
TableSeer: Automatic Table Metadata Extraction and
Searching in Digital Libraries∗

Ying Liu, Kun Bai, Prasenjit Mitra, C. Lee Giles

The College of Information Sciences and Technology
Pennsylvania State University

University Park, PA 16801
{yliu, kbai, pmitra, giles}@ist.psu.edu

ABSTRACT
Tables are ubiquitous in digital libraries. In scientific doc-
uments, tables are widely used to present experimental re-
sults or statistical data in a condensed fashion. However,
current search engines do not support table search. The dif-
ficulty of automatic extracting tables from un-tagged docu-
ments, the lack of a universal table metadata specification,
and the limitation of the existing ranking schemes make ta-
ble search problem challenging. In this paper, we describe
TableSeer, a search engine for tables. TableSeer crawls digi-
tal libraries, detects tables from documents, extracts tables
metadata, indexes and ranks tables, and provides a user-
friendly search interface. We propose an extensive set of
medium-independent metadata for tables that scientists and
other users can adopt for representing table information.
In addition, we devise a novel page box-cutting method to
improve the performance of the table detection. Given a
query, TableSeer ranks the matched tables using an innova-
tive ranking algorithm – TableRank. TableRank rates each
<query, table> pair with a tailored vector space model and
a specific term weighting scheme. Overall, TableSeer elimi-
nates the burden of manually extract table data from digital
libraries and enables users to automatically examine tables.
We demonstrate the value of TableSeer with empirical stud-
ies on scientific documents.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Information
Search and Retrieval – search process

General Terms
Algorithms, Experimentation, Documentation, Performance,
Design

∗This work was partially supported by NSF grants 0454052
and 0535656.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
JCDL’07, June 17–22, 2007, Vancouver, British Columbia, Canada.
Copyright 2007 ACM 978-1-59593-644-8/07/0006 ...$5.00.

Keywords
accessibility, architectures, data management, information
retrieval, knowledge organization, scientific applications, sys-
tem design

1. INTRODUCTION
Tables are ubiquitous in scientific publications, web pages,

financial reports, news papers, magazine articles, etc. Ta-
bles present structural data and relational information in
a two-dimensional format and in a condensed fashion. Re-
searchers always use tables to concisely display their latest
experimental results or statistical data. Other researchers,
for example, who are conducting the empirical studies in the
same topic, can quickly obtain valuable insights by examin-
ing these tables. Along with the rapid expansion of digital
libraries, tables become an important information source for
information retrieval and the demand for searching table is
increasing. For example, a bio-chemist may want to search
tables containing experimental results about “mutant genes”
or an economist may look for the tables about “the GDP
growth of USA in 2000-2007.” However, existing search en-
gines do not support table search. When applying a table
search query to the popular search engines, we observe that
a flood of unwanted and sometimes unsolicited results will
be returned. Moreover, we also notice that within the top n
returned results, the ranking order does not precisely reflect
the relevance to the queries.

Automatic table extraction is critical to the success of
table search. However, current search engines do not sup-
port it. Automatic table extraction is important because
there exists no table markup language that scientists and
other users have adopted for representing table information
in documents. There is not yet a universal metadata spec-
ification for tables. Scientists and scholars who now want
to extract data from tables in published papers have to do
it manually, establishing their own metadata formats. In
order to eliminate the burden and enable users to automat-
ically examine these tables, we design TableSeer, a system
to automatically extract table metadata and search tables
in digital libraries.

Automatic table extraction and search in digital libraries
is a challenging problem for several reasons. First, although
considerable research has been done to extract tables from
HTML or Image documents, extracting un-tagged tables
(e.g. in PDF format) in digital libraries is difficult. Second,
tables present unique challenges to information retrieval (IR)

systems because of diverse media, different press layouts, cell
types, affiliate table elements, etc. Along with the increasing
demands of information sharing, an extensive and universal
table metadata specification is needed to facilitate the table
information processing, extracting, and reusing. Addition-
ally, such a standard representation can heavily reduce the
workload of table information extraction and increase the
accuracy of the table indexing and searching. Third, the
ranking schemes of current search engines are inadequate
and not designed for table search. The returned ranking or-
der does not correctly reflect the relevance of the tables to
the queries.

Our paper has four main contributions: a table search
engine TableSeer, a set of universal medium-independent
metadata specification for tables, an automatic table de-
tector and table metadata extractor with a novel page box-
cutting method, and an innovative table ranking algorithm
TableRank. TableSeer crawls scientific documents from digi-
tal libraries, identifies documents with tables, extracts tables
from documents, represents each table with a unique table
metadata file, indexes tables and provides an interface to en-
able the end-users to search for tables. TableRank considers
multiple features of a table and the document it appears in,
and aggregates these features to determine the final ranking
of each table with respect to an user query.

In this paper, we focus on PDF documents because of
two reasons. First, PDF gains popularity in digital libraries
due to the compatibility of output on a variety of devices.
Second, PDF documents are overlooked in table extraction
field. Please note that TableSeer can be extended to deal
with documents in other media, e.g., HTML, Word, PDF,
Image, etc.

Extensive experimental studies have been conducted to
provide support for the table metadata extraction and the
table ranking function. In order to evaluate the perfor-
mance of our TableRank schema, we compare TableSeer
with several popular web search engines. Because all the
popular web search engines make no efforts at treating ta-
bles specially, we propose two methods to set up the com-
mon test-beds (see Section 5.4). Empirical results show that
TableSeer achieves encouraging results compared to Google
Scholar1 and CiteSeer2.

The remainder of the paper is organized as follows. Sec-
tion 2 is the related work. Section 3 presents the architecture
of TableSeer and a proposal for medium-independent table
metadata. In Section 4, we describe the table ranking algo-
rithm. Section 5 discusses the experiments and an analysis
of the results and Section 6 makes a conclusion.

2. RELATED WORK
A search engine is an information retrieval system de-

signed to help find information[1]. Most commonly search
engines are Web search engine, which searches for informa-
tion on the public Web. For example, Google, Yahoo! search,
Microsoft MSN Search, ASK.com, etc. Other kinds of search
engines are enterprize search engines, which search on in-
tranets, personal search engines, and mobile search engines.
Different selection and relevance criteria may apply in differ-
ent environments, or for different uses. More recently, more
and more lights are shed on specialty search engines. Some

1http://www.google.com/
2http://citeseer.ist.psu.edu/

of them support search on various kinds of documents (e.g.,
map search1, video search3image search1, etc.), as well as on
document components (e.g., citation search2, acknowledge-
ment search2, etc). However, none of them meets the table
search demand.

