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Learning a Class of Large Finite State Machines with a 
Recurrent Neural Network 
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Abstract--One o f  the issues in any learning model is how it scales with problem size. The problem o f  learning finite 
state machine (FSMs)  from examples with recurrent neural networks has been extensively explored. However, these 
results are somewhat disappointing in the sense that the machines that can be learned are too small to be competitive 
with existing grammatical inference algorithms. We show that a type o f  recurrent neural network (Narendra & 
Parthasarathy, 1990, IEEE Trans. Neural Networks, 1, 4-27) which has feedback but no hidden state neurons can 
learn a special type o f  F S M  called a finite memory machine (FMM)  under certain constraints. These machines have 
a large number o f  states (simulations are for  256 and 512 state FMMs)  but have minimal order, relatively small 
depth and little logic when the F M M  is implemented as a sequential machine, 

Keywords---Recurrent neural network, Finite state machine, Grammatical inference, Automata, Sequential 
machine, Memory, Temporal sequences, NNIIR, NARX. 

1. INTRODUCTION 

Dynamically-driven recurrent neural networks 
(DRNNs)  have empirically shown the ability to 
perform inference in problems as diverse as grammar 
induction (Cleeremans et al. 1989; Mozer  & 
Bachrach, 1990; Pollack, 1991; Giles et al., 1992) 
and system identification in control (Barto, 1990). We 
discuss results concerning the learning of  temporal 
sequences for a particular class of  discrete-time 
recurrent neural network architectures which has 
tapped delays both on the input and on the feedback 
of  the output (Narendra & Parthasarathy, 1990). 
Such models are similar to feedback networks 
described by others (Jordan, 1986; Back & Tsoi, 
1991; Poddar & Unnikrishnan, 1991; Billings et al., 
1992; Vries and Principe, 1992; Frasconi et al., 1992). 

We show that this model is able to learn to emulate 
large finite state machines (FSMs) when trained on 
example strings of  their associated grammars. The 

finite state machines that were easily learned are from 
a subclass of  FSMs called f in i te  memory  machines 
(FMMs) (Kohavi, 1978). These FMMs, defined by 
the type of  memory used and how fed back, have 
relatively low depth; and when implemented as a 
sequential machine require minimal memory and 
simple combinational logic. 

2. FINITE STATE, FINITE M E M O R Y  AND 
SEQUENTIAL MACHINES 

We briefly introduce finite state machines (FSMs) 
and their properties. An FSM is an abstraction of  a 
device that can be described by a labeled directed 
acyclic graph that consists of  inputs, states and 
outputs. In this paper all FSMs are deterministic. A 
sequential machine (SM) refers specifically to the 
logical implementation of  an FSM, consisting of  logic 
and fed back memory functions, for example delay 
lines, latches, flip-flops, etc. All SMs described in this 
paper are synchronous. 
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2.1. Finite State Machines 

Finite state machines operate with a finite number of  
input and output symbols and have a finite number of 
internal states. An output  is defined for each 
corresponding input. Formally, 

DEFINITION 1. A f in i te  s tate  machine ( F S M )  is a 
sextuple  J / =  (Q, ~, A, 6, A, qo), where Q is a f in i te  
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set o f  states; ~ is a finite set o f  symbols called the input 
alphabet; A is a finite set of  symbols called the output 
alphabet; 6 : Q x E ---* Q is a transition function; 
A : Q x ~ ---* A is an output function; and qo is the 
initial state. 

For  this work, both the input and output 
alphabets will be binary, i.e. E = A  = {0, 1}. 

A finite state machine is minimal if it is the 
machine with the fewest number of states for a given 
input/output behavior. The FSMs described here are 
all minimal. A useful measure for characterizing an 
FSM is its depth, which is the smallest integer d such 
that every state in the FSM can be reached from the 
starting state in no more than d steps. 

Grammatical inference (Fu & Booth, 1975) is the 
problem of  finding an FSM consistent with a set of  
labelled strings. These results are typically defined in 
terms of  deterministic finite-state automata (DFA), 
however it is straightforward to map a DFA into an 
FSM. Grammatical  inference is known to be NP- 
complete (Angluin, 1978). However, some ap- 
proaches have been suggested which seem to work 
well on relatively large problems (Lang, 1992). 

