
Automatic Identification of Informative
Sections of Web Pages

Sandip Debnath, Prasenjit Mitra, Nirmal Pal, and C. Lee Giles

Abstract—Web pages—especially dynamically generated ones—contain several items that cannot be classified as the “primary

content,” e.g., navigation sidebars, advertisements, copyright notices, etc. Most clients and end-users search for the primary content,

and largely do not seek the noninformative content. A tool that assists an end-user or application to search and process information

fromWeb pages automatically, must separate the “primary content sections” from the other content sections. We call these sections as

“Web page blocks” or just “blocks.” First, a tool must segment the Web pages into Web page blocks and, second, the tool must

separate the primary content blocks from the noninformative content blocks. In this paper, we formally define Web page blocks and

devise a new algorithm to partition an HTML page into constituent Web page blocks. We then propose four new algorithms,

ContentExtractor, FeatureExtractor, K-FeatureExtractor, and L-Extractor. These algorithms identify primary content blocks by

1) looking for blocks that do not occur a large number of times across Web pages, by 2) looking for blocks with desired features, and by

3) using classifiers, trained with block-features, respectively. While operating on several thousand Web pages obtained from various

Web sites, our algorithms outperform several existing algorithms with respect to runtime and/or accuracy. Furthermore, we show that a

Web cache system that applies our algorithms to remove noninformative content blocks and to identify similar blocks across Web

pages can achieve significant storage savings.

Index Terms—Data mining, feature extraction or construction, text mining, Web mining, data mining, Web page block, informative

block, inverse block document frequency.

�

1 INTRODUCTION

SEARCHengines crawl the World Wide Web to collect Web
pages. These pages are either readily accessible without

any activated account or they are restricted by username
and password. Whatever be the way the crawlers access
these pages, they are (in almost all cases) cached locally and
indexed by the search engines.

An end-user who performs a search using a search

engine is interested in the primary informative content of

these Web pages. However, a substantial part of these Web

pages—especially those that are created dynamically—is

content that should not be classified as the primary

informative content of the Web page. These blocks are

seldom sought by the users of the Web site. We refer to such

blocks as noncontent blocks. Noncontent blocks are very

common in dynamically generated Web pages. Typically,

such blocks contain advertisements, image-maps, plug-ins,

logos, counters, search boxes, category information, naviga-

tional links, related links, footers and headers, and copy-

right information.

Before the content from a Web page can be used, it must
be subdivided into smaller semantically homogeneous
sections based on their content. We refer to such sections
as blocks in the rest of the paper. A block (or Web page block)
B is a portion of aWeb page enclosedwithin an open-tag and
its matching close-tag, where the open and close tags belong
to an ordered tag-set T that includes tags like <TR>, <P>,
<HR>, and . Fig. 1, shows a Web page obtained from
CNN’s Web site1 and the blocks in that Web page.

In this paper, we address the problem of identifying the
primary informative content of a Web page. From our
empirical observations, we found that approximately three-
fourths of the dynamically generated pages found on the
Web have a table in it. An HTML table is defined using the
tag <TABLE>. In a table occurring in a Web page, we
consider each cell to be a block. Where tables are not
available, identifying blocks involves partitioning a Web
page into sections that are coherent, and that have specific
functions. For example, a block with links for navigation is a
navigation block. Another example is an advertising block
that contains one or more advertisements that are laid out
side by side. Usually, a navigation block is found on the left
side of a Web page. Typically, the primary informative
content block is laid out to the right of a Web page. We have
designed and implemented four algorithms, ContentExtrac-
tor, FeatureExtractor, K-FeatureExtractor, and L-Extractor
which identify the primary content blocks in a Web page.

An added advantage of identifying blocks in Web pages
is that if the user does not require the noncontent blocks or
requires only a few noncontent blocks, we can delete the
rest of the blocks. This contraction is useful in situations

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 17, NO. 9, SEPTEMBER 2005 1233

. S. Debnath is with the Computer Sciences and Engineering Department,
The Pennsylvania State University, 111 IST Building, University Park,
PA 16802. E-mail: sandipdebnath@ieee.org.

. P. Mitra and C. Lee Giles are with the School of Information Sciences and
Technology, The Pennsylvania State University, 311A IST Building,
University Park, PA 16802. E-mail: {pmitra, giles}@ist.psu.edu.

. N. Pal is with eBRC Main Office, The Pensylvania State University, 401
Business Administration Building, University Park, PA 16802.
E-mail: nirmalpal@psu.edu.

Manuscript received 22 Nov. 2004; revised 26 Mar. 2005; accepted 1 Apr.
2005; published online 19 July 2005.
For information on obtaining reprints of this article, please send e-mail to:
tkde@computer.org, and reference IEEECS Log Number TKDESI-0479-1104. 1. http://www.cnn.com.

1041-4347/05/$20.00 � 2005 IEEE Published by the IEEE Computer Society

where large parts of the Web are crawled, indexed, and
stored. Since the noncontent blocks are often a significant
part of dynamically generated Web pages, eliminating them
results in significant savings with respect to storage cache
and indexing.

Our algorithms can identify similar blocks across differ-
ent Web pages obtained from different Web sites. For
example, a search on Google News on almost any topic
returns several syndicated articles. Popular items like
syndicated columns or news articles written by global news
agencies like AP or Reuters appear in tens of newspapers.
Even the top 100 results returned by Google contain only a
very few unique columns related to the topic because of
duplicates published at different sites. Ideally, the user
wants only one of these several copies of articles. Since the
different copies of the article are from different newspapers
and Web sites, they differ in their noncontent blocks but
have similar content blocks. By separating and indexing only
the content blocks, we can easily identify that twoWeb pages
have identical content blocks, save on storage and indexing
by saving only one copy of the block, and make our search
results better by returning more unique articles. Even search
times improve because we have less data to search.

We propose simple yet powerful algorithms, called
ContentExtractor, FeatureExtractor, K-FeatureExtractor, and
L-Extractor to identify and separate content blocks from
noncontent blocks. We have characterized different types of

blocks based on the different features they possess.
FeatureExtractor is based on this characterization and uses
heuristics based on the occurrence of certain features to
identify content blocks. K-FeatureExtractor is a special
modification of FeatureExtractor which performs better in a
wide variety of Web pages. ContentExtractor identifies
noncontent blocks based on the appearance of the same
block in multiple Web pages. L-Extractor uses various block-
features and train a Support Vector (SV) based classifier to
identify a informative block versus a noninformative block.