Although table-related research has recently received con-
siderable attention, most of the research focuses on the ta-
ble extraction. Some researchers try to associate the table
extraction with question answering (QA) or information re-
trieval. For example, Pyreddy and Croft [14] design a char-
acter alignment graph (CAG) to extract tables for informa-
tion retrieval. TINTIN [14] is a system that incorporates in-
dexing and searching concepts into the table detection field.
However, it only roughly divided the information of a table
into two parts: table captions or table entries. Hu [17] de-
signs a system that extracts table-related information, stores
them in databases, and generates a man-machine dialog to
access the table data via a spoken language interface. None
of above provide a real web search engine to tables. To the
best of our knowledge, TableSeer is the first table search
engine, which supports the automatic table metadata ex-
traction and table search.

Researchers in the automatic table extraction field largely
focus on analyzing the table structure in a specific document
media. Zanibbi [15] provides a survey with detailed descrip-
tion of each method. All the methods can be divided into
three categories: pre-defined layout based [10], heuristics
based [7][9][11][16], and statistical based [14]. Pre-defined
layout based algorithms usually work well for one domain,
but is difficult to extend. Heuristics based methods need a
complex post-processing and the performance relies largely
on the choice of features and the quality of training data.
Most approaches described so far utilize purely geometric
features (e.g. pixel distribution, line-art, white streams) to
determine the logical structure of the table, and different
document mediums require different process methodologies:
OCR [5], X-Y cut [8], tag classification and keyword search-
ing [3][4][19] etc. Most of them use trial-and-error methods
and no general table ground-truth data set is publicly avail-
able to train and test these algorithms [20]. For a table
search query, the matched tables may be contained in di-
verse media, which require different methods to extract. It
is inconvenient to divide the documents into different groups
and apply the corresponding algorithms. Thus, good table
representation schemes are needed. Wang [18] proposed a
table model to show the table layout. The well-known table
representation schemes are designed by the World Wide Web
Consortium (W3C) in the specification of XHTML (The
Extensible HyperText Markup Language) and by the Or-
ganization for the Advancement of Structured Information
Standards (OASIS). Wang [20][21] develops a software tool
to generate documents that include similar table elements
based on the given table ground truth. Akira Amano [2]
proposes a representation of table form document based on
XML. However, none of them covers table structure and lay-
out information, as well as the table-related information and
the document background. Our table metadata can provide
a universal metadata specification to represent the informa-
tion and all the necessary facts of a table in any document
medium for the table searching purpose.

3http://www.youtube.com/

Table Crawling
Request

Crawler Manager

request

DownloaderWorld Wide
Web (WWW)

Storage
System

Table
Filter

Text Information
Stripper

TEXT Files

D
ocum

ent Level M
etadata

Extractor

Document Title

Body Text Font

 Author/ Affilation

Page Number

Doc Column Info

Docment Source
(e.g., Journal)

Document Age

… ...

Page Box Cutting

Box Classifier

Small-font
Boxes

Large-font
Boxes

Body-text
Boxes

Table Boundary
Detector Table Level

Metadata
Extractor

Table Structure
Aanlyzer

Indexer
(Lucene)

Table Query
Engine

Table Ranking
Algorithm

Table
Crawler

Doc(e.g.,
PDF)

Table Column/Row
Headings

Table Index Number

Table Column/Row
Number

Table Annotation

Table Caption

Table Body Content

… ...

Table Position

Table
Metadata
Extractor

Metadata
Index

Doc
Index

Web Browser/ Query
Interface

Query
Keywords User

Figure 1: The Architecture of TableSeer

3. THE ARCHITECTURE OF TABLESEER

3.1 System Overview
Figure 1 shows the architecture of TableSeer, which con-

sists of a number of important components: 1) a table crawler,
2) a table metadata extractor, 3) a table metadata indexer,
4) a table ranking algorithm, and 5) a table searching query
interface. In summary, TableSeer crawls scientific docu-
ments from the digital libraries, identifies the documents
with tables, detects each table using a novel document page
box-cutting method, extracts the metadata for each identi-
fied table, ranks the matched tables against the end-user’s
query with the TableRank algorithm, and displays the or-
dered results in a user-friendly interface.

3.2 The Table Crawler
TableSeer harvests online scientific documents by crawling

open-access digital libraries and scientists’ webpages. The
crawler supports a number of document media, such as PDF,
HTML, WORD, PowerPoint, etc. TableSeer is designed to
be able to handle all the document media listed above. In
this paper, the table crawlers pay attention to the scientific
documents in the PDF format because they gain more and
more popularity in digital libraries. In addition, comparing
to other document media that have been extensively studied
in the table detection field, PDF documents have been over-
looked. Our table crawlers use a depth-first crawling policy
with a maximum depth of five (from the seed URLs).

3.3 The Table Metadata Extractor
The table metadata extractor comprises of three key parts:

1) a text information stripper (TIS), 2) a table box detector
with the page box-cutting method, and 3) a table metadata
extractor from both the document level and the table level.

Figure 2: An Example of a PDF Document Segment
and the Corresponding Document Content File

3.3.1 Text Information Stripper (TIS)
Initially, for each PDF document, TIS strips out the text

information from the original PDF source file word by word
through analyzing the text operators4 and the related glyph4

information. TableSeer reconstructs these words into lines
with the aid of their position information and saves the lines
into a Document Content File in the TXT format. For each
document page, TableSeer analyzes the text information and
merges them into different physical component levels (lines,
paragraphs, boxes, pages) according to their font and po-
sition information. Figure 2 shows an example segment of
a PDF document and its corresponding Document Content
File. The text file also records the coordinates of the left-
most word (X0, Y0), the line width W , the line height H,
the font size F , as well as the text content of each line. All
the lines are ordered in the same sequence as shown in the
PDF document.

3.3.2 Table Box Detection and Table Metadata
Extraction

Automatic table metadata extraction includes two tasks:
table detection and metadata extraction. To effectively de-
tect tables, we design a novel page box-cutting method as
following. The details of metadata extraction are addressed
in [13].

