 
conditions. (1) When a previously visited partition 
is reached, then only the new transition is defined 
between the previous and the current partition; no 
new D F A  state is created. This corresponds to 
pruning the search tree at that  node. (2) In general, 
many  different state vectors belong to the same 
partition. We choose the state vector which first 
reached a partition as the new initial state for all 
subsequent symbols. This condition only applies 
when two or more transitions from a partition to 
another partition are extracted. (3) When a transition 

leads from a partition immediately to the same 
partition, then a loop is created and the search tree 
is also pruned at that node. The algorithm terminates 
when no new partitions are visited for the first time - -  
hence no new D F A  states are created - -  and all 
possible transitions for all D F A  states have been 
extracted. 

The extraction would seem computationally 
infeasible if all qN partitions had to be visited. 
However,  the clusters corresponding to D F A  states 
are often local and can be covered with fewer 
partitions. Also, we aim to extract DFAs with the 
smallest possible quantization level which explains 
the training data. These properties along with the 
pruning of  the search tree makes D F A  extraction 
feasible even for DFAs  with larger alphabets. 

Clearly, the extracted D F A  depends on the 
quantization level q chosen, i.e., in general, different 
DFAs will be extracted for different values of  q. 
Furthermore,  because of  condition 2, different DFAs  
may be extracted depending on the order in which the 
successors of  a node in the search tree are visited. In 
general, however, these distinctions are not signifi- 
cant because of  the subsequent standard minimiza- 
tion algorithm (Hopcroft  & Ullmann, 1979). This 
algorithm yields a unique, minimal representation of 
the extracted DFA.  Many different D F A  extracted 
thus collapse into equivalence classes. 

4.2. Example 

We will illustrate in detail how the extraction 
algorithm builds the corresponding D F A  using a 
simple example. Assume a recurrent network with 
two state neurons and two input neurons is trained 
on some data set. The network state vector has 
dimension 2 and the range of  possible values of  So 
and Sl can be represented as a unit square in the (Sl, 
S2)-plane. For  reasons of  simplicity, we choose 
quantization level q =  3, i.e., the output of  each of  
the two state neurons is divided into three equal 
length intervals, defining 32 = 9  discrete partitions. 
Each of these partitions corresponds to a hypothe- 
tical state in the unknown DFA.  We will assign labels 
1, 2, 3 . . . .  to the partitions in the order in which they 
are visited for the first time. 

The start state is defined by the initial network state 
vector used for training the network; it lies in partition 
1 (Figure 3a). The state vector reached in partition 1 
falls within the accepting region (the output of  the 
response neuron is larger than 0.5); thus, this initial 
state is marked as an accepting state (shaded circle). 
The start state represents the totally unknown DFA. 
On input "0"  and "1",  the network makes a transition 
into partitions 1 and 2, respectively. This causes the 
creation of a transition to a new accepting D F A  state 2 
and a transition f rom state 1 to itself. In the next step, 
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FIGURE 3. DFA extraction. Example of extraction of a DFA from a recurrent network with two state neurons. The state space is 
represented as a unit square in the (So, S1)-plane. The output range of each state neuron has been divided into three Intervals of equal 
length resulting in nine partitions in the networks state space. The figures show the transitions performed between partitions and the 
(partial) extracted DFA at different stages of the extraction algorithm. (a) The initial state 1 and all possible transitions; (b) all transitions 
from state 2; (c) all transitions from states 3 and 4; (d) all possible transitions from states 5 and 6. 