First, the algorithms partition the Web page into blocks
based on heuristics. These heuristics are based on our
previous study of HTML editing style over a few thousand
Web pages. Lin and Ho [18] have proposed an entropy-
based algorithm that partitions a Web page into blocks on
the basis of HTML tables. In contrast, we not only consider
HTML tables, but also other tags, combined with our
heuristics to partition a Web page. Second, our algorithms
classifies each block as either a content block or a
noncontent block. While the algorithm decides whether a
block, B, is content or not, it also compares B with stored
blocks to determine whether B is similar to a stored block.
Both (K-)FeatureExtractor and ContentExtractor produce
excellent precision and recall values and runtime efficiency
and, above all, do not use any manual input and require no
complex machine learning process. L-Extractor is still under
experimentation, and it produces fairly good accuracy.

1234 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 17, NO. 9, SEPTEMBER 2005

Fig. 1. A Web page from CNN.com and its blocks (shown using boxes).

While operating on several thousand Web pages
obtained from news and various other Web sites, our
algorithms significantly outperform their nearest competi-
tor—the Entropy-based blocking algorithm proposed by
Lin and Ho [18]. We also compared ContentExtractor with
the Shingling algorithm devised by Ramaswamy et al. [21],
[22]. ContentExtractor achieves similar savings on storage
requirements as the Shingling algorithm. However, it
outperforms the Shingling algorithm significantly with
respect to runtime, showing that simple heuristics can
suffice to identify primary content blocks in Web pages.

The rest of the paper is organized as follows: In Section 2,
we have discussed the related work. We define the concept
of “blocks” and a few related terms in Section 3. We
describe our algorithms in Sections 4, 5, and 7. We outline
our performance evaluation plan and the data set on which
we ran our experiments in Section 6. We compare our
algorithms with the LH and Shingling algorithm in
Section 6.4. We indicate our future work and conclude in
Section 8.

2 RELATED WORK

Yi and Liu [26], [19] have proposed an algorithm for
identifying noncontent blocks (they refer to it as “noisy”
blocks) ofWeb pages. Their algorithm examines severalWeb
pages from a singleWeb site. If an element of aWeb page has
the same style across variousWeb pages, the element is more
likely than not to be marked as a noncontent block. Their
algorithm also looks at the entropy of the blocks to
determine noncontent blocks. Their technique is intuitively
very close to the concept of “information content” of a block.
This is one of the very innovative ideas we have studied. Our
algorithms only look at the inverse block document
frequency (defined below) and features of blocks. In order
to identify the presentation styles of elements of Web pages,
Yi and Liu’s algorithm constructs a “Style Tree.” A “Style
Tree” is a variation of the DOM substructure of Web page
elements. If there are Web pages whose elements have the
same style but different contents and yet are noncontent
blocks, our algorithms would not be able to detect that.
However, in practice, we have seen that our algorithms even
in the presence of advertisement images that vary from page
to page can identify them as noncontent blocks by making
use of the text in the blocks that are almost the same. Since
our algorithms use simple heuristics to determine noncon-
tent blocks, it does not incur the overhead of constructing
“Style Trees.”

Another work that is closely related is the work by Lin
and Ho [18]. The algorithm they proposed also tries to
partition a Web page into blocks and identify content
blocks. They used the entropy of the keywords used in a
block to determine whether the block is redundant. We
believe that we have a more comprehensive definition of
blocks and demonstrate that we have designed and
implemented an algorithm that gives better precision and
recall values than their algorithm as shown below.

Cai et al. [4] have introduced a vision-based page
segmentation (VIPS) algorithm. This algorithm segments a
Web page based on its visual characteristics, identifying
horizontal spaces, and vertical spaces delimiting blocks

much as a human being would visually identify semantic
blocks in a Web page. They use this algorithm to show that
better page segmentation and a search algorithm based on
semantic content blocks improves the performance of Web
searches. Song et al. [25] have used VIPS to find blocks in
Web pages. Then, they use Support Vector Machines (SVM)
and Neural Networks to identify important Web pages. We
observed that VIPS is significantly more expensive than our
simple blocking algorithm. So, in one of our algorithms
(L-Extractor), for the first step, we used our blocking
algorithm and, in the second step, we used a SVM-based
algorithm to achieve good results. However, we also show
that one can use even simpler and less expensive techniques
as used in ContentExtractor and k-FeatureExtractor to identify
primary content blocks in Web pages.

Ramaswamy et al. [21], [22] propose a Shingling
algorithm to identify fragments of Web pages and use it
to show that the storage requirements of Web caching are
significantly reduced. We show below that a ContentEx-
tractor-based algorithm provides similar savings for Web
caching, however, ContentExtractor is significantly less
expensive than the Shingling algorithm.

Bar-Yossef and Rajagopalan [3] have proposed a method
to identify frequent templates of Web pages and pagelets
(identical to our blocks). Yi and Liu argue that their
entropy-based method supersedes the template identifica-
tion method. We show that our method produces better
results than the entropy-based method.

Kushmerick [15], [16] has proposed a feature-based
method that identifies Internet advertisements in a Web
page. It is solely geared toward removing advertisements
and does not remove other noncontent blocks. While their
algorithm can be extended to remove other noncontent
blocks, its efficacy for the general Web cleaning problem
has not been studied. Besides, their algorithm generates
rules from training examples using a manually specified
procedure that states how the features to be used can be
identified. This manual specification is dependent upon
applications. Our algorithms do not require any manual
specification or training data set (except L-Extractor).