The input of the box-cutting method is a Document Con-
tent File shown in Figure 2. We define a page box as a
rectangle of adjacently connected lines with a uniform font
size in the same document page. Whether two lines merge
into a same page box is decided by two factors: the font size
and the position. We treat a line lη in a Document Content
File as the seed line lseed of a box bθ. Initially, η = 1, θ = 1,
and lη is the only line in bθ. If the next line lη+1 in the same
Document Content File satisfies the following three condi-
tions, we combine lη+1 into bθ and set lη+1 as the new lseed.
Otherwise, lη+1 will be the lseed of a new box bθ+1. C1)
Font(lη+1) = Font(lseed); C2) lη+1 is adjacent to lseed; C3)
lη+1 is close enough to lseed.

TableSeer defines “adjacent” as no other lines exist be-
tween lη+1 and lseed. Different definitions of the “close
enough” may generate different box cutting results. We de-
fine the “close enough” as: Y0(lη+1)−(Y0(lseed)+H(lseed)) ≤
δl. δl is the maximal space between two adjacent lines in
a same paragraph. Figure 3 displays an example of a PDF
document page together with the boxes segmented by our

4PDF Reference Fifth Edition, Version 1.6

Figure 3: An Example of the Page Box-Cutting Ap-
proach

page box-cutting method.
For all the segmented boxes in a document, TableSeer

classifies them into three categories: small-font boxes BSF ,
large-font boxes BLF , and regular-font boxes BRF , whose
font sizes are smaller than, larger than, or equal to the font
size of the document body text Fb. Based on the observation
and statistical study on the proceeding/journal templates,
we summarize a set of heuristic rules (see Table 1), which
are crucial for mapping boxes to different logical compo-
nents (titles, authors, affiliations, abstract, references, etc.)
and specific physical components (tables, figures, etc.).

Table 1: Heuristic Rules for Table Box Dections
Rules Content

1 • Document title, author, affiliation, heading ∈ BLF .
2 • Document title, author, affiliation, abstract ∈ Page 1,

in a fixed order.
3 • Figure caption, table caption, table body, footnote, Ref-

erence usually ∈ BSF .

4 • @ Table caption, table body, footnote, Reference ∈ BLF .
5 • ∀ Figure and table have captions.
6 • ∀ Figure captions are beneath the figure; ∀ table captions

are above the table.
7 • Table captions start with keywords “Table” or “TABLE”

while Figure captions start with “Figure” or “FIGURE”.

TableSeer detects tables in at most three iterations (see
algorithm 1). In each iteration, we use a keyword match-
ing method and a whitespace checking method to examine
one group of the boxes. We create a predefined keyword
list Kl that records all the possible starting keywords of
the table captions in scientific documents, such as “Table”,
“TABLE”, “table”, “Form”, “form”, “FORM”, “Figure”,
“FIGURE”, “figure”, etc. In the first iteration, we process
all BSF in the document page by page. If we find a BSF

that starts with a keyword listed in the Kl, we treat this
box as a table candidate. If we detect the tabular structure
from its white space information, we confirm this BSF as a
real table. Once we get the font size of a table in a docu-
ment, the font size of all tables in this document are fixed,
and we ignore all the other boxes in different font sizes. If
we do not find any table candidates in the first iteration, we
start the second iteration on all BRF because there still is
a percentage of documents that contain tables displayed in
Fb. If we fail in this run again, we start checking the boxes
with font size BLF . Usually we will success in detecting ta-
bles in the first iteration. The table caption and the table

body may be detected in two adjacent boxes because of the
sparse layout or the trivial font difference. TableSeer deals
with such cases as well. When we detects a box started
with words in the Kl without tabular structures, we check
the whitespace information of the boxes b′ns neighbor boxes
bn−1, bn+1, respectively.

Using figure 3 as an example, the body text font fize Fb

is 9.23. Boxes 1, 2, 3, 4, 6, 11 are BLF , boxes 5, 10,
8, 12, 13, 14, 15 are BSF , and boxes 7, 9 are BRF . In
the first iteration, we detect the keyword “Table” in box
12 without tabular structures. We check its neighbor – box
11 and 13. Box 13 is confirmed as a real table. With the
fixed table font size 8.76, we only have to check the boxes
with the same font size to detect other tables in the same
document. With the box-cutting method, TableSeer easily
exclude more than 93.6% of the document content in the
beginning, which impressively increases the efficiency and
accuracy of the table detection.

Algorithm 1: Table Detection using the Page Box-
cutting Method

begin
η ← 1, θ ← 1, ls ← lη, found ← 0;
for lη ∈ l do

if lη+1 does not satisfy C1−3 then
compare bθ.fontsize() with Fb;
classify bθ into one of BSF , BLF , BRF ;
θ ← θ + 1;

lη+1 ∈ bθ, lseed ← lη+1, lη ← lη+1;

while !found do
for b ∈ B(SF,RF,LF) do

if ∃ b[StartWord] ∈ Kl then
if there is tabular structure in b or its
neighbor boxes then

get Ftable; found ← 1; break;

foreach b with b.fontsize() = Ftable do
if ∃ b[StartWord] ∈ Kl and has a tabular
structure then

b is a table;

end

3.4 TABLE METADATA
Some characteristics of our table metadata extraction are:

1) The table metadata should have meaningful names. 2)
They should be easily stored for indexing and searching. 3)
They can be combined differently according to the users’
purposes. For example, only sharing the text or displaying
the original layout.

Tables present unique challenges to IR systems because
of the diverse media, different press layouts, cell types, ta-
ble elements, etc. No formal rules/standards exist for de-
signing table or for searching them. In order to be able to
characterize tables occurring in very diverse composite doc-
uments, we have designed a rich and flexible representation
scheme for table metadata that describe tables in digital
documents. We classify the table metadata into six mutu-
ally exclusive categories: 1) table environment/geography
(Document-level), 2) table-frame metadata, 3) table affili-
ated metadata, 4) table-layout metadata, 5) table cell-content
metadata, 6) and table-type metadata. Figure 4 shows a
segment of a table metadata file.

Table Environment/Geography Metadata. The ta-
ble environment/geography metadata includes the informa-
tion of the document where a table is located, such as Doc-
ument Medium Type (HTML, PDF, image, PS, text, email,
etc), Document Page Number of the table (the index number
of the page where the table is located), Document Title (the
paper title shown in the journal or conference proceedings,
usually in a large font size), Document Author, Document
Origination (the name of the journal or conference), Docu-
ment Age, Table Starting Position (the X and Y-axis coordi-
nates of the starting place of the table), etc. This metadata
can facilitate the table searching if users only know pieces
of the document information or wish to restrict the search
to certain types of documents.