2.2. Finite Memory Machines 

Consider the subclass of  FSMs known as finite 
memory-machines (FMMs). 

DEFINITION 2. A finite state machine ~ is said to be 
a-finite memory machine o f  input-order n and output- 
order m if  n and m are the least integers, such that the 
present state o f  ~¢¢ can always be determined uniquely 
from the knowledge o f  the last n inputs and the last m 
outputs for all possible sequences of  length max(n, m ). 

Note that this definition excludes the possibility of 
any knowledge of  the initial state of the machine. 

For  example, the FSM shown in Figure 1, has 
input-order two and output-order one, since for any 
input sequence of  length two, the state of  the FSMs 
can always be determined from a knowledge of the 
past two inputs and the last output as illustrated in 
the table in Figure 1. Not  all FSMs are FMMs. For  
example, the FSM shown in Figure 2 would require 
infinite order since one can observe an infinite 
sequence of  ones at the input and an infinite 
sequence of  zeros at the output without being able 
to determine whether the FSM is in state q2 or q3 
(unless one has a knowledge of  the initial state of  the 
machine). 

Given an arbitrary FSM there exist efficient 
algorithms to determine if the machine is an F M M  
and, if so, its corresponding order (Kohavi, 1978). 

2.3. Sequential Machines 

A sequential machine (SMs) is an implementation of  

1/1 

0/1 * ~ ~  0/1 0/0 * ~  

r(k-1) u(k-2) . (k - l )  state 

0 0 0 q3 
0 0 1 qa 
0 1 0 q3 
0 1 1 q3 
1 0 O q2 
1 0 1 qo 
1 1 0 ql 

1 1 1 qo 

FIGURE 1. The state transition diagram of a finite memory 
machine (FMM) of input-order 2 and output-order 1. 

an FSM which consists of logic and memory elements. 
An example of  an SM is shown in Figure 3a. 

We can explicitly associate time with an FSM in 
the following way. The input, output  and state of  the 
machine at time k will be denoted by, respectively, 
u(k), y(k) and x(k), and are typically encoded as 
binary values. Logic functions can be used to relate 
x(k  + 1) and y(k) to x(k) and u(k), to define the SM. 

In an FMM, the state depends only on a finite 
number of previous inputs and outputs, so it can 
always be implemented as a SM with tapped delay 
lines (TDLs) on the input and output  and a block of 
combinational logic as shown in Figure 3b. 

3. RECURRENT NEURAL NETWORKS 

In the past few years several recurrent neural network 
(RNN) models have been proposed (Back & Tsoi, 
1991; Billings et al., 1992; Elman, 1990; Frasconi et 
al., 1992; Giles et al., 1992; Jordan, 1986; Poddar  & 
Unnikrishnan, 1991; Robinson & Fallside, 1988; de 
Vries & Principe, 1992; Watrous & Kuhn,  1992; 
Williams & Zipser, 1989). Here we use a class of 
networks in which output  is computed as a nonlinear 
function of  a window of  past inputs and outputs 

( 
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FIGURE 2. An FSM that has Infinite order. 
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FIGURE 3. Sequential machines: (a) conventional Implementa- 
tion and (b) implementation of a finite memory machine. 

(Narendra & Parthasarathy, 1990), i.e. 

y(t) =f(u(t),u(t-- 1) , . . . , u ( t -  n), 
y( t -  1),y( t-  2), . . . ,y(t-  m)), 

where n and m are the size of  the input and output  
windows respectively. Note  that the activations o f  
hidden neurons are not f e d  back. The only recurrent 
connection is f r o m  the output o f  the network.  Because 
of  their similarity to infinite impulse filters (IIRs), 
these networks are often referred to as neural 
network IIRs (NNIIRs). Many variations of  this 
model have been proposed and used extensively for 
system identification and control problems (Naren- 
dra & Parthasarathy, 1990). In the most  general 
model, the function f(-) is implemented as a multi- 
layer perceptron. These architectures are also referred 
to as NARX neural networks (Billings et al., 1992). 

Since multilayer networks are capable of  imple- 
menting arbitrary logic functions, it follows that these 
models are capable of  implementing arbitrary FMMs 
using the implementation shown in Figure 3b, when 
the logic is replaced by a multilayer perceptron. 