There has been substantial research on the general
problem of extracting information from Web pages.
Information extraction or Web mining systems try to extract
useful information from either structured, or semistruc-
tured documents. Since a large percentage of dynamically
generated Web documents have some form of underlying
templates, Wrapper [15], [16], Roadrunner [9], Softmealy
[12], and other systems try to extract information by
identifying and exploiting the templates. Systems like
Tsimmis [5] and Araneus [2] depend on manually provided
grammar rules. In Information Manifold [14], [17], Whirl
[7], or Ariadne [1], the systems tried to extract information
using a query system that is similar to database systems. In
Wrapper systems [16], the wrappers are automatically
created without the use of hand-coding. Kushmerick [15],
[16] have found an inductive learning technique. Their
algorithm learns a resource’s wrapper by reasoning about a
sample of the resource’s pages. In Roadrunner [9], a
subclass of regular expression grammar (UFRE or Union
Free Regular Expression) is used to identify the extraction

DEBNATH ET AL.: AUTOMATIC IDENTIFICATION OF INFORMATIVE SECTIONS OF WEB PAGES 1235

rules by comparing Web pages of the same class and by
finding similarities or dissimilarities among them. In
Softmealy [12], a novel Web wrapper representation
formalism has been presented. This representation is based
on a finite-state transducer (FST) and contextual rules,
which allow a wrapper to wrap semistructured Web pages
containing missing attributes, multiple attribute values,
variant attribute permutations, exceptions, and typos, the
features that no previous work can handle. A SoftMealy
wrapper can be learned from labeled example items using a
simple induction algorithm. For other semistructured
wrapper generators like Stalker [20], a hierarchical informa-
tion-extraction technique converts the complexity of mining
into a series of simpler extraction tasks. It is claimed that
Stalker can wrap information sources that cannot be learned
by existing inductive learning techniques. Most of these
approaches are geared toward learning the regular expres-
sions or grammar induction [6] of the inherent structure or
the semistructure and, so, computational complexities are
quite high.

The efforts mentioned above are involved in extracting
information that originally came from databases. This
underlying data stored in databases is very structured in
nature. Our work concentrates on Web pages where the
underlying information is unstructured text. The techniques
used for information extraction are applied on entire Web
pages, whereas they actually seek information only from
the primary content blocks of the Web pages.

Using our algorithm to extract the primary content
blocks of the Web pages as a preprocessing step, and then
running the information extraction algorithms on the
primary content blocks will reduce the complexity and
increase the effectiveness of the extraction process.

Our preliminary work [10] shows great improvements in
extracting the informative blocks from the Web pages. We
can enhance our feature-based algorithm by using machine
learning mechanisms to select the useful features that are
used to identify the noncontent blocks. Our study of using
Support Vector Learning approach in this context is
described in Section 7.

3 SEGMENTING WEB PAGES INTO BLOCKS

In this section, we define the concept of “blocks” in Web
pages and a few other related terms. Most Web pages on the
Internet are still written in HTML [8]. Even dynamically
generated pages are mostly written with HTML tags,
complying with the SGML format. The layouts of these
SGML documents follow the Document Object Model tree
structure of the World Wide Web Consortium.2 Out of all of
these tags, Web authors mostly use <TABLE> to design the
layouts. Our algorithm uses <TABLE> as the first tag on the
basis of which it partitions a Web page. After <TABLE>, it
uses <TR>, <P>, <HR>, , <DIV>, and , etc., as
the next few partitioning tags in that order. We selected the
order of the tags based on our observations ofWeb pages and
believe that it is a natural order used by most Web page
designers (according to our study ofHTML editing style for a
few thousandWeb pages from various sources and formats).

For example, <TABLE> comes as a first partitioning tag since
we seemore instances of in a table cell than <TABLE>s
coming inside , an item under . Our algorithms
partition a Web page based on the first tag in the list to
identify the blocks, and then subpartitions the identified
blocks based on the second tag and so on. It continues to
partition until there is any tag left in a block in the block-set
which is part of the list of tags. This ensures that the blocks
are atomic in nature and no further division is possible on
them. The partitioning algorithm is illustrated in Section 4.1
and this tag-set is called the partitioning tag-set.

3.1 Block Features

By definition, blocks may include other smaller blocks. But,
in our implementation, as we described above we have
taken all atomic blocks for computation purpose (except in
a few cases in FeatureExtractor). Atomic blocks will have
features like text, images, applets, javascript, etc. Actually,
all HTML tags (Following W3C (http://w3c.org)) except
the tags in partitioning tag-set are included for feature
analysis. A block-feature set is a set of features that a block
contains. Several features are associated with their respec-
tive standard tags but not all features have standard tags.
For example, an image is always associated with the tag
, however, the text feature has no standard tag. For
features that are associated with a tag, we used the
W3C guidelines on HTML pages to make the full list of
features. The features of a block that we have used includes,
but are not limited to Text, Text-tag, List, Table, Link,
Object, Frame, Form, Script, Style-Sheet, etc. The most
important and nice quality of algorithm is that we can
update this list as time and version of HTML pages change,
without doing any fundamental changes in the algorithm.

Examples of individual features in the feature vectors
constructed by our algorithms are: the number of terms (in
case of text feature), the number of images (in case of
 tag), the number of javascripts (in case of <SCRIPT>
tag), etc. However, for text blocks, simply taking the
number of terms in the block may result in falsely
identifying two blocks as similar. Therefore, we augment
the features by adding a binary feature for each term in the
corpus of documents. If a term occurs in a block, the entry
in the corresponding feature vector is a one, otherwise, it is
zero. If other features are deemed important, our frame-
work can be easily modified by adding new features and
adjusting the weights of those features while computing the
similarity between blocks.

3.2 Inverse Block Document Frequency and Block
Similarity

ContentExtractor computes the Inverse Block Document
Frequency (IBDF) as defined below. For example, if a block
appears in multiple Web pages, say, in most of CNN’s Web
pages, the block will have a smaller Inverse Block
Document Frequency (IBDF) than one that appears only
in one Web page.

Let us assume IBDFi represents the IBDF of a block Bi

in a set of pages S. Typically, the set S consists of similar
pages from the same source. IBDFi is inversely propor-
tional to the number of Web pages the block Bi occurs in.

1236 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 17, NO. 9, SEPTEMBER 2005

2. W3C or http://www.w3c.org.

So, S is a set of Web pages of the same class, i.e., obtained

from the same source. Therefore,

S ¼ fP1;P2;P3; . . .PMg; ð1Þ

where Pis ð8i 2 MÞ are individual HTML pages from that

source, and

IBDFi � f
1

jSij þ 1

� �
; ð2Þ

where

Si ¼ [fPl : SimðBi;BkÞ < �; 8Bk 2 Pl; 8Pl 2 Sg: ð3Þ

f denotes a function, usually linear or log function. The

function SimðBi;BkÞ is a similarity measure of the two

blocks. An expert provides the threshold �.
There may be a question regarding whether the basis of

our algorithm is a rule-based technique. Actually, we draw

analogy between the TF-IDF measure in vector-space model

[24] and our IBDF measure. As we eliminate the

commonly occurring or redundant words or phrases in a

collection by applying the IDF measure of all the words and

phrases, we here extend the same concept for blocks. If we

consider blocks as the atomic units in a Web page, it is easy

to visualize that the blocks having lower IBDF values or

high frequency of occurring in several Web pages will be

eliminated as redundant blocks. TF-IDF measure and

related algorithms are undoubtedly not rule-based algo-

rithms. Likewise IBDF measure and ContentExtractor

should not be considered as rule-based approaches.

