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R ecommender systems attempt to automate the process of “word of mouth” rec-

ommendations within a community. Typical application environments such as

online shops and search engines have many dynamic aspects: users come and go, users’

preferences and goals change, items are added and removed, and the user navigation 

itself shifts. Recommendation domains are also often
high dimensional and sparse, with tens or hundreds
of thousands of items, few of which are known to
any particular user.

Consider, for instance, the problem of generating
recommendations in ResearchIndex (also known as
CiteSeer, http://citeseer.ist.psu.edu)—an online dig-
ital library of computer science papers receiving
thousands of user accesses per hour. The site auto-
matically locates computer science papers posted on
the Web, indexes their full text, enables browsing via
a literature citation graph, and extracts the citations’
context, among other services.1 We compared sev-
eral probabilistic model-based collaborative recom-
menders to the similarity-based recommenders cur-
rently available in ResearchIndex and to the standard,
often-used correlation method (our baseline). We
chose to work with the ResearchIndex data because
it’s a rich data source with properties typical of many
recommendation application areas.2 Our methods
should work with little adaptation in other domains.
This article presents a novel maximum entropy, or
maxent, approach for generating online recommen-
dations. Maxent enables fast model querying, is rel-
atively compact, and generally performs as well as
or better than its competitors in terms of accuracy.
We also suggest a document-clustering approach that
helps speed up training of the model.

Calculating recommendations
There are two conceptually different ways of mak-

ing recommendations. Content-filtering methods
recommend solely based on the features of a docu-
ment D (for example, showing documents written
by the same authors or documents textually similar
to D). Collaborative-filtering methods3 work by
assessing the similarities among users on the basis
of their overlap in document requests, then recom-
mending to a given user documents that like-minded
users accessed previously. Common measures of
similarity between users include correlation, mean
squared error, vector similarity, and Bayesian simi-
larity measures. Other approaches to making rec-
ommendations include statistical machine-learning
techniques such as Bayesian networks, dependency
networks, singular-value decomposition, and latent
class models.

Figure 1 shows a typical screen shot of a docu-
ment details page in ResearchIndex. The page shows
the paper’s title and authors, download options, and
a number of recommenders predicting documents of
possible interest to the user on the basis of the cur-
rent document’s features. The archive contains more
than 470,000 documents, including the full text of
each, citation links between documents, and a wealth
of user access data. With so many documents and
only eight accesses per user on average, the user-
document data matrix is exceedingly sparse and
thus challenging to model. ResearchIndex uses sev-
eral similarity-based recommenders, most of which
are content-based and user-independent. On the
other hand, most collaborative-filtering algorithms
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are user-specific but context- and order-
independent: that is, their ranking of recom-
mendations doesn’t depend on the context
of the user’s current navigation or on recency
effects. We aimed to design a superior (or at
least complementary) model-based recom-
mendation algorithm for ResearchIndex that
is tuned for the particular user and that takes
recent documents into greater account (so as
not to lead users too far astray from their cur-
rent search goal).

Probabilistic models
We assume we’re given a data set con-

sisting of time-ordered sequences of docu-
ment requests. We refer to individual items
in the alphabet as documents, or simply
items. For each document, we define its his-
tory H as a thus-far-observed (ordered) sub-
sequence of the current sequence. Dprev is the
last observed document in H. Our task is to
predict the next document Dnext requested by
user U given the history H of document
requests for U in the present session. We
intend to accomplish this task by learning a
probabilistic model P(Dnext | H) from the
available training data. (To be precise, we
should write P(Dnext | H, Data), but for sim-
plicity we omit Data in conditioning.) This
formulation enables a number of choices for
modeling P.

At the time of our study, users were actively
accessing about 15 percent of ResearchIn-
dex’s documents, and they accessed more
than half of our data set’s documents more
than once. Thus, we had to fit a distribution
on a variable that takes on an order of
100,000 values. We could fit other proba-
bilistic models (for example, the Markov and
multinomial mixture models, described later)
to the available data directly despite this huge
scale, but the maxent model couldn’t be fea-
sibly learned over the entire data set due to
its high computational cost. So, we devel-
oped a greedy hierarchical approach to clus-
tering that provided a feasible implementa-
tion. Clustering overcomes sparsity and high
data dimensionality by reducing the original
problem to a set of smaller subproblems cor-
responding to clusters. We then recombined
the cluster-specific models to make recom-
mendations across the entire data set. Thus,
we were able to compare maxent to non-
clustering approaches (the mixture models,
correlation, and the similarity-based recom-
menders). This contrasts with our previous
work, which only provided within-cluster
recommendations.4

Mixture-based models
We implemented and evaluated two mix-

ture-based models to estimate P(Dnext | H): a
mixture of Markov models and a mixture of
multinomial models.