4. LEARNING FINITE MEMORY MACHINES 

4.1. Example Problems 

We have successfully been able to learn various 
FMMs using the NNI IR  model. Finding example 
FMMs with a large number of  states is nontrivial. 
One could potentially pick the tap size and logic 
function of  an SM implementation randomly. 

However, the resulting F M M  more often than not 
has a smaller order than the choice of  taps and an 
unpredictable number of  states. Instead, we devel- 
oped a theory which devises a method for construct- 
ing machines which we then use for example learning 
problems (Giles et al., 1994). This theory allows us to 
construct FMMs and have a certain amount  of  
control over a number of  properties of  the F M M 
including the order, number  of  states, and the 
complexity of  the logic function which defines the 
mapping from previous inputs and outputs to the 
current output. 

We have found that a machine can be easily 
learned if it can be described by a simple logic 
function, and is of  minimal order and low depth. The 
problem of  learning FMMs is simpler than that of  
learning general FSMs since there is no state 
assignment problem. The only problem is to learn 
the logic function of  the sequential machine 
implementation. Thus, it makes sense that as that 
function becomes more complex, the learning 
problem becomes more difficult. The depth must be 
kept low to keep the training set small. Finally, the 
order is related to both the depth and complexity of 
logic and so must also be kept small. 

In this paper we present results for learning two 
FMMs, although we have successfully learned many 
other similar machines. The first machine has 512 
states and corresponds to the relatively simple logic 
function 

y ( k ) = ~ ( k -  5)~(k )+~(k-  5)y(k-4)  

+ u ( k ) u ( k -  5)~(k -4 ) ,  (1) 

where ~ represents the complement of x. The FSM is 
shown in Figure 4. It has an input-order of  5, an 
output-order of  4, and a depth of  9. 

The second machine has 256 states and has the 
more complex, though still learnable, logic function 

y(k) --~(k - 1)[~(k - 4)y(k - 4)~(k) 

+ u(k - 4)u(k) + u(k - 4)y(k - 4)] 

+ u(k - 1)37(k - l)[u(k - 4)y(k - 4)u(k) 

+ ~(k - 4)~(k - 4) + ~(k - 4)~(k)] 

+ u(k - 1)y(k - 1)[~(k - 4)y(k - 4)u(k) 

+ u(k - 4)~(k - 4) + u(k - 4)~(k)]. (2) 

This machine has an input and output  order of  4, and 
also has a depth of  9. 

4.2. Training and Testing Set 

It can be shown that the set of  strings of  length 1 
through d +  1 is sufficient to uniquely identify an 
arbitary F M M  (Giles et al., 1994). To create training 



1362 C. L. Giles, B. G. Horne and T. Lin 

FIGURE 4. A 512 state finite memory machine of minimal order.  

sets, we began with this complete set consisting of 
2046 strings (since d = 9  for both problems) and 
randomly selected a subset of  strings for training and 
reserved the remaining samples for testing. A similar 
approach was taken by Lang (1992), and we feel it is 
a reasonable technique for generating data for this 
kind of  problem. 

In principle, the neural network is capable of 
learning machines with a larger depth. However, in 
order to run a large number of experiments in a 
reasonable amount  of  time, we have limited ourselves 
to machines with relatively low depth, and thus to 
small training and testing sets. It should be noted that 
the size of  these sets would become unmanageably 
large as the depth of  the target machine increases. 
For  example, a machine of  depth 20 would give a set 
of  4,194,302 strings. The strings were encoded such 
that input values of  0s and I s and target output  labels 
"negative" and "positive" correspond to floating 
point values of 0.0 and 1.0, respectively. However, 
many experiments in which we tried different 
encodings such as -1 .0  and 1.0 did not give 
significantly different results. 

It is possible to generate target outputs as 
intermediate points in each string for a given training 
set. For  example, if the string "0" is a negative string, 
then any string that begins with "0" can be assigned a 
target output of 0.0 on the first time step. Similarly, if 
the string "10" is a positive string, then any string 
that begins with "10" can be assigned a target value 

of  1.0 on the second time step. By utilizing all of  this 
information, many intermediate target values can be 
constructed for each string. One benefit of inter- 
mediate labeling is to give an improved error measure 
for each string. In addition, teacher forcing (Williams 
& Zipser, 1989) can be used to force the target value 
into the feedback loop to improve the speed of 
convergence, and indeed to enhance the ability of  the 
network to converge at all. 