transitions from partition 2 into partitions 3 and 4 on 
input "0"  and "1",  respectively, occur and the 
resulting partial DFA is shown in Figure 3b. The 
D F A  in Figure 3c shows the current knowledge about  
the D FA after all state transitions from states 3 and 4 
have been extracted from the network. In the last step, 
only one more new state is created (Figure 3d). Since 
no known state has left any undefined transitions, the 
extraction algorithm terminates. Notice that not all 
partitions have been assigned to DFA states. The 

algorithm usually only visits a subset of  all available 
partitions for the D F A  extraction. Many more 
partitions are reached when large test sets (especially 
when they contain many long strings) are used (e.g., 
when measuring the generalization performance on a 
large test set). The extracted D F A  and its unique, 
minimized representation are shown in Figure 4. The 
DFAs accept all strings which do not contain three 
consecutive 0s (notice that both DFAs accept exactly 
the same regular language). 
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FIGURE 4. DFA minimization. (a) Extracted OFA and (b) its unique representation obtained through minimization. Both DFAs accept the 
same language, consisting of all strings which do not contain the substrlng "000". 

I f  several DFAs  are extracted with different 
quantization levels qi, then one or more of  the 
extracted D F A  Mq~ may be consistent with the given 
training set, i.e., several D F A  Mq, may correctly 
classify the training set. Clearly, we need to make  a 
choice between different consistent DFA.  The 
heuristic for choosing a D F A  will be discussed next. 

4.3. Model Selection 

Let M denote the unknown D F A  and L(M)  the 
language accepted by M. By choosing a particular 
quantization level qi, we extract a minimized 
finite-state automaton,  which we consider to be a 
hypothesis Mq,, for the grammar  to be inferred. 

A D F A  M is called a consistent DFA if it correctly 
classifies all strings of  the training set; otherwise, 
it is called an inconsistent model of  the unknown 
source grammar.  Given a set of  consistent hypo- 
theses Mq,, Mq2,... , MqQ, we need criteria that  
allow us to choose the hypothesis that best 
approximates the unknown language L(M).  We 
refer to the process of  choosing a D F A  Mq, as 
model selection. A possible heuristic for model 
selection would be to split a given data set into two 
disjoint sets (training and testing set), to train the 
network on the training set and to test the 
network's  generalization performance on the test 
set. However,  by disregarding a subset of  the 
original data  set for training, we may be eliminating 

TABLE 2 
DFA Generalization Performance 

Smallest Consistent DFA Other Consistent DFAs 

Test Set Training Set Size Average # 90% Confidence nterval Average # 90% Confidence Interval 

Strings of length 1-15 1000 0.01% 0.00% ~< # ~< 0.03% 0.18% 0.13% ~< # ~< 0.23% 
700 0.10% 0.03% ~< # ~< 0.16% 0.52% 0.45% < # ~< 0.60% 
300 3.21% 2.00% ~ # ~< 4.42% 4.93% 4.44% ~ # ~< 5.43% 
100 38.19% 36.77% ~< p <~ 39.62% 38.63% 38.19% ~< p ~< 39.07% 
50 39.53% 38.68% ~< # ~< 40.39% 38.54% 38.10% ~< # ~< 38.99% 

1000 random strings of 1000 0.02% 0.00% ~< # ~< 0.04% 2.00% 1.50% ~< # ~< 2.49% 
length 100 700 1.35% 0.54% ~< # ~< 2.16% 3.24% 2.81% ~< # ~< 3.50% 

300 12.00% 8.47% ~< # ~< 15.48% 19.84% 18.51% ~< # ~< 21.18% 
100 38.52% 37.30% ~< # < 39.74% 38.63% 38.17% ~< # ~< 39.09% 
50 42.91% 41.73% ~< # ~< 44.09% 42.23% 41.72% ~< # ~< 42.75% 

1000 random strings of 1000 0.02% 0.00% ~< # ~< 0.06% 4.41% 3.25% ~< p. ~< 5.57% 
length 1000 700 0.92% 0.22% ~< # <~ 1.62% 6.79% 5.52% ~< # ~< 8.06% 

300 12.39% 8.84% ~< # ~< 15.94% 24.93% 22.42% ~< # ~< 27.43% 
100 37.38% 36.47% ~< # ~< 38.30% 40.82% 39.11% ~< # ~< 42.53% 
50 41.70% 40.48% ~< # ~< 42.93% 40.97% 40.42% ~< # ~< 41.53% 