Table-Frame Metadata. The Table Frame metadata
records whether there are frames in the four sides around a
table. The values can be left, right, top, bottom, all, none,
top and bottom, left and right.

Table Affiliated Metadata. A table has several affil-
iated elements. Table Caption is the caption (sentence(s))
that appears along with the table, e.g., “Table 1. Molecular
Properties of Tested Polymers”. Table Caption Position is
the position of the caption with relation to the body of the
table: above or below. Table Footnote is text that explains
the information in the table and usually appears below the
table body. Table Reference Text is the text in the docu-
ment body that refers to the table and discusses the content
of the table.

Table Layout Metadata helps to capture the visualiza-
tion of the original table. It is composed of Table Width (the
width of the table boundary), Table Length (the length of
the table boundary), Number of Columns, Number of Rows,
Stub Separator (vertical ruling), Boxhead Separator (hor-
izontal ruling), and Column Width, Row Length, Column
Headers, Row Headers, and Horizontal Alignment (the val-
ues can be “flush left, right, and central).

Table Cell Content Data refers to the values in each
cell of a table, and enables people to search tables based on
the contents of their cells. Content in Cell[i, j] is the content
in the cell that is located in the ith row and the jth column
of a table.

Table Cell Type Metadata records the type of a table
based on the type of its cells: Numerical and/or Symbolic.
If the table contains cells with numeric information, it gets
a type Numerical, if it has symbols, like, text, equations,
etc., then it is marked Symbolic, Numerical tables can also
be further divided into number tables, mathematical equa-
tion tables, percentage tables, and so on. Symbolical tables
include character tables, image tables, formula tables, and
so on. A table can have both numerical and symbolic cells.

3.5 The Table Ranking Algorithm –
TableRank

One key question in information retrieval is how to rank
matched results based on their relevance to a query. How-
ever, The existing ranking schemes are inadequate and are
not designed for table search. Our TableSeer search en-
gine has an innovative table ranking algorithm – TableR-
ank. Given a user query, TableRank returns the matched
tables in a descendant order according to their relevance
scores. Different from the popular web search engines, our
TableRank rates the <query, table> pairs instead of the
<query, document> pairs.

<table-metadata>
<property>
 <name>Paper Title</name>
 <value>Dissolution of albite glass and crystal</value>
</property>

<property>
 <name>Table Caption</name>
 <value>Table 2. Comparison of crystalline and amorphous albite dissolution rates</value>
</property>

<property>
 <name>Table Column Head</name>
 <value>Type of experiment Initial pH Final pH Temperature</value>
 <description>…...</description>
</property>

…...
</table-metadata>

Figure 4: An Example of the Table Metadata File

TableRank tailors the traditional vector space model to
rate the <query, table> pair by replacing the document vec-
tors with the table vectors. As shown in Table 1, each row
is a query or a table vector. To determine the weight for
each term in the vector space, we design an innovative term
weighting scheme: Table Term Frequency - Inverse Table
Term Frequency (TTF-ITTF), a tailored TF-IDF [6] weight-
ing scheme. Compared with TF-IDF, TTF-ITTF demon-
strates two major advantages. First, it calculates the term
frequency in the table metadata file instead of the whole
document, which prevents the false positive results. Sec-
ond, it calculates the weight of a term with a comprehensive
view.

We divide the features we consider into two groups: query-
dependent features and query-independent features. Query-
dependent features include the traditional features of a doc-
ument (e.g., the document title, the author/affiliation, the
abstract, etc) and the structural features of a table (e.g.,
the table caption, the table column header, etc). Query-
independent features include document citation, document
freshness, and document origination, etc. We consider the
query-independent features because when several similar ta-
bles match the end-user’s query, intuitively, the end-user
is most interested in the tables in newly published articles
(document freshness) with the high quality, e.g., a top con-
ference (document origination) or with a large number of
citations (document citation). They are the tables that the
user probably has not seen before and is seeking. Overall,
TableRank considers features from three levels: 1) the term
level, 2) the table level, and 3) the document level to deter-
mine the final ranking score of a table.

TableRank algorithm first applies each impact feature to
weight the terms in the vector space, then aggregates all
these features to determine the final weight values. Co-
sine measure is used to determine the similarity between
the query vectors and the table vectors. Section 4 describes
the ranking algorithm in great details.

3.6 The Table Index and the Search Interface
Most existing text retrieval techniques rely on indexing

keywords. Unfortunately, keywords or index terms alone
cannot adequately capture the document contents, result-
ing in poor retrieval performance. In TableSeer, we elimi-
nate this risk by indexing table metadata files, which con-
centrates the table-related information into a small-size file.
TableSeer uses the Lucene Index Toolbox5 to index tables.
A “document” is created where the table metadata fill the

5http://lucene.apache.org/java/docs/index.html

“fields”. TableSeer offers two levels of searches: basic search
and advanced search. A basic search allows a search with
simple keywords and then the matched results are returned
in ranked order. For advanced search, users can set more
complex queries (see Figure 5). Unlike the current search
engines that index and check whole documents, TableSeer
indexes and checks only the table metadata files.

In order to facilitate the browsing of results, TableSeer
provides a user-friendly interface to present the sorted re-
sults. Figure 6 shows that, for each matched table, area 1
lists the basic document information, e.g., the document ti-
tle, author, and affiliation. Area 2 lists the table location
information and highlights the references to the table in the
text. Area 3 provides links for the original whole PDF docu-
ment and the table metadata file. Area 4 includes the snap-
shot of the matched tables. Once clicked, table information
is enlarged for better visualization.

Figure 5: An Example of the Advanced Search In-
terface

1

3
4

2

Figure 6: An Example of the Query Result by Ad-
vanced Search

4. TABLERANK – THE TABLE RANKING
ALGORITHM

4.1 Similarity Measurement with a Tailored
Vector Space Model

We first formalize the notations of the table ranking prob-
lem used throughout this paper. We represent the set of
crawled and extracted tables as T = {∪ tbj , j ∈ [1, b]},
where b is the total number of tables in a set of documents,

D = {∪dα, α ∈ [1, N]}, where N is the total number of
documents. F (T, D) is the mapping function from T → D.
∀tbj ∈ T, ∃dα ∈ D where the table tbj comes from the doc-
ument dα. Also, ∀tbj ∈ T , ∃ TMj = {∪ mk, k ∈ [1, d]},
where, mk is the metadata proposed to represent table tbj ,
and d is the number of metadata.