The mixture-of-multinomials approach
essentially prescribes that we disregard
sequential information and treat the available
document accesses in H as a “bag of items”:

(1)

where Nc is the number of mixture compo-
nents, θkt is the probability that the document
number t is accessed, and nt is the number of
times the document number t was accessed in
H. We can fit the model using the expecta-
tion-maximization (EM) algorithm.5 The

model’s number of parameters is linear in the
number of documents and the number of
mixture components.

In the first-order Markov model, the main
assumption is that the current document
depends on the history H only through the
last observed document in H—that is, Dprev.
The following equations define the Markov
models mixture:

(2)

where the first equation is just a standard
equation for the mixture, the second equation
uncovers how each component is modeled,
θ0,k is the probability of observing H0 as a first
document in the history, and θ(h→h+1),k is the
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Figure 1. A typical screen shot of a document details page in ResearchIndex.



probability of observing a transition from
document number h to document number 
h + 1 in the history. For h = |Η |, the document
with index h + 1 is Dnext. This model can also
be learned by using the EM algorithm. The
number of parameters is quadratic in the num-
ber of documents and linear in the number of
components. When Nc = 1, the model reduces
to a regular Markov model (single-component
mixture). Note that the regular Markov model
depends only on the so-called bigrams (first-
order Markov terms)—that is, the frequen-
cies of pairs of consecutive documents.

The trigger maxent model
We can also model P(Dnext | H) as a maxent

distribution. Our main motivation for using
maxent estimation is to combine the attractive
features of the Markov and multinomial models.
Maxent seems well aligned with other recent
efforts to model the recommendation problem
as a sequential rather than a static problem.  It
effectively estimates the probability of the next
visited document given the most recently vis-
ited document and past indicative documents.
To our knowledge, this is the first application
of maxent for collaborative filtering and one
of the few published formulations that makes
accurate recommendations in the context of a
dynamic user session.6

In particular, we believe that the document
Dprev requested immediately prior to Dnext has
the most influence on what Dnext is. Thus, it’s
essential to model sequence information at
least for the pair Dprev Dnext, as the Markov
model does. On the other hand, the docu-
ments in H beyond Dprev also influence Dnext.
We want something more sophisticated than
the multinomial (essentially a zeroth-order)
model. A higher- (than the first) order
Markov model would probably suffice, but
we can’t afford to build it because of the
“curse of dimensionality” (the exponential
growth of complexity). Thus, we must
restrict ourselves to models that can be reli-
ably estimated from the low-order statistics
but still look at the whole H, and this natu-

rally leads us to consider the maxent model.
We select two flavors of low-order statis-

tics or features: bigrams, or first-order
Markov terms, and triggers. To introduce the
long-term dependence of Dnext on the docu-
ments that occurred in the session history, we
define a trigger as a pair of documents (a, b)
such that P(Dnext = b | a ∈ H) differs sub-
stantially from P(Dnext = b). To measure the
triggers’quality and rank them, we compute
mutual information between events E1 =
{Dnext = b} and E2 = {a ∈ H}. We then dis-
card 10 percent of low-scoring triggers but
retain all bigrams. Note that the quantity and
quality of selected triggers depends on H’s
length. Because the average transaction only
has about eight document requests (see Table
1), we choose 10 to be the history’s maxi-
mum length for finding informative triggers.