4.3. Network Architecture and Learning Algorithm 

The N N IR  architecture for both problems had five 
input taps and four output  taps. On the first 
problem, we used a two layer network with four 
nodes in the hidden layer and one output node, on 
the second problem we used 15 hidden layer nodes. 
Each node used the standard sigmoid nonlinearity. 
The initial values of  all delay elements were chosen 
to be zero. The networks had 49 and 181 
adjustable weights, respectively, with the initial 
values randomly chosen from a uniform distribu- 
tion in the range [-0.1,  0.1]. 

The network was trained with the backpropaga- 
tion through time algorithm (Williams & Peng, 1990), 
augmented with a number of  heuristics found useful 
for grammatical inference problems. No batching 
was done on the training set, i.e. the weights were 
updated after processing each string (although see 
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comment below on selective updating). Weight decay 
(Krogh & Hertz, 1992) was used with a weight decay 
parameter of  0.0001. 

For  sample presentation we used teacher forcing. 
When target values are available at intermediate 
points during the processing of  a string, these target 
values are used in the feedback loop instead of the 
actual node output  values. When the network is run 
during the testing phase, it can only feedback the 
actual node outputs. This can lead to poor  
performance if the fed-back values are not suffi- 
ciently close to the teacher forced values. In order to 
compensate for this effect, we replaced the output 
node's nonlinearity with a hard limiter during testing. 
This assures that the network feeds back values that 
are either 0 or 1. In addition, this effectively converts 
the feedforward part of  the network to a logic 
function, which can be immediately used to extract an 
FSM from the final network. 

We used a selective updating scheme in which the 
weights were only updated if the absolute error on the 
training sample currently being processed was greater 
than 0.2. This effectively speeds up the learning 
algorithm by avoiding gradient calculations for 
weight updates that only add a marginal improve- 
ment to the overall performance. 

We have also found it useful to encourage the 
network to learn the shortest strings first by using an 
incremental training algorithm. In this algorithm the 
training set is ordered lexicographically, and an 
epoch is terminated if there are more than 30 
samples that have an absolute error greater than 
0.2. Thus, the network must learn the shortest strings 
first in order to train on longer strings. Additionally, 
we imposed the condition that an initial set of  50 
samples must be learned to within an absolute error 
of  0.2 before the remaining samples are used for 
training. Once this initial set is learned, an additional 
50 samples are added and then these must be learned 
to within the same error, then another 50 samples are 
added, and so on. 

The learning algorithm was stopped when all 
examples in the training set yield an absolute error 
less than 0.2 or if the network exceeded 5000 epochs 
for the 512-state or 10,000 epochs for the 256-state 
FMM, respectively. On the first experiment, the 
algorithm typically required about  500 epochs to 
converge. It did not converge in only nine of  the 1500 
experiments. On the second experiment, the algo- 
rithm required about 2500 epochs and did not 
converge on 68 of  the 1500 experiments. 

All of  the parameters discussed above were 
selected by trial and error and our experiences with 
learning smilar problems. For  every simulation we 
used a learning and momentum rate of  0.25. No 
effort was made to try to optimize any of  the 
parameters described. 

4.4. Experimental Results 

We ran many experiments to determine the general- 
ization ability and the size of  the extracted FSM 
implemented by the learned network as a function of  
the size of  the training set. For  learning the 512-state 
F MM we chose 30 different training set sizes ranging 
from 10 to 300 samples in increments of  10, while for 
the 256-state F M M  the set sizes ranged from 25 to 
750 in increments of  25. For  each training set size we 
ran 50 experiments. In each case a different random 
sample of  strings was chosen, and the weights of  the 
network were initialized differently each time. 

The generalization was determined by computing 
the performance on the samples which were not 
chosen for training from the 2046 possible samples 
needed to completely specify the machine. The results 
are shown in Figure 5. The average error rate is 
plotted with an error bar of  one standard deviation 
around the mean for the two problems in Figures 5a 
and 5c. 