A term ti may repeatedly appear in different table meta-
data mk (e.g., table caption, table column/row header, ta-
ble reference text, even the document title). In particular,
terms reflecting the core idea of an article usually appear
more frequently and broadly. We believe that different mk

have different influences on the results and then each mk

has an assigned weight MWk [12]. The same terms appear-
ing in different mk should be treated separately. Likewise,
the same terms appearing in the same mk should be treated
equally.

Let sim(tbj , Q) denote the similarity between the table
tbj and the query Q. Both of the table and the query can
be represented as a vector. Each vector is composed of a set
of alphabetically ordered terms. All the table vectors and
query vectors construct a vector matrix as shown in Table 2.
Each row in the matrix represents the vector of a table tbj

(j ∈ [1, b]) or the query Q. Each table tbj has k metadata
elements describing it. wi,j,k is the term weight of the ith

term in the kth metadata of the table tbj and wi,q,k refers
the term weight of the ith query term in the kth metadata. If
the ith term does not occur in the metadata mk of the table
tbj , wi,j,k = 0. Otherwise, wi,j,k > 0. The term weight wi,q,k

follows the same rule. As discussed, a term ti can appear in
multiple metadata. If the user specifies the query term lo-
cation, e.g., the metadata “Table Caption,” the query term
will only be filled in the metadata “Table Caption” columns.
Otherwise, it will be filled to every metadata in Table 2.

TableRank constructs the vector matrix and measures the
similarity between the query and each table by computing
the cosine of the angle between these two vectors (the equa-
tion is shown in Equation 1).

sim(tbj , Q) = cos(tbj , Q) =

Ps
i=1 wi,j,kwi,q,k

|tbj ||Q| (1)

where, the final weight wi,j,k of the ith term in the kth meta-
data of the table tbj is computed by Equation 2. The weight-
ing scheme is also applicable to the query term wi,q,k.

4.2 Term Weighting
Equation 2 shows that the final weight of a term wi,j,k

comes from three levels: the term-level weight wTermLevel
i,j,k ,

the table-level weight boost TLBi,j , and the document-level
weight boost DLBj .

wi,j,k = wTermLevel
i,j,k ∗ TLBi,j ∗DLBj (2)

In addition to the term-level weight, which contributes
a great proportion to the final weight of a term, there are
two levels of boost factors. TLB refers to those table-level
features that improve the weight of a term (e.g., table fre-
quency) while DLB refers to those document-level features
that improve the weight of a term (e.g., journal rank, docu-
ment citation).

4.2.1 The Term-Level Weight
TableRank uses an innovative weighting scheme: Table

Term Frequency - Inverse Table Term Frequency (TTF-

Table 2: The Vector Space Model for rating <Query, Table> pairs
m1(MW1) m2(MW2) ... mk(MWk) TLB DLB

t1,1 ... tx,1 t1,2 ... ty,2 ... t1,k ... tz,k

tb1 w1,1,1 ... wx,1,1 w1,1,2 ... wy,1,2 ... w1,1,k ... wz,1,k
tb2 w1,2,1 ... wx,2,1 w1,2,2 ... wy,2,2 ... w1,2,k ... wz,2,k

.

.

. ...
.
.
.

.

.

. ...
.
.
. ...

.

.

.
tbb w1,b,1 ... wx,b,1 w1,b,2 ... wy,b,2 ... w1,b,k ... wz,b,k

Q w1,q,1 w1,q,2 ... w1,q,k
ITTF

ITTF) scheme. TTFITTF is adapted from the TF-IDF[6]
weighting scheme, a widely used weighting method for free-
text documents. However, it is not suitable for table rank-
ing because it only considers the term frequency and in-
verse document frequency and ignores many other impor-
tant impact factors, e.g, term position. In contrast to TF-
IDF, TTF-ITTF demonstrates two major differences. First,
TTF-ITTF calculates term frequency in a table metadata
file instead of the whole document. Second, the position of
a term in the table and the document is considered. There-
fore, we have

wTermLevel
i,j,k = TTFITTFi,j,k = TTFi,j,k ∗ ITTFi,j,k (3)

where TTFi,j,k is the term frequency of the table term ti

in the metadata mk of the table tbj and ITTFi,j,k is the
inverse table term frequency. Like in the case of inverse
document frequency, the idea behind using the ITTFi,j,k is
that a term that occurs in a few tables is likely to be a better
discriminator than a term that appears in most or all tables.

4.2.2 The Table-Level Boost (TLB)
Intuitively, a table itself is also important and influences

the weight of terms in it. Besides term-level features, TableR-
ank also considers table-level features, such as: 1) the table
frequency, 2) the length of the text that exposits the table
content in the document (namely the table reference text),
and 3) the table position. These factors are embodied in the
Table Level Boosting (TLB) factor as follows:

TLBi,j = Btbf + Btrt + (r ∗Btp) (4)

where Btbf is the boost value of the table frequency, Btrt

is the boost value of the table reference text, Btp is the boost
value of the table position, and r is a constant ∈[0,1]. If users
specify the table position in the query, r = 1, otherwise
r = 0.

4.2.3 The Document-Level Boost (DLB)
Unlike TTF-ITTF and TLB, Document Level Boosting

(DLB) considers query-independent (static) factors. DLB
indicates the overall importance of a document where a table
appears. For a high quality document, its tables are also
inclined to be important and the terms should receive a high
document-level boosting.

Given a document dj , IVj denotes its document Impor-
tance Value (IV). TableRank sets IVj for the document dj

by considering the following three factors: 1) the inher-
ited citation value (IC) from the ones who cite the doc-
ument, 2) the document origin (DO, and 3) the document
freshness(DFj). Suppose there are x documents (d1, d2, ..., dx)
that cite the document dj , then IVj is defined using the fol-

Figure 7: An Example of the Citation Network

lowing recursive equation 5.