The set of features—bigrams and triggers
in our case—together with maximum
entropy as an objective function can be
shown7 to lead to the following form of the
conditional maxent model:

(3)

where S is the number of features, Fs are the
features, and Zλ(H) is a normalization constant.
This ensures that the distribution sums to 1:

(4)

We must find the set of parameters λ from
the following set of equations that restrict the
distribution P(Dnext | H) to have the same
expected value for each feature as observed
in the training data:

(5)

where D(H) is the document following H in
the training data. Equation 5’s left-hand side
represents the expectation (up to a normal-
ization factor) of the feature Fs(D, H) with
respect to the distribution P(D | H), and the
right-hand side is the frequency (up to the
same normalization factor) of this feature in
the training data. There exist efficient algo-
rithms (for example, generalized, improved,
and sequential conditional iterative scaling
algorithms) for finding the parameters λ that
are known to converge if the constraints
imposed on P are consistent.

Under fairly general assumptions, we can
show that the maxent model is a maximum-
likelihood model. We use Gaussian smooth-
ing in our experiment because employing a
Gaussian prior with a zero mean on parame-
ters λ yields a maximum a posteriori solu-
tion that is more accurate than the related
maximum-likelihood solution and other
smoothing techniques for maxent models.

Reducing dimensionality 
by clustering

As mentioned earlier, we can fit mixture
models to high-dimensional data using the
EM algorithm directly. However, depending
on the number of selected features, learning
the maxent model directly on our raw train-
ing data could take months of computation.8

As we’ve shown elsewhere,4 clustering can
solve this problem.

Clustering based on user 
navigation

By clustering based on user navigation pat-
terns, we aim to maximize the probability that
once a user requests a document D from clus-
ter c, the user session stays in c (that is, the ses-
sion will consist only of documents in c). Our
intuition is that within a relatively small time
frame, most users are interested in a single
topic, and if we can find topically related clus-
ters, we should achieve the goal. Here, instead
of looking at the contents of individual docu-
ment or user queries, we take a purely collab-
orative approach, clustering documents solely
on the basis of user navigation sequences.

To come up with such clustering, we
scanned the processed training data and, for
each pair of consecutively requested docu-
ments, computed its count. These statistics
are nothing other than the bigram counts.
Even though these counts are fairly sparse—
that is, there isn’t much incoming or outgo-
ing traffic for each document—clustering
such data is still challenging.

P D H F D H

F D H H s S

s
DH

s
H

( | ) ( , )

( ( ), ), , ,

∑∑
∑= = 1 …

Z H F D Hs s
s

S

D
λ λ( ) exp ( , ) .=











=

∑∑
1

P D H
Z H

F D Hnext s s next
s

S

( | )
( )

exp ( , )=








=
∑1

1λ
λ





M i n i n g  t h e  W e b  

42 www.computer.org/intelligent IEEE INTELLIGENT SYSTEMS

Table 1. Statistical properties of the experiments’ training and test data.

Data properties Training set Test set

Total number of users 567,472 212,339

Total number of documents 263,156 233,361

Average requests per user 8.6785 8.0977

Standard deviation of requests per user 31.9832 27.6857

Minimum requests per user 2 2

Maximum requests per user 4,486 3,421



We tried the PageGather algorithm for
clustering the bigrams.9 The idea behind
PageGather is to create an attribute interac-
tion graph based on bigrams and to identify
the graph’s cliques using a well-known tech-
nique such as join-tree clustering. The algo-
rithm returned one large clique and a lot of
smaller ones, whereas we’d prefer a set of
clusters with more balanced sizes. So, we
decided to use a straightforward hierarchi-
cal greedy algorithm (see the pseudocode in
Figure 2).

The algorithm starts with empty clusters
and then cycles through all documents, pick-
ing the document pairs that have the current
highest joint visitation frequency as prompted
by a bigram frequency (lines 1 and 2). If both
documents in the selected pair are unas-
signed, the algorithm allocates a new cluster
for them (lines 3 through 5). If one of the doc-
uments in the selected pair has been assigned
to a previous cluster, the algorithm assigns
the second document to the same cluster
(lines 6 through 10). The algorithm repeats
for a lower frequency n as long as n ≥ 2.

After the clustering, we can assume that if
a user requests a document from the ith clus-
ter S[i], that user is considerably more likely
to prefer a next document from S[i] rather
than from S[j], j ≠ i. That is, P = P(Dnext ∈
S[i] | Dprev ∈ S[i], Data) » 1 − P. This assump-
tion is reasonable because, by construction,
clusters represent densely connected compo-
nents (in terms of traffic), and the traffic
across the clusters is small compared to the
traffic within each cluster.