4 ALGORITHM: CONTENTEXTRACTOR

The input to the algorithms is a set (at least two) of Web

pages belonging to a class of Web pages. A class is defined

as a set of Web pages from the same Web site whose

designs or structural contents are very similar. A set of Web

pages dynamically generated from the same script is an

example of a class. The output of the algorithms are the

primary content blocks in the given class of Web pages.

The first step of all our algorithms is to use the
GetBlockSet routine (described next) to partition each page
into blocks.

4.1 GetBlockSet

The GetBlockSet routine takes an HTML page as input with
the ordered tag-set.

GetBlockSet takes a tag from the tag-set one by one and
calls the GetBlocks routine for each block belonging to the set
of blocks, already generated. New subblocks created by
GetBlocks are added to the block set and the generating main
block (which was just partitioned) is removed from the set.
The First function gives the first element (tag) of an
ordered set, and the Next function gives the consecutive
elements (tags) of an ordered set.

4.2 GetBlocks

GetBlocks takes a full document or a part of a document,
written in HTML, and a tag as its input. It partitions the
document into blocks according to the input tag. For
example, in case of the <TABLE> tag given as input, it will
produce the DOM tree with all the table blocks. It does a
breadth-first search of the DOM tree (if any) of the HTML
page. If the input tag is <TABLE> and there is no table
structure available in the HTML page, it does not partition
the page. In that case, the whole input page comes back as a
single block. In case of other tags such as <P>, it partitions
the page/block into blocks/subblocks separated by those
tags. Fig. 2 shows the structure of two HTML pages. It also
shows the blocks that our blocking algorithm identifies for
each of these pages (under the dotted line).

4.3 Identifying Primary Content Blocks

After the blocks have been identified, the second step of the
process involves identifying the primary content blocks and
separating them from the noncontent blocks. All four
algorithms identify the primary content blocks in the Web
pages, but their methodologies are different.

4.4 ContentExtractor

We show the pseudocode for ContentExtractor in
Algorithms 1 and 2 (Figs. 3 and 4). It calculates the IBDF

DEBNATH ET AL.: AUTOMATIC IDENTIFICATION OF INFORMATIVE SECTIONS OF WEB PAGES 1237

Fig. 2. Two Web pages’ block structures as seen by GetBlockSet. The output from them is shown under the dotted line.

values of each block. For implementation purposes, we

compute the IBDF values as a counter, and compare with

�, which is the same as comparing IBDF�1 with ��1. The

algorithm used a similarity measure function Sim, to find

out the similarity between two blocks.

4.4.1 The Similarity Function and Threshold

Given two blocks, Sim returns the cosine between their

block feature vectors. We used a threshold value of � ¼ 0:9.

That is, if the similarity measure is greater than the

threshold value, then the two blocks are accepted as

identical. The threshold value can be changed according

to the needs of the application and affects the precision and

recall of the algorithm. Blocks that occur rarely across

different Web pages, i.e., have low IBDFs, are output as the

primary content blocks.

4.4.2 Complexity Measure

The computational complexity of this approach is depen-
dent on the computation of the similarity measure between
blocks and the computation of the IBDFs of the blocks.

Let us assume there are N blocks per page and the total
number of documents in a class is M. According to the
definition of a class, these pages are derived from the same
script or from the same Web site. In practical cases, pages
derived from the same class are of the same design. Their
headers, left panels, or the footers are similar (depending on
the threshold �). Thus, during the comparison, the number
of completely new blocks coming from the second page is
pretty low. Therefore, when the algorithm compares pages
Pi and Piþ1, we can arguably assume that the similar blocks
will largely outnumber the dissimilar blocks.

Suppose the average number of new blocks in Pi þ 1 that
are not present in Pi is �. Then, from above discussion

1238 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 17, NO. 9, SEPTEMBER 2005

Fig. 3. Algorithm 1: ContentExtractor.

� � N . Accordingly, after the first comparison, a ðN þ �Þ �
M-dimensional Block-Document matrix will be formed. The
computational complexity of this step is OðN2Þ. After these
pages are compared, the blocks of the third page will be
compared with the combined set of blocks coming from the
first two pages. When the second step of the comparison
will be performed, the cost of computation will be increased.
Ultimately, the total number of comparisons will be

N2 þ ðN þ �Þ �N þ ðN þ 2�Þ �N þ . . .þ ðN þ ðM � 2Þ�Þ

�N ¼ ðM � 1ÞN2 þ �

2
ðM2 � 3M þ 2ÞN

¼ MN2 �N2 þ �

2
M2N � 3�

2
MN þ �N

� �

¼ OðM2NÞ
ð4Þ

as M >> N and � << N .
The Block-Document matrix computation will be depen-

dent on the value of M or the number of pages in the set
and the average number of blocks in each individual page.

In the future, we would like to explore if taking a smaller
number of pages in a set is enough for identifying the
irrelevant blocks. The time complexity to make the sorted
block-document matrix is OðM3N2logðNÞÞ.

If all Web pages in the same class are dynamically
generated from the same template, and running ContentEx-
tractor for all M documents is excessively costly, in practice,
we can identify the template using fewer than M docu-
ments. Then, for all M documents, the primary content
block that appears at a fixed place in the template can be
extracted using the template.

5 ALGORITHM: FEATUREEXTRACTOR/
K-FEATUREEXTRACTOR

We now show our second algorithm, FeatureExtractor. We
designed FeatureExtractor such that any informative block
(corresponding to any feature) can be identified. For
example, FeatureExtractor invoked with the features text,
image, and links, identifies the text blocks, image blocks, or
navigational blocks as the primary content blocks, respec-
tively. We show the pseudocode for FeatureExtractor in
Algorithm 3 (Fig. 5).