DLBj = IVj = ICj∗DOj∗DFj == (

Px
v=1 IVv

x
)∗DOj∗DFj

(5)
IC relies on the nature of the scientific document itself

by using its crucial citation link structure as a major indi-
cator. In essence, a citation link from one document Dα to
another document Dβ can be seen as an endorsement of Dα.
We represent it as Dα → Dβ and the document Dβ is con-
sidered older than the document Dα. The number of times
Dα is cited and the quality of the ones that cite Dα are
indicative of the importance of Dα. By this way, academic
documents construct a citation network which is a Directed
Acyclic Graph (DAG) as shown in Figure 7. Our algorithm
computes the document importance of each document using
this citation network. Each node in the DAG highlights the
fact that the importance of a node is essentially obtained
as a weighted sum of contribution coming from every path
entering into the node.

DOj can be set based on the journal/conference prestige.
In each research field, scholarly journals or conferences are
scored based on the opinions of field experts. We get this
information from three sources: the impact ranking for the
computer science publications estimated by CiteSeer, for
chemistry papers listed in Wikipedia6, and a comprehensive
journal impact factor for all the fields in CNCSIS7. Different
scoring schemes have different score ranges from [0, 3.31] to
[0, 53.055]. We normalize the different ranges into the same
measure range [1, 10].

DFj is set according to the publication date of the docu-
ment. TableRank assigns more weight to fresher documents
for two reasons: 1) Researchers usually are inclined to search
for the more recently published documents because these
documents typically reflect the latest research trends and re-
sults. 2) There is a need to eliminate “The Rich Get Richer”
phenomenon which is begot by the boosting value of the ci-
tation frequency (the more citation, the higher boosting is).
The documents with high citation counts are inclined to be
cited again because they are more likely to be found eas-

6http://en.wikipedia.org/wiki/
List of scientific journals in chemistry/
7http://www.cncsis.ro/PDF/IF 2004.pdf

ily. However, newly published documents are unlikely to
attract attention and be cited within a short period of time.
Considering these two reasons, we boost the rankings of re-
cent documents. The more recent the document, the greater
the boost is. On the other side, because of the high-speed
of information propagation and the convenient source shar-
ing (e.g., DBLP bibliography8), in our TableRank, we only
apply the DF boost to brand-new documents, which are
published within recent two years.

5. EXPERIMENTS AND RESULTS
ANALYSIS

In this section, we demonstrate the experimental results
of evaluating the table search engine, TableSeer. Before de-
scribing the experimental details, we first discuss document
collection.

5.1 Document Collection
Although TableSeer can be used to search for tables con-

tained in documents of varying formats and media types, we
focus on tables in scientific documents in PDF format in this
work. The document collection comes from three sources: 1)
scientific digital libraries (Royal Chemistry Society9), 2) the
web pages of research scientists in chemistry departments in
universities, for example, UCLA10 lists numerous addresses
of academic institutions in the field of chemistry, which are
set as seeds for the table crawler, and 3) the CiteSeer archive.
The total number of collected PDF documents is approxi-
mately 10,000. These documents belong to more than 50
journals and conferences in a variety of research fields, e.g.,
chemistry, biology, computer science, etc. All the documents
span the years 1990 to 2006. In addition, the original hier-
archy of documents is also recorded, e.g., coming from the
same journal, or the same web site. A random selection of
100 documents indicates that 78% of them has at least one
table and most of them have more than one.

5.2 Experimental Results of Table Detection
We perform a five-user study to evaluate the quality of

the table detection and the table metadata extraction sepa-
rately. Each user randomly checks 20 documents and all the
corresponding table metadata files. The evaluation metrics
are precision and recall. The experiment on table detection
is conducted on a document set with 200 randomly selected
PDF documents, which are from journal/conference cate-
gories of Chemistry, Biology, and Computer Science from
RSC and CiteSeer. Given the number of true tables ex-
tracted by TableSeer A, the number of true positive tables
but overlooked B, and the number of true negative tables
that is misidentified as tables C, the Precision is A

A+C
, and

the Recall is A
A+B

. Within the 200 documents, 397 tables

exist (see Table 3). TableSeer recognizes 371 tables and all
of them are real tables, which means the number of true
negative tables is 0. Based on these limited experimental
results, the precision value is 100% and the recall value is
93.5%.

Three main reasons explain why we miss 26 true positive
tables. First, in some PDF documents, tables are created as

8http://www.informatik.uni-trier.de/ ley/db/
9http://www.rsc.org/

10http://www.chem.ucla.edu/VL/Academic.html

Table 3: The testing set for table detection
Fields Documents Tables

Chemistry 100 245
Biology 50 84

Computer Science 50 68

embedded images. In the current state, TableSeer only pro-
cesses the text-based tables and simply filters out the image
tables. However, these images and their location informa-
tion are stored. Existing approaches dealing with image ta-
ble extraction [5] [8] can be easily integrated into the Table-
Seer to fix this problem. Second, we use predefined keyword
list to detect table candidates. This predefined keyword list
contains all the possible starting keywords of table captions,
such as “Table, TABLE, Form, FORM,” etc. Most tables
have one of these keywords in their captions. However, some
tables are labeled using other keywords, especially the doc-
uments in computer science field, which usually names the
tables with the keyword “Figure.” This confuses with real
image figures. To avoid real figures and to keep high effi-
ciency, TableSeer overlooks such “wrongly” labeled tables
in current stage. However, this problem can be overcome
by heuristics that identify the grid-structure cells by white-
space analysis. Third, the performance of the text infor-
mation stripper directly affects the table extraction results.
Currently, PDFBOX 11 is used to fetch all the text infor-
mation in the documents. Characters missing and space
insertions are two typical errors inherited from PDFBOX,
which may tamper with the table caption. For example, the
word “Table” can be splintered into “a ble.” This problem
is orthogonal to our work and we hope that these problems
will be addressed independently by the designers of the text
stripper.

5.3 Experimental Results of Table Metadata
Extraction

We evaluate the table metadata extractor of TableSeer us-
ing the 371 recognized tables from the document set. Pre-
cision and recall remains the measurement functions. A is
the number of true positive metadata extracted by our al-
gorithms and labeled with the correct metadata labels, B
is the number of true positive metadata but overlooked by
TableSeer, C is the number of true negative metadata that
are misidentified as another metadata.

Table 4 demonstrates the performance of the metadata ex-
traction over the test set. Apparently, TableSeer has good
performance on table metadata extraction. The main rea-
sons for inaccuracy of the recall are: first, some journal
names and volume information are mislabeled as “Docu-
ment Title” metadata. Most journals put the journal names
and the publication information in the page header or footer.
However, some of the documents display the journal/volume
information in the ordinary position where the document ti-
tle is. This problem can be solved by adding heuristic rules
that look for patterns to identify journal/volume informa-
tion. Second, some documents omit the keyword “Abstract”
when they start the abstract section using the same font
size as the size of the author/affiliation section. This can
be fixed by restricting the size of the author/affiliation sec-
tion and by looking for text similarity. The abstract usually
has similar keywords as in the main text, whereas the au-
thor/affiliation will have different words than the main text.