We previously showed that this clustering
solves the high-dimensionality problem.4 We
broke individual user sessions into subses-
sions, each of which consisted of documents
belonging to the same cluster. The problem
was thus reduced to a series of prediction
problems for each cluster.

We also studied the clusters by trying to
find out if the documents within each clus-
ter were topically related. We ran code pre-
viously developed at NEC Labs that uses
information gain to find the top features
that distinguish each cluster from the rest.
Table 2 shows the top features for some of
the created clusters. The top features are
quite consistent descriptors, suggesting that
a ResearchIndex user is typically interested
in searching among topically related docu-
ments, at least during one session (as defined
earlier). Thus, a straightforward greedy clus-
tering algorithm does find attractive topi-
cally related clusters.

Combining predictions from 
different clusters

To make predictions on the raw test data,
we need the ability to combine predictions
of the learned maxent models for different
clusters into a predictor that would work on
unclustered data.

We used the following idea borrowed from
Joshua Goodman.8 Consider an arbitrary
clustering C of a set of documents such that
a document belongs to one and only one clus-
ter. Then, we can represent the probability
P(Dnext | H) as

(6)

The first equality is just a rule of full prob-
ability; the second equality holds because each
document has a unique cluster assignment.

Our scheme for greedy clustering, described
earlier, applies directly to this setting. We use
a maxent model to represent P(Dnext | C(Dnext),
H) in each cluster. The only remaining ques-
tion is how to learn the weights P(C(Dnext) | H).
Other researchers suggest learning a separate
maxent model to represent the weights.8 How-
ever, we found that the following ad hoc
approximation scheme works reasonably well
in practice.

Recall that every document has an asso-
ciated cluster. If we scan H, we can accu-
mulate the frequency with which each
cluster (represented by a document in H)
has occurred in H. For instance, if all doc-
uments in H were from the same cluster c,
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Figure 2. Pseudocode for the hierarchical greedy algorithm.

Input: Bigrams counts B[i, j]; Number of Clusters C;
Output: Set S of C Clusters.
Algorithm:

0. nC = 0;
1. set n = argmaxi,jB [i, j] // most frequent bigram
2. for all docs i, j such that B [i, j] == n do  // all docs with n transitions
3. if (i and j are unassigned and nC < C )
4. S[nC ] ← {i, j };
5. nC + +; // new cluster for i and j
6. else if (i is unassigned)
7. S[nC ] ← S[nC ] � {i };
8. else if (j is unassigned)
9. S[nC ] ← S[nC ] � {j };

10. end if
11. B[i, j ] = -1;
12. end for
13. if (n ≥ 2) goto 1
14. Return S

Table 2. Top features for some of the clusters in our experiments.

Cluster Features

1 agent, agents, behavior, good, autonomous, the_agent, an_agent, …

2 training, clustering, distance, classification, kernel, svm, support, …

3 web, documents, query, the_web, queries, pages, engines, …

4 packet, fast, routing, address, the_network, ip, packets, speed, …

5 transform, channel, coding, rate_compression, images, coefficients, …

6 detection, agents, security, intrusion_detection, host, …

7 traffic, rate, packet, long, wide_scheduling, service, qos, …

8 mobile, wireless, protocol, service, services, location, …



only c would get a nonzero weight of 1 and
we’d only have to make predictions within
c. If half the documents in H were from c1

and half from c2, we’d make predictions in
each of these clusters and weigh them
equally. We used this technique in our
experiments.

Similarity-based recommenders 
The following similarity recommenders

are available in ResearchIndex (more details
are available elsewhere1):

• Active Bibliography finds documents that
make similar citations and are also close
in the sense of word frequencies.

• Sentence Similarity displays documents
with a significant number of identical sen-
tences.

• Text Similarity recommends documents
that resemble the current one in terms of
word occurrences.

• Users Who Viewed displays other docu-
ments requested by the users who viewed
the current document.

• On Same Site shows other documents
listed on the same Web site as the current
document.

• Cited By lists documents that cite the cur-
rent one.

• Co-citation recommends documents that
are often cited together with the current
document.

• Cites displays documents cited by the cur-
rent document.