5.1 Block Features

The following list describes the features of a Web page
block that we have used in our implementation. A Web
page block can have any or all features of an HTML page.
The W3C HTML guidelines have been followed here:

. Text: The text content inside the block.

. Text-tag: The text tags, e.g., <h1>, <h2>, etc., inside
the block.

. List: The lists available inside the block.

. Table: Available tables inside the block.

. Link: URLs or links inside the block.

DEBNATH ET AL.: AUTOMATIC IDENTIFICATION OF INFORMATIVE SECTIONS OF WEB PAGES 1239

Fig. 4. Algorithm 2: Sim Function (ContentExtractor Algorithn continued).

Fig. 5. Algorithm 3: FeatureExtractor.

. Object: Image, Applet, etc., available in the block.

. Frame: Frames inside the block. Usually, it is rare to
have a frame in the block, but to make the list
complete it has been added.

. Form: Forms available inside the block.

. Script: Javascripts or other types of scripts written in
the block.

. Style-Sheet: This is also to make the list complete
and compliant to W3C guidelines. Styles are usually
important for browser rendering, and usually
included inside other tags, like links and tables, etc.

A question may arise here about why we are taking these
features. As aforesaid, all these blocks are HTML blocks and
we are trying to find out a particular block or set of blocks
which can be identified by the block-property such as text-
blocks or image-blocks. In FeatureExtractor, we are looking
for all the text-blocks and, so, we need to compare the
properties of a block against other blocks. These compar-
isons are only possible if we consider all the HTML tags as
the feature-set of the blocks. As we mentioned earlier, we
can update this list if we so desire because of changes in
HTML features or because of an application’s updated
preferences of desirable features easily without fundamen-
tally changing the algorithm.

Unlike the ContentExtractor algorithm, the FeatureExtrac-

tor algorithm does not depend on multiple Web pages but
depends on the feature-set and the chosen feature for
output. The set features are HTML features as explained
before. For example, let us consider the chosen feature is
text (T I). Now, our algorithm calculates a value for each
feature in each block. Say, a block contains 1,000 words and
two images and three links and an applet, and the
maximum values of words, images, links, and applets
contained in blocks in the data set are 2,000, 4, 50, and 3.
Then, the values for the features in the given block are
1; 000=2; 000, 2=4, 3=50, and 1=3, respectively. After that, we
put each block in the winner-basket if the sum of the feature
values of the desired features is greater than the sum of the
feature values of the rest of the features. From this winner-
basket, we recompute the feature values for this new set of
blocks, and chose the one with highest value of desired
feature.

Now, according to this algorithm a block with a single
word and nothing else would be the obvious winner and
will be chosen. In most practical cases, this scenario did not
arise. And, also, we do not consider a single row or column
of a table as a block. We consider the whole table (in the
highest depth of table tree) as a block. So, the chance of
getting a block with a single word is distant.

5.2 K-FeatureExtractor

Though FeatureExtractor performs with high precision and
recall for one of our data sets, it may not do so in general
and can be improved. For Web pages with multiple
important text blocks, a typical reader may be interested
in all the sections not just one of them (winner of
FeatureExtractor). For example, an end-user may be inter-
ested in all the reviews available from a page on
Amazon.com and each review is in a separate block.
General shopping sites, review sites, chat forums, etc.,
may all contain multiple blocks of important textual
information. FeatureExtractor shows poor precision and
recall as it produces only one text-block with highest
probability, while other important blocks are not retrieved.
To overcome this drawback, we revised the last part of the
FeatureExtractor and named the new algorithm as
K-FeatureExtractor (Algorithm 4 in Fig. 6). To handle more
general Web pages of varied editing-styles, we improved
the FeatureExtractor algorithm. Instead of taking just the
winner block from the winner-basket, we apply a k-means
clustring algorithm to select the best probability blocks from
the basket. This helps us get high precision and recall from
shopping Web sites and review Web sites and, in general, a
much broader range of Web sites. The results from using
the K-FeatureExtractor for these types of Web pages are
shown in Table 3 separately. Needless to mention that
FeatureExtractor did not do well for these Web pages.
K-FeatureExtractor uses an adaptive K-means clustering on
the winner set to retrieve multiple winners as opposed to
FeatureExtractor that selects a single winner. The usual
values of k taken are 2 or 3, and the initial centroids are
chosen from the sorted list at equidistant index values.
After the clustering is done, the high probability cluster(s)
are taken and the corresponding text contents of all those
blocks are taken as the output.

6 EXPERIMENTAL EVALUATION

In this section, we present an empirical evaluation of our
methods. We also compare our algorithms with two other
major competitors.

6.1 First Comparison: With the LH Algorithm

We implemented and compared our algorithm with LH, the
entropy-based algorithm proposed by Lin and Ho [18].
They use the terms precision and recall to refer to the metrics
to evaluate their algorithm. Although, the use of these terms
are somewhat different from their usual sense in the field,
“Information Retrieval,” in order to avoid confusion, we use
the same terms (added with a “b-” for blocks) to refer to the
evaluation metrics of our work.

1240 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 17, NO. 9, SEPTEMBER 2005

Fig. 6. Algorithm 4: K-FeatureExtractor.

6.2 Metric Used

Precision is defined as the ratio of the number of relevant
items (actual primary content blocks) r found and the total
number of items (primary content blocks suggested by an
algorithm) t found. Here, we used a block level precision
and so we call it b-Precision:

b-Precision ¼ r

t
: ð5Þ

Recall has been defined as the ratio of the number of
relevant items found and the desired number of relevant
items. The desired number of relevant items includes the
number of relevant items found and the missed relevant
items m. In case of blocks, we call it as block level recall or
b-Recall:

b-Recall ¼ r

rþm
: ð6Þ

Similar to the way it is defined in information retrieval
literature by Van Rijsbergen [23], we can refer to the
F-measure here as the b-F-measure and define it as:

b-F -measure ¼ 2 � ðb-PrecisionÞ � ðb-RecallÞ
ðb-PrecisionÞ þ ðb-RecallÞ : ð7Þ

6.3 Data Set

Exactly like Lin and Ho, we chose several Web sites from
the news domain. We crawled the Web for news articles
and other types of Web sites to collect documents. The
details (name, source, category, number) of the data set are
shown in Table 1.