11http://www.pdfbox.org/

Table 4: Table Metadata Extraction Performance
Table Metadata Precision(P %) Recall(R %)

Document Type 100.00 100.00
Document Page Number 100.00 100.00
The page number of table 100.00 100.00

Document Title 95.65 95.65
Document Author 92.58 92.58

Table Caption 95.96 95.96
Table Column Header 93.79 93.79

Table Content 90.15 90.15
Table Caption Position 100.00 100.00

Table Footnote 82.77 82.77
Table Reference text 100.00 100.00

Third, some table footnotes, especially short ones, are rec-
ognized as a row of the table because some tables have such
cross-column rows.

In order to obtain the table reference text metadata, a
“keyword matching” method is used to collect all the sen-
tences where the table keywords appear. Some explanations
also exist around without the keywords. However, it is ex-
tremely difficult to separate them from other texts. Fur-
thermore, for those tables that use a cross-line to separate
different parts, we only recognize the first part because of
the difficulty in telling whether the cross-line belongs to the
table or the body text of the document. This can be solved
by using the font-size difference, existence of cells, and the
indication of the white spaces.

5.4 Experimental Results of Table Ranking
Comparison of ranking methods is complicated for two

main reasons. First, it is difficult to find a common test-
bed for different search engines. Although Google Co-op12

can enable the comparison between TableRank and Google
by harnessing the power of Google search technology, the
dynamic web and continued crawlers imply that the two
sets of documents may not be the same. Second, even with
a common test-bed, no universally recognized measurement
of quality for a table ranking scheme exists.

In order to set up a well-accepted measurement, we es-
tablish a “golden standard” to define the “correct” rank-
ing based on human judgement. A survey of six experi-
enced testers, who frequently use search functions of dif-
ferent search engines, generated the “golden standard” of
each document set in the test-bed. For each issued query,
the testers determine how many results, among the returned
hits, the testers order the relevant lists.

For each ranking scheme, we apply pairwise accuracy to
evaluate the ranking quality. If HR is the ranking decided by
human judgement and TR is ranking decided by the search
engines, the pairwise accuracy can be defined as the frac-
tion of times that search engines and human judges agree

on the ordering of tables: pairwise accuracy = |HR
T

TR|
HR

. In

this section, we provide quantitative comparisons between
TableRank and other popular web search engines based on
experimental results. The average ranks of the six human
testers is obtained and the results are ranked using this av-
erage to obtain HR. We will use a distance based measure
among the ranked orders in the future.

Before evaluating the performance of the table ranking,
we identify the returned true tables because most search en-
gines can not identify documents with tables. We should
filter out all the false tables and only compare the ranking

12http://www.google.com/coop/

Table 5: The Basic Ranking Results on the Manu-
ally Created Document Sets

Ranking The Method to set-up
the test-bed

Accuracy (%)

Google Custom search engine 51.8
Google Scholar bottom-up method 52.72

CiteSeer bottom-up method 55.35
TableSeer Both methods 69.61

on these real tables. We randomly select 100 terms such as
“gene”, “protein”, “query,”, and use each term as a query in
TableSeer. For the other two search engines: Google Scholar
and CiteSeer, the query is set as the term together with an
additional keyword “Table.” An example is applying “Al-
kaline” to TableSeer and applying the combination of the
term “alkaline” and “Table” to Google Scholar. The combi-
nation includes “alkaline, Table”, “alkaline Table”, “Table,
alkaline”, “Table alkaline”, etc. Because it is not easy to
know the total number of tables in the test-bed, we use
the precision value as the measurement. Another reason is
that with the growing size of the Web collections, users are
now primarily interested in high accuracy, defined as high
precision. High precision is very important because users
typically look at very few results and mostly look at the
top N items of the returned results from the search engines.
Recognizing this trend, we manually examine the first 20 re-
sults returned by both each search engine. Comparing with
the precision value of our TableSeer (100%), the precision
value of Google Scholar is 73.4% and the precision value
of CiteSeer is 76.7%. Thus, it can be seen that TableSeer
outperforms the other two search engines.

The remaining question is which search engine has the
best ranking scheme? We adopt two methods to set up the
common test-bed: the manually “bottom-up” method and
the custom search engine method. The manually “bottom-
up” method constructs a test-bed using the following two
steps: 1) applying a query (e.g., DNA) together the key-
word “Table” to an existing search engine, e.g., CiteSeer ;
2) from the numerous returned results, we pick out a set of
“real” hits in PDF format together with their ranking or-
ders. We set these PDF documents as the common test-bed
for both TableRank and other search engines. In the second
custom search engine method, we set up a common test bed
for TableRank and Google using the Google Custom Search
engine API. We register a Google account and use the Google
custom search engine API6 to build a customized search en-
gine. We set the seed URLs (e.g., a chemistry journal web-
site13) as one or several websites where TableSeer crawls.
All the documents in the seed URLs construct the common
test-bed. For all the documents in the common test-beds,
TableSeer extracts and indexes the metadata file for each
table. We try 20 randomly selected search queries on both
TableSeer and the Google custom search engine to compare
their search results. We collect 20 document sets for 20 ran-
dom queries. Table 5 displays the average pairwise accuracy
results made by six testers.

TableRank decides the relevance score for each result by
comprehensively considering multiple impact factors from
different perspectives. In order to find out how well each im-
pact factor performs and how heavily each of them influence
the final ranking order, we implement TableRank algorithm

13http:/www.rsc.orgdelivery ArticleLinking
DisplayArticleForFree.cfm?doi=b2*

Table 6: Results for Individual Impact Factor in
TableRank Algorithm

Impact Factors Accuracy (%)

TFIDF 50.19
TTFITTF without MW 61.46

TTFITTF with MW 63.55
TLB 29.60
DLB 40.33

All factors 69.61

Table 7: The Ablation Experiment to Learn the
Real Contribution of Each Factor of TableRank Al-
gorithm

Without Factor Accuracy (%) Decrease in Accuracy (%)

DLB 68.50 1.11
TLB 69.46 0.15
MW 68.19 1.42

TTFITTF, MW 58.05 9.56

on each impact factor, independently, and apply varied com-
bination of the impact factors by gradually adding one new
factor at a time. Such implementation can not only reveal
how sensitive TableRank is to each impact factor, but also
show how to adjust the parameters for better results.