We populated the lists of recommenda-
tions for individual similarity-based predic-
tors by taking the information currently
stored in the system, which is in most cases
three to five top recommendations per docu-
ment per recommender. The ResearchIndex
Merge predictor pulls all similarity-based
recommenders together—essentially, this
corresponds to the currently available rec-
ommending system in ResearchIndex.

The experiments
We compared several probabilistic model-

based collaborative recommenders to the
standard correlation method and to the sim-
ilarity-based recommenders ResearchIndex
currently uses. 

We obtained a log file that recorded more
than six months’ worth of ResearchIndex
data that can roughly be viewed as a series
of requests <time, user, document>. We parti-
tioned the log chronologically into approxi-

mately five million training requests (cover-
ing 159 days) and 1.7 million test requests
(covering 50 days). We preprocessed the
training and test sets as follows. We assigned
each document indexed in ResearchIndex a
unique document ID. Whenever a user
accessed the site with a cookie-enabled
browser, we identified him or her as a new or
returning user and recorded all activity on the
server side with a unique user ID (UID) and
time stamp.

In the first processing step, we aggregated
the requests by UID and broke them into ses-
sions. For a fixed UID, we defined a session
as a sequence of document requests, with no
two consecutive requests more than T seconds

apart. In our experiments, we chose T = 120,
so that if a user was inactive for more than
120 seconds, his next request marked the start
of a new session.

The next step included heuristics, such as

• Identifying and discarding the sessions
belonging to robots (they obviously con-
taminate human users’browsing patterns)

• Collapsing all same-consecutive-document
accesses into a single instance of this doc-
ument (our objective was to predict what
interested the user beyond the currently
requested document)

• Getting rid of all documents that occurred
just once in the log

• Discarding sessions containing only one
document

After preprocessing, we represented the
data as a collection of ordered sequences of
document requests, possibly with multiple
sequences per user (see Table 1 for statisti-
cal properties of the data). All models and
recommenders took this data as input.

Parameters of competing models
We clustered the training data set using our

greedy algorithm. A maxent model was
learned separately for each cluster, with all
bigrams and 90 percent of the top triggers
retained for evaluation. We obtained global
predictions of the maxent model on the test
data by combining individual cluster maxent
models.

We compared our maxent approach with
the following models:

• A single-component Markov model
• A mixture of Markov models (30 com-

ponents)
• A mixture of multinomials (60 com-

ponents)
• The correlation method—one of the best

and most widely used collaborative filter-
ing recommenders

• The individual similarity-based predictors
already available in ResearchIndex

• The ResearchIndex Merge similarity-
based predictor

For computation reasons, we didn’t opti-
mize the models’adjustable parameters (such
as the number of components for the mixture
or the variance of the prior for maxent mod-
els) or the number of clusters (1,000).

Evaluation metrics
We trained all the models on the training

data and evaluated them on the test data. We
evaluated them by scanning the sequences of
document requests document by document
and, for each document in the sequence, pre-
dicting the next document’s identity.

We used the average height of predictions
on the test data as the main evaluation crite-
rion. A prediction’s height is similar to the
rank of search results and corresponds to the
requested document’s rank within the rec-
ommendation list of a given model or rec-
ommender. We formally define this as fol-
lows. Assuming that the probability estimates
P(Dnext | H) are available from a model P for
a fixed history H and all possible values of
Dnext, we first sort them in the descending
order of P and then find the distance in terms
of the number of documents to the actual
requested D (which we know from the test
data) from the top of this sorted list. The
height tells us how deep into the list the user
must go to see the document of actual inter-
est. The height of a perfect prediction is 0—
that is, the requested document is the first one
on the list. For ResearchIndex recommenders,
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we used the order of predictions as stored in
the system. If a specific recommender didn’t
have any predictions for a given document,
we set the height to infinity for all occurrences
of this document in the test data.

To make comparisons among different
recommenders easier, we binned the heights
of predictors. We used bins with intervals [0,
K] for K = 1, …, 5, 10. For all recommenders
and all bins, we computed two statistics:

• Hits. The total number of requests falling
within the bin normalized by the total
number of recommendations made

• Height. The average height of hits within
the bin

The best performing model would place
most predictions inside the bins with smaller
values of K, and within those bins the aver-
age heights would be as low as possible.
Note the hits statistic is primary for com-
parison, while the height statistic plays a role
only for ranking recommenders with simi-
lar hit ratios.