It is easy to extract the FSM that the network 
learns. By replacing the nonlinearity of  the output 
node with a hard limiter, the network effectively 
implements a logic function since all input and output 
values are zeros and ones. This logic function defines 
an FSM for that machine. This FSM can be 
minimized using a standard FSM minimization 
algorithm (see, for example, Hopcroft  & Ullman, 
1979). The average sizes of  the extracted FSMs are 
plotted in Figures 5b and 5d with an error bar of  one 
standard deviation around the mean. 

4.5. Discussion of Experimental Results 

For learning the 512-state FMM,  one notices from 
Figure 5a that as the percentage of  training strings 
increases, the testing set error decreases and finally 
approaches zero with zero error. Similar behavior is 
noticed for extraction size in Figure 5b as the 
extracted F M M  approaches the correct size. Note 
that the number of  strings needed for perfect 
generalization was about  250. This is approximately 
an order of  magnitude less than the complete set of 
2046 strings which uniquely identify the FMM. 

For  learning the 256-state F M M  we see similar 
behavior, although the network is not usually able to 
achieve perfect generalization. In fact, when the 
sigmoid is replaced by a hard-limiting threshold 
function, the network does not even correctly classify 
the training set most of  the time. This implies that the 
network may actually be utilizing the transition 
region of  the sigmoid in order to solve the problem, 
and so a more complex extraction algorithm 
(Watrous & Kuhn,  1992; Tino & Sajda, 1995) may 
be needed, although we have not investigated this. 
Nevertheless, the extracted F M M  does not get the 
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FIGURE 5. Genera l izagon and extraction as a funct ion of training set size: (a) generalization on the 512-state FMM; (b) extraction on the 
512-state FMM; (c) generalization on the 256-state FMM; and (d) extraction on the 256-state FMM. 

majority of  test samples correct and infers an FMM 
with size comparable to the target machine. 

For  the 512-state FMM,  the order or number of  
taps in the recurrent net was exactly equal to the 
order of  the target machine, while for the 256-state 
F M M  there was a single unnecessary tap in the 
recurrent net. It would be interesting to explore how 
the NNIIR ' s  performance changes as the number of  
input and output taps (or order) is varied. 

5. CONCLUSIONS 

The problem of learning finite state machines (FSMs) 
from examples with recurrent neural networks has 
been extensively explored. However, these results are 
somewhat disappointing in the sense that the 
machines that can be learned are too small to be 
competitive with existing grammatical inference 
algorithms. In this paper we show that large finite 
state machines can be learned if we limit the class of  
machines and choose a neural network whose 
structure is representationally biased towards the 
problem class to be learned. 

We showed that an N N I I R  is capable of  

learning large (up to 512 states) finite memory 
machines (FMMs) when trained on grammatical 
strings encoded as temporal sequences. After 
training on a sufficiently sized training set, the 
correct F MM,  or at least one with a very low error 
rate, could be consistently extracted from the 
trained NNIIR.  However, certain restrictions were 
required in order to make the problem tractable. 
These restrictions include limiting the order (which 
is related to the required tap delay length) and 
depth (which impacts the size of  the training set) 
of  the FSM. Furthermore the sequential machine 
implementation of  the F M M  could only have 
relatively simple logic. (Recently, Clouse et al. 
(1994) has achieved similar results for feedforward 
networks.) As the logic becomes more complex, the 
task of finding an appropriate set of weights 
becomes more difficult. We speculate that the task 
of  learning arbitrary logic functions, i.e. the loading 
problem (Blum & Rivest, 1988), is the greatest 
barrier for learning arbitrary FMMs. It is impor- 
tant to keep in mind that the restrictions on order, 
depth, and logic define a small class of all possible 
FMMs.  
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It might be possible to identify other types of 
DRNNs  which have a representational bias towards 
other classes of  FSMs. For example, it would be 
interesting to establish if networks with local 
recurrence (Back & Tsoi, 1991; Poddar & Unnikrish- 
nan, 1991; Frasconi et al., 1992; Vries & Principe, 
1992; Giles, et al., 1995; Kremer, 1996) correspond to 
some other sublass of FSMs, or if they are capable of  
implementing arbitrary FSMs. The reader should 
keep in mind that this analogy is somewhat limited 
since it has been shown that the nonlinearity in simple 
DRNNs enables them to be computationally very 
powerful (Siegelmann & Sontag, 1992). 
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