The results for individual impact factors are shown in Ta-
ble 6, which shows the application of a single factor each
time. The first run with the applied traditional TFIDF
weighting scheme on the whole document shows the ac-
curacy rate compared to the “golden standard”. In the
second and the third runs, we update the TFIDF to the
TTFITTF weighting scheme with/without the metadata
weighting scheme. Next, the TLB factors are applied, and
in the last run, the DLB factors are tested.

It is not surprising to see that TTFITTF with/without
metadata weight contribute heavily to the final ranking qual-
ity, and TLB and DLB do not perform well in isolation.
Even table 6 shows the effectiveness of each individual fac-
tor. In order to have a better measurement of the contribu-
tion of each factor, in the context of all the other factors, we
perform an ablation experiment. The basic idea is to com-
pare the ranking results based on all the factors except the
studied ones with the ranking results generated by TableR-
ank with all the factors. The detailed results are shown in
table 7.

The results in table 6 are consistent with the results of the
ablation experiment in table 7. Table 7 reconfirms the vital
role of the TTFITTF weighting scheme. TTFITTF acts as
the most important impact factor, and second and third in
importance are the metadata weight and DLB respectively.

6. CONCLUSIONS AND FUTURE WORK
To facilitate table extracting and searching, we devise a

novel table-specific search engine, TableSeer. An extensive
set of table metadata is proposed to precisely represent a ta-
ble. Because the traditional TF-IDF approach is no longer
suitable for table search, we also studies how to calculate
the ranking scores of tables contained in scientific documents
based on multiple ranking factors from three levels: the term
level, the table level, and the document level. We propose a
novel table ranking algorithm, TableRank, which combines
the query-dependent features with the query-independent
features of a document to rank tables and their containing
documents in response to an end-users query. Experimental
results demonstrate that TableSeer outperforms the widely
used search engine, e.g. Google Scholar on searching infor-

mation contained in tables. Scientific documents are the fo-
cus of our current work. However, there are a large numbers
of tables in documents in other areas. Current parameter
settings are based on empirical results and further work is
needed to establish optimal settings for ranking and search-
ing. Future user studies will indicate the validity of the
ranking methods.

7. REFERENCES
[1] http:/en.wikipedia.orgwikisearch engine.

[2] N. A. A. Amano. Graph grammar based analysis system of
complex table form document. In International Conference on
Document Analysis and Recognition (ICDAR), pages 916–920,
2003.

[3] W. G. B. Krupl, M. Herzog. Using visual cues for extraction of
tabular data from arbitrary html documents. In In Proc. of the
14th Int’l Conf. on World Wide Web, pages 1000–1001, 2005.

[4] S. T. H. Chen and J. Tsai. Mining tables from large scale html
texts. In In Proc. 18th Int’l Conf. Computational Liguistics,
Saarbrucken, Germany, 2000.

[5] X. W. W. B. D. Pinto, A. McCallum. Table extraction using
conditional random fields. In In proceeding of Proceedings of
the 26th ACM SIGIR, Toronto, Canada, July 2003.

[6] C. B. G. Salton. Term-weighting approaches in automatic text
retrieval. In Information Processing and Management 24(5),
pages 513–523, 1988.

[7] J. T. K. H.T. Ng, C. Y. Lim. Learning to recognize tables in
free text. In In Proc. of the 37th Annual Meeting of the
Association of Computational Linguistics on Computational
Linguistics, pages 443–450, 1999.

[8] R. H. J. Ha and I. Philips. Recursive x-y cut using bounding
boxes of connected components. In In Proc. Third Int’l Conf.
Document Analysis and Recognition, pages 952–955, 1955.

[9] N. G. J. Shin. Table recognition and evaluation. In In Proc. of
the Class of 2005 Senior Conf., Computer Science
Department, Swarthmore College, pages 8–13, 2005.

[10] T. W. J.H. Shamilian, H.S. Baird. A retargetable table reader.
In In Proc. of the 4th Int’l Conf. on Document Analysis and
Recognition, pages 158–163, 1997.

[11] T. G. Kieninger. Table structure recognition based on robust
block segmentation. In In Proc. Document Recognition V,
SPIE, volume 3305, pages 22–32, January 1998.

[12] Y. Liu, K. Bai, P. Mitra, and C. L. Giles. Tablerank: A ranking
algorithm for table search and retrieval. In AAAI, 2007.

[13] Y. Liu, P. Mitra, C. L. Giles, and K. Bai. Automatic extraction
of table metadata from digital documents. In JCDL, pages
339–340, 2006.

[14] P. Pyreddy and W. Croft. Tintin: A system for retrieval in text
tables. In In Proceedings of the Second International
Conference on Digital Libraries, pages 193–200, 1997.

[15] D. B. R. Zanibbi and J. Cordy. A survey of table recognition:
Models, observations, transformations, and inferences. In Int’l
J. Document Analysis and Recognition, Vol. 7, No.1, pages
1–16, 2004.

[16] A. D. T. Kieninger. Applying the t-rec table recognition system
to the business letter domain. In In Proc. of the 6th Int’l
Conf. on Document Analysis and Recognition, pages 518–522,
September 2001.

[17] J. Wang and J. Hu. A machine learning based approach for
table detection on the web. In Proceedings of the 11th Int’l
Conf. on World Wide Web (WWW’02), pages 242–250, Nov
2002.

[18] X. Wang. Tabular abstraction, editing, and formatting. In
Ph.D. Thesis, Dept. of Computer Science, University of
Waterloo, 1996.

[19] J. H. Y. Wang. Detecting tables in html documents. In In
Proc. of the 5th IAPR Int’l Workshop on Document Analysis
Systems, Princeton, NJ, 2002.

[20] R. H. Y. Wang, I.T. Philips. Automatic table ground truth
generation and a background-analysis-based table structure
extraction method. In In Proc. of the 6th Int’l Conference on
Document Analysis and Recognition, page 528, September
2001.

[21] R. M. H. Y. Wang, L.T. Phillips. Table structure
understanding and its performance evaluation. In Pattern
Recognition, 37(7), pages 1479–1497, July 2004.