In total, we took 15 different Web sites including news,
shopping, opinion posting Web sites, etc., whose designs
and page-layouts are completely different. In Tables 2 and
3, we took 11 different news Web sites for the first
comparison. Unlike Lin and Ho’s data set [18] that is
obtained from one fixed category of news sections (only one
of them is “Miscellaneous” news from CDN), we took
random news pages from every section of a particular Web
site. This choice makes the data set a good mix of a wide
variety of HTML layouts. This step was necessary to
compare the robustness of their algorithm to ours.

6.4 Performance Comparison

We implemented all four algorithms in Perl 5.8.0 on a
Pentium-based Linux platform. With the generous help
from a few graduate students and professors, we calculated
the b-precision and b-recall values for each Web site and
layout category for text feature. These values are shown in
Tables 2 and 3.

Our algorithms outperform LH in all news sites in all
categories. The b-recall is always good since all algorithms
could find most relevant blocks but the results obtained by
running the LH algorithm were less precise than those
obtained by ContentExtractor since the former algorithm also
includes lots of other noncontent blocks.

We believe that the primary reason for the poor
b-precision of LH is because of the greedy approach taken
by their algorithm while identifying the solution. A second
reason is that the LH algorithm works at the feature level
instead of the block level. LH gives a high redundancy score

DEBNATH ET AL.: AUTOMATIC IDENTIFICATION OF INFORMATIVE SECTIONS OF WEB PAGES 1241

TABLE 1
Details of the Data Set

The number of pages taken from individual categories is not shown due to the enormous size of the latex table, but the interested reader can contact
authors to get the details.

to features that occur across Web pages. The redundancy
score of a block is proportional to the weighted sum of the
redundancy scores of each feature it contains. Instead of
looking at occurrences of features across Web pages, the
ContentExtractor algorithm looks at occurrences of similar
blocks across pages. This fundamental difference results in
better b-precision obtained by our algorithm.

The FeatureExtractor algorithm only works well on Web
pages where the primary Web pages have one dominant
feature. For example, in news Web pages, text is the
dominant feature. However, if we go to a domain where the
primary content is a mix of multiple features, FeatureEx-
tractor’s b-precision suffers. If FeatureExtractor has to be
deployed in such a domain, it must be modified to handle
multiple features and use a weighted measure of the
presence of multiple features to identify the primary
content pages. Due to the dependence of FeatureExtractor

on one particular feature, we expect it to perform poorer
than ContentExtractor in more general cases where the
dominant features in a primary content block are not
known.

In other cases (the last four Web sites in Table 1) where
there is a single dominant feature but multiple blocks
should be in the winner set (not just a single winner),
FeatureExtractor may not perform well. And, supporting our

intuition, FetaureExtractor resulted in poor performance for
these Web sites. Because of that, we used K-FeatureExtractor
for these Web sites. The results are shown in Table 3
compared to our ContentExtractor and LH algorithms.

6.5 b-Precision and b-Recall

Both FeatureExtractor and ContentExtractor performed better
than LH in almost all cases. Actually, with ContentExtractor,
there are few or almost no missing blocks because the
algorithm discards only repetitive blocks and keeps the
other blocks and repetitive blocks have low real information
content. In the news domains, most primary content blocks
were dominated by text content and, so, FeatureExtractor
deployed with the mandate to find blocks with predomi-
nantly text content, performs well. The b-precision of
ContentExtractor increases with the number of pages
involved in IBDF calculation. We compare the features of
the first three algorithms in Table 4.

6.6 Execution Time

Fig. 7 shows execution time taken by the three algorithms
(LH, ContentExtractor, and FeatureExtractor) averaged over
all test Web pages. We did not include K- FeatureExtarctor as
the time taken by it would be same and will overlap the
lowermost curve to make it more cluttered. From the figure,
it is clear that our algorithms outperform the LH algorithm

1242 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 17, NO. 9, SEPTEMBER 2005

TABLE 2
Block Level Precision and Recall Values from LH Algorithm, ContentExtractor, and FeatureExtractor

The second, third, and fourth columns are from LH algorithm, the fifth, sixth, and the seventh columns are from ContentExtractor and the eighth,
ninth, and 10th columns are from (K-)FeatureExtractor. We put K in parentheses to imply that these results are almost the same from
FeatureExtractor and K-FeatureExtractor.

TABLE 3
Block Level Precision and Recall Values from LH Algorithm, ContentExtractor, and FeatureExtractor.

The second, third, and fourth columns are from LH algorithm, the fifth, sixth, and the seventh columns are from ContentExtractor and the eighth,
ninth, and 10th columns are from K-FeatureExtractor. Due to poor performance of FeatureExtractor for these Web pages (which we do not show
here) we improved it to K-FeatureExtarctor.

by a significant margin. We can further increase the
performance of ContentExtractor by generating a template
of a set of Web pages using five to 10 Web pages from a site
and using the template to extract primary content blocks.

Here, in Table 4, we present a comparison table for the
features of both algorithms. This table shows the clear
difference between LH and our ContentExtractor and
(K)-FeatureExtractor algorithms.

6.7 Second Compariosn: With Shingling Algorithm

In this section, we compare one of our algorithms with the
Shingling algorithm proposed by Ramaswamy et al. [21].
Regarding the way this algorithm is designed, it is the
closest to our ContentExtractor algorithm and, therefore, we
will attempt to compare these two algorithms side-by-side.
They also partition the HTML page into blocks (in their case
they call them the nodes of the AF or Augmented Fragment
tree). Then, they characterize each individual node with
different properties, such as SubtreeV alue, SubtreeSize,
SubtreeShingles, and others. The detection of similar nodes
was done by an algorithm called “Shared Fragment
Detection.” The Shingling algorithm was designed to save
storage for Web-caches. First, we compare the storage
requirements of a Web-cache using a ContentExtractor
algorithm versus one obtained by the Shingling algorithm.

Table 5 shows a comparison of the Shingling algorithm with

ContentExtractor. To show the amount of storage-savings

obtained, we show the initial storage requirement of few

HTML files, when neither of our algorithms have been run.