The table shows some statistics (t-student) on the generalization performance of consistent DFAs on test sets containing 
strings of varying lengths (DFAs which were inconsistent with the training set were disregarded); the DFAs were extracted 
from trained networks with quantization levels q = 2, 3 , . . . ,  10. The average performance and 90% confidence shows that 
the DFAs extracted with the smallest quantization levels have increasingly superior performance over the remaining 
consistent DFAs as the length of the test strings increases. This becomes the case even for networks that were trained on 
small data sets (100 strings) and thus necessarily learned a poorer model of the random 10-state DFA than the networks that 
were trained on larger data sets. 
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FIGURE 5. Model selection. Minimized DFAs extracted from a trained network with quantization levels (a) q=3 ,  (b) q : 6  and (c) q : 8 .  
The smallest DFA was used to generale the training set consisting of the first 1000 positive and negative example strings in alphabetical 
order. Thus, it correctly classifies all strings. DFAs Ms and Ms make generalization errors with Ms showing a better generalization 
performance than Me. 

valuable data f rom the training set which would 
improve the network 's  generalization performance 
if the entire data  set were used for training. 
Clearly, we wish to make a model selection based 
solely on simple properties of  the extracted DFAs  
and not resort to a test set. 

The minimized DFAs  which were extracted from a 
trained network for quantization levels q =  3, q = 6  
and q = 8 are shown in Figure 5. All three DFAs  were 

consistent with the training set, i.e., they correctly 
classified all strings in the training set. Which D F A  
best models the unknown source M?. 

To answer this question, we extracted DFAs  with 
quantization levels q = 2 , . . . ,  10 f rom the 25 trained 
networks for each of  the five training sets and 
measured the DFAs  generalization performances on 
the same three tests as before. In some cases, DFAs  
that  were extracted with quantization levels 2 or 3 
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were inconsistent with a network's training set; these 
DFAs were discarded. 

In all our experiments, the consistent, minimized 
DFAs that were extracted with the smallest quantiza- 
tion levels also had the fewest number of  states. 
Following Occam's razor, we measured the general- 
ization performances of  these smallest consistent 
DFAs and compared them to the performances of  
the remaining DFAs. The results of  a statistical 
analysis are shown in Table 2. We observe that the 
smallest consistent DFAs generally outperform the 
remaining consistent DFAs. In the case where DFAs 
were extracted from networks trained on only 50 
strings, the smallest consistent DFAs are out- 
performed by the remaining consistent DFAs. 
However, this is statistically not significant since the 
confidence intervals for the DFAs average perfor- 
mance overlap. 

These simulation results lead us to conjecture 
that the DFA Mq which best models the unknown 
DFA M is the smallest consistent DFA; Mq can be 
found by extracting DFAs M 2 , . . . , M q - l ,  Mq in 
that order. The best model is the first consistent 
D FA Mq. We further hypothesize that there always 
exists a value q such that Mq is the smallest 
consistent DFA. Assuming that we succeed in 
extracting a DF A that is consistent with the 
training set, then such a smallest q exists by the 
well-ordering principle. Our intuition leads us to 
believe that large DFAs tend to overfit the given 
training data set. They do not capture the structure 
of  the unknown source grammar well leading to 
poorer generalization performance. 

5. CONCLUSIONS 

A heuristic has been introduced that permits the 
inference of  good grammars from trained networks. 
The rules of  learned grammars are extracted in the 
form of deterministic finite-state automata (DFAs). 
The problem of  rule extraction is reduced to a 
dynamical state exploration and cluster analysis in 
the N-dimensional output  space of recurrent state 
neurons. Clusters of  state neuron activations are 
found through a simple partitioning procedure, 
parameterized by a partitioning or quantization level 
q. Other methods such as hierarchical clustering or 
unsupervised learning algorithms could be used 
instead. Although different DFAs may be extracted 
for different values of  the quantization level q, a 
standard minimization algorithm (Hopcroft  & Ull- 
man, 1979) can be applied yielding unique, minimal 
representations of  the DFAs. Furthermore,  these 
DFAs may be identical over ranges of the quantiza- 
tion level q. 