From Fig. 8, it is evident that both ContentExtractor and the

Shingling algorithm provide substantial (and almost simi-

lar) amount of savings in caching size.
Precision and recall values using Shingling algorithm are

very very close (from Table 6) to our those from ContentEx-

tractor algorithm as we see from the Web pages we have

analysed. Thus, the main advantage of ContentExtractor is

its time of execution. Due to less complex steps and easy

feature-based characterization of individual blocks in

ContentExtractor, the generation of informative blocks is

very fast. The Shingling algorithm depends mainly on

calculating the hash values of all ðN �W þ 1Þ possible

token-IDs for N tokens and shingles set of window length

W . The computation of hash values and the computation

for the comparison involved in the resemblance equation

ResemblanceðAi;BjÞ ¼
SubtreeShinglesðAiÞ \ SubtreeShinglesðBjÞ
SubtreeShinglesðAiÞ [SubtreeShinglesðBjÞ

ð8Þ

DEBNATH ET AL.: AUTOMATIC IDENTIFICATION OF INFORMATIVE SECTIONS OF WEB PAGES 1243

TABLE 4
A Property-Wise Comparison Table for Three Algorithms.

Note that (K-)FeatureExtractor here represents both FeatureExtractor and K-FeatureExtractor. For the case of (K-)FeatureExtractor, we took
the b-precision, b-recall, b-F-measure, and all other comparisons with respect to text feature.

Fig. 7. Runtimes for the LH, ContentExtractor, and FeatureExtractor algorithms. The vertical axis represents the time of execution (in seconds) for a

number of pages (plotted in the horizontal axis).

are expensive. ContentExtractor does not remove any HTML

tags and uses them for making the feature vector. This

computation is relatively simple and inexpensive because

the comparison/similarity is based on just a cosine

calculation between two vectors. Therefore, ContentExtractor

is much faster than the Shingling algorithm. Fig. 9 shows a

comparison of runtimes taken by the Shingling algorithm

and ContentExtractor. Clearly, the Shingling algorithm does

not scale very well and, thus, the times for the larger

number of Web pages is not reported.

7 ALGORITHM: L-EXTRACTOR

Song et al. [25] used VIPS to perform page segmentation

and then used an SVM to identify primary content blocks in

a Web page. VIPS is an expensive page segmentation

algorithm. However, we hypothesized that an SVM can be

very useful to identify primary content blocks. To prove our

hypothesis, we applied our GetBlockSet algorithm to

250 Web pages. In the next step, we created the feature-

vectors for these blocks using HTML tags as described

above. This set includes all HTML tags except those that are

1244 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 17, NO. 9, SEPTEMBER 2005

Fig. 8. Total storage requirement of Web-caches using ContentExtractor and Shingling algorithms.

TABLE 5
A Property-Wise Comparison Table for Shingling Algorithm and ContentExtractor

TABLE 6
Block Level Precision and Recall Values from Shingling Algorithm and ContentExtractor Algorithm for 50 Web Pages

The second, third, and fourth columns are from Shingling algorithm, the fifth, sixth, and the seventh columns are from ContentExtractor.

included in the partitioning-list of tags and including text

feature. We then ran our Support Vector Learning classifier

[11] (We used a linear Kernel for the Perl SV classifier with

cost and weight values of two-class C-SVC algorithm both

set to 1 with 5-fold cross validation following Chang and

Lin [13]). Fig. 10 shows the accuracy of finding the

informative blocks over increasing numbers of Web pages.

From this study, we can claim that our block-partitioning

algorithm combined with an SVM works with high

efficiency.

8 CONCLUSIONS AND FUTURE WORK

We devised simple, yet powerful, and modular algorithms,
to identify primary content blocks from Web pages. Our
algorithms outperformed the LH algorithm significantly, in
b-precision as well as runtime, without the use of any
complex learning technique. The FeatureExtractor algorithm,
provided a feature, can identify the primary content block

with respect to that feature. The ContentExtractor algorithm

detects redundant blocks based on the occurrence of the

same block across multiple Web pages. The algorithms,

thereby, reduce the storage requirements, make indices

smaller, and result in faster and more effective searches.

Though the savings in filesize and the precision and recall

values from “Shingling Algorithm” is as good as from

ContentExtractor, ContentExtractor outperforms the “Shin-

gling Algorithm” by a high margin in runtime. We intend to

deploy our algorithms as a part of a system that crawls Web

pages, and extracts primary content blocks from it. In the

next step, we will look at the primary content and identify

heuristic algorithms to identify the semantics of the content

to generate markup. The storage requirement for indices,

the efficiency of the markup algorithms, and the relevancy

measures of documents with respect to keywords in queries

should also improve (as we have shown briefly by caching

size benefit) since now only the relevant parts of the

documents are considered.

DEBNATH ET AL.: AUTOMATIC IDENTIFICATION OF INFORMATIVE SECTIONS OF WEB PAGES 1245

Fig. 9. Total execution time taken for ContentExtractor and the Singling-based algorithm.

Fig. 10. Accuracy obtained by using our blocking algorithm with an SVM-based classifier based on block features to identify primary content blocks.

REFERENCES

[1] J.L. Ambite, N. Ashish, G. Barish, C.A. Knoblock, S. Minton, P.J.
Modi, I. Muslea, A. Philpot, and S. Tejada, “Ariadne: A System for
Constructing Mediators for Internet Sources,” Proc. SIGMOD,
pp. 561-563, 1998.

[2] P. Atzeni, G. Mecca, and P. Merialdo, “Semistructured and
Structured Data in the Web: Going Back and Forth,” Proc.
Workshop Management of Semistructured Data, 1997.

[3] Z. Bar-Yossef and S. Rajagopalan, “Template Detection via Data
Mining and Its Applications,” Proc. WWW 2002, pp. 580-591, 2002.

[4] D. Cai, S. Yu, J.-R. Wen, and W.-Y. Ma, “Block Based Web Search,”
Proc. 27th Ann. Int’l ACM SIGIR Conf., pp. 456-463, 2004.

[5] S. Chawathe, H. Garcia-Molina, J. Hammer, K. Ireland, Y.
Papakonstantinon, J. Ullman, and J. Widom, “The Tsimmis
Project: Integration of Heterogeneous Information Sources,” Proc.
10th Meeting Information Processing Soc. of Japan, pp. 7-18, 1994.

[6] B. Chidlovskii, J. Ragetli, and M. de Rijke, “Wrapper Generation
via Grammar Induction,” Proc. Machine Learning: ECML 2000, 11th
European Conf. Machine Learning, pp. 96-108, 2000.

[7] W.W. Cohen, “A Web-Based Information System that
Reasons with Structured Collections of Text,” Proc. Second
Int’l Conf. Autonomous Agents (Agents ’98), K.P. Sycara and
M. Wooldridge, eds., pp. 400-407, 1998.

[8] World Wide Web Consortium, World Wide Web Consortium
Hypertext Markup Language.

[9] V. Crescenzi, G. Mecca, and P. Merialdo, “Roadrunner: Towards
Automatic Data Extraction from Large Web Sites,” Proc. 27th Int’l
Conf. Very Large Data Bases, pp. 109-118, 2001.

[10] S. Debnath, P. Mitra, and C.L. Giles, “Automatic Extraction of
Informative Blocks from Webpages,” Proc. Special Track on Web
Technologies and Applications in the ACM Symp. Applied Computing,
pp. 1722-1726, 2005.

[11] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical
Learning: Data Mining, Inference, and Prediction. Springer Verlag,
2003.

[12] C. Hsu, “Initial Results on Wrapping Semistructured Web Pages
with Finite-State Transducers and Contextual Rules,” Proc. AAAI-
98 Workshop AI and Information Integration, pp. 66-73, 1998.

[13] C.W. Hsu, C.C. Chang, and C.J. Lin, “A Practical Guide to Support
Vector Classification,” A Library of Support Vector Machines, 2003.

[14] T. Kirk, A.Y. Levy, Y. Sagiv, and D. Srivastava, “The Information
Manifold,” Proc. AAAI Spring Symp. Information Gathering from
Heterogeneous Distributed Environments, pp. 85-91, 1995.

[15] N. Kushmerick, “Wrapper Induction: Efficiency and Expressive-
ness,” Artificial Intelligence, vol. 118, nos. 1-2, pp. 15-68, 2000.

[16] N. Kushmerick, D.S. Weld, and R.B. Doorenbos, “Wrapper
Induction for Information Extraction,” Proc. Int’l Joint Conf.
Artificial Intelligence (IJCAI), pp. 729-737, 1997.

[17] A.Y. Levy, D. Srivastava, and T. Kirk, “Data Model and Query
Evaluation in Global Information Systems,” J. Intelligent Informa-
tion Systems, special issue on networked information discovery
and retrieval, vol. 5, no. 2, pp. 121-143, 1995.

[18] S.-H. Lin and J.-M. Ho, “Discovering Informative Content Blocks
from Web Documents,” Proc. Eighth ACM SIGKDD Int’l Conf.
Knowledge Discovery and Data Mining, pp. 588-593, 2002.

[19] B. Liu, K. Zhao, and L. Yi, “Eliminating Noisy Information in Web
Pages for Data Mining,” Proc. Ninth ACM SIGKDD Int’l Conf.
Knowledge Discovery and Data Mining, pp. 296-305, 2003.

[20] I. Muslea, S. Minton, and C.A. Knoblock, “Hierarchical Wrapper
Induction for Semistructured Information Sources,” Autonomous
Agents and Multi-Agent Systems, vol. 4, nos. 1-2, pp. 93-114, 2001.

[21] L. Ramaswamy, A. Iyengar, L. Liu, and F. Douglis, “Automatic
Detection of Fragments in Dynamically Generated Web Pages,”
Proc. 13th World Wide Web Conf., pp. 443-454, 2004.

[22] L. Ramaswamy, A. Iyengar, L. Liu, and F. Douglis, “Automatic
Fragment Detection in Dynamical Web Pages and Its Impact on
Caching,” IEEE Trans. Knowledge and Data Eng., vol. 17, no. 5, pp. 1-
16, May 2005.

[23] C.J. Van Rijsbergen, Information Retrieval. Butterworth-
Heinemann, 1979.

[24] G. Salton, Automatic Information Organization and Retrieval.
McGraw-Hill, 1968

[25] R. Song, H. Liu, J.-R. Wen, and W.-Y. Ma, “Learning Block
Importance Models for Web Pages,” Proc. 13th World Wide Web
Conf., pp. 203-211, 2004.

[26] L. Yi, B. Liu, and X. Li, “Visualizing Web Site Comparisons,” Proc.
11th Int’l Conf. World Wide Web, pp. 693-703, 2002.

Sandip Debnath is a PhD candidate at Penn
State University. Prior to that, he received the
BS degree in electronics and teleCommunica-
tions, MTech degree in computer science, and
the MS degree in computer science. His
research areas include search engines, Web
crawling, data mining, machine learning, ontol-
ogies, and artificial intelligence. He has more
than 20 conference and journal publications. He
is also involved in design, development, and

maintenance of SmealSearch at Penn State University. He has also
been session chair at ICML and referee in several conferences and
journals including UAI, EC, KDD, and the IEEE Transactions on
Knowledge and Data Engineering.

Prasenjit Mitra received the PhD degree from
Stanford University in 2004. Currently, he is an
assistant professor at the Pennsylvania State
University. His main research interests are in
database systems, digital libraries, the semantic
Web and data security. He has been a senior
member of the technical staff at Oracle Corpora-
tion, Narus Inc., and DBWizards. He has served
on the program committee of a workshop and
the 2005 IEEE International Conference on

Services Computing. He has also been a referee for several workshops,
conferences, and journals including ACM Transactions on Database
Systems, IEEE Transactions on Knowledge and Data Engineering,
Information Systems, DKE, and Journal of Universal Computer Science.

Nirmal Pal is the executive director of the
eBusiness Research Center in the Smeal
College of Business at the Pennsylvania State
University. He is an expert on eBusiness
strategy, governance, assessment, and evalua-
tion, as well as IT strategy and planning. He
previously served as the director of IBM Global
Services Consulting Group, where he has been
a member of the management team since its
inception in 1991.

C. Lee Giles left NEC Research Institute, now
NEC Labs, in 2000 to become the David Reese
Professor in the School of Information Sciences
and Technology. He is also a professor of
computer science and engineering, professor
of supply chain and information systems, and
associate director of research in the eBusiness
Research Center at the Pennsylvania State
University, University Park. He has been asso-
ciated with Princeton University, the University

of Pennsylvania, Columbia University, the University of Pisa, and the
University of Maryland; and has taught at all of the above.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

1246 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 17, NO. 9, SEPTEMBER 2005