We have observed that different DFAs of minimal 
representation can be extracted from a trained 

network depending on the parameter q. It is quite 
common that several extracted DFAs are consistent 
with the training set, i.e., several DFAs correctly 
classify the training set. Generalization tests on the 
different minimized DFAs have shown that there 
exists among the consistent DFAs one which shows 
the best generalization performance. Thus, it becomes 
necessary to perform a model selection among several 
D F A  candidates. In our experiments, the smallest 
consistent DFA always outperformed the trained 
network and all other extracted DFAs. It was also 
always the D F A  that was extracted with the smallest 
quantization level and that was consistent with the 
training set. 

Our rule extraction algorithm depends on divid- 
ing the continuous state space of  recurrent net- 
works with sigmoidal discriminant functions into 
discrete partitions. Different partitionings may 
cause different, minimal DFAs to be extracted from 
a network which makes a model selection neces- 
sary. Two recently proposed methods avoid that 
problem. 

Zeng et al. (1993) define a discrete state space prior 
to training rather than prior to the rule extraction. 
The sigmoidal discriminant function is still used for 
computing the weight updates. For string classifica- 
tion, the sigmoidal discriminant function g(x) 
becomes a step function h(x) = g(xi) for 
Xi ~X ~Xi+l where g(xi) is the original sigmoidal 
discriminant function. This yields qN discrete state 
vectors in [0, 1] s ,  each of which 
sponds to a DFA state. 

Das and Mozer (1994) have 
clustering learning method which 

potentially corre- 

proposed a self- 
assumes that the 

unknown source grammar requires a finite number of 
discrete internal states that are corrupted due to 
inaccuracies in the weights. Their networks learn to 
recover these states with maximum a posteriori 
probability. These clusters change during the course 
of  learning. 

Both proposed methods report improved net- 
work generalization performance based on the 
stability of  the internal DFA representation. How- 
ever, they fail to address the issue of training 
performance, i.e., DFAs which are readily learned 
by networks without state space clustering may not 
be learned as easily by either of  the two clustering 
methods. 

Our results raise the issue improved performance 
be obtained from some recursive combination of rule 
extraction and rule insertion? We have developed a 
single algorithm which maps a (partial) description of 
a DFA into a second-order recurrent neural network 
by programming some of  the weights accordingly 
(Omlin & Giles, 1992). The architecture of  the 
network is defined by the amount  of  prior informa- 
tion about  the otherwise unknown DFA. Significant 
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learning time improvements were achieved by 
training networks with prior knowledge. By con- 
tinuously inserting and extracting knowledge from a 
network, starting with little or no prior information, 
the size of the network would change after each rule 
insertion/training/rule extraction cycle and be deter- 
mined by the current partial knowledge of the DFA, 
i.e., the extracted symbolic knowledge would control 
the growth and decay of the network architecture. 
Thus, this symbolically-guided training procedure 
could lead to faster training and better generalization 
performance. 
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output  of state neuron j after time step t 
output  of  the response neuron at the end of  

an input string 
network state vector 
output of  input neuron k at time step t 
second-order weight from state neuron j and 

input neuron k to state neuron i 
number of  state and input neurons 
total input to state neuron i 
sigmoidal discriminant of  each neuron 
A regular grammar G = (S, N, T, P) 

consists of: 
• start symbol S 
• set of  non-terminal symbols N 

L(G) 

L(M) 
q 
Mq 

• set of  terminal symbols T 
• set of  production rules P 
the language generated by the regular 

grammar G 
A deterministic finite-state automaton 

(DFA) M = (~--~, Q, R, F, 6)consists of: 
• alphabet y~. 
• set of  DFA states Q 
• start state R 
• set of  accepting F 
• state transition functions 6: Q x ~ ---+ Q 
the (regular) language accepted by D F A  M 
quantization level 
DFA extracted with quantization level q 