Our experiments aimed to establish which

of the competing recommending strategies
provided the best accuracy in terms of hits
and height statistics. We also compared the
recommenders with respect to the average
online time and the total memory taken to
generate a prediction. Time was an essential
characteristic: the current implementation of
ResearchIndex ignores any recommendations
that take more than 0.01 second to make.
Memory was less important, because in prin-
ciple an attractively accurate and reasonably
fast recommending system can reside on a
separate computer, with all its memory
resources available for recommending.

We expect that our models won’t be com-
petitive with similarity-based recommenders
with respect to memory, because the latter
use only small lists of predictions per docu-
ment, whereas the former model attribute
interactions and can be quite expensive. For
a simple example, consider the case of mod-
eling 250,000 attributes, which is roughly
how many we had. All bigrams take qua-
dratic memory in the number of attributes,
which would result in roughly 1/2 × 250,0002

× 4 bytes ≈ 116 Gbytes. Luckily, as we’ll see

later, many bigrams have 0 counts and don’t
need to be stored. On the other hand, if we
keep only seven numbers per document (as
would be the case for most similarity-based
recommenders), this would only result in
250,000 × 7 × 4 bytes ≈ 6.6 Mbytes.

The time taken to generate recommenda-
tions for all Dnext using a probabilistic model
P(Dnext | H) could be quite high. Indeed, this
operation amounts to sequentially generat-
ing P(Dnext | H) for all Dnext and sorting the
resulting list. An important role in reducing
the time requirements for probabilistic mod-
els thus belongs to selecting a limited set of
candidates for Dnext depending on H. Because
selecting the candidate set can be nonobvi-
ous for certain models and straightforward
for others, we review our choices here:

• Markov mixtures. We can generate the
candidate set naturally by assessing the
bigrams Dprev Dnext for each document
Dprev.

• Multinomial mixtures. In the absence of
other obvious choices, we can choose the
candidate set to be the set of all similarity-
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based recommendations available for Dprev.
• Correlation. There is no candidate set to

choose (so there are tremendous time
requirements as a result).

• Maxent. We can define the candidate set
naturally by the set of documents belong-

ing to the clusters extracted from H.

Thus, we expect our models to be fast
enough to fit into the recommending time limit
requirements mentioned earlier and accurate
enough to compete with existing methods.

Experimental results
The graph in Figure 3a shows the number

of hits for each bin for all recommending
methods currently used in ResearchIndex. As
follows from the plot and in line with our
expectations, the ResearchIndex Merge rec-
ommender is the best similarity-based rec-
ommender. So, we’ll use this Merge recom-
mender in the remainder of the discussion to
represent ResearchIndex predictors. Figure
3b shows the plot similar to that in Figure 3a
but for all probabilistic collaborative filter-
ing models, correlation, and the ResearchIn-
dex Merge recommender.

As Figure 3b shows, the recommender
systems behaved differently for small and
large values of K. Maxent outperformed all
recommenders, including ResearchIndex
Merge, for K ≤ 3. It was also one of the top
predictors for larger values of K, but
ResearchIndex Merge, the mixture of multi-
nomials, and correlation models improved
more for K ≥ 5. It’s preferable to have better
performance when the number of predictions
the system can make is small. After all, if the
length of the recommendation list were infi-
nite or close to the number of items available,
all predictors’ hit ratios would be 1.

The mixture of multinomial models
appears to be one of the top choices for K ≥
5. This isn’t surprising because we created
the list of candidates for the mixture of multi-
nomials from the predictions of the individual
similarity-based recommenders. A single-
component Markov model’s performance
improved for larger bins. Interestingly, the
mixture of Markov models failed to improve
over the performance of a single component
model, probably due to overfitting. The Co-
citation was the worst and the Active Bibli-
ography was the best stand-alone similarity-
based recommender, whereas Sentence
Similarity and Cited By performed better
than Co-citation; however, their numbers of
hits were still less than half of maxent. Cor-
relation improved its performance for larger
values of K, scoring one of the best for K =
10, but ResearchIndex Merge gave the best
hit ratio for all K ≥ 5.

Table 3 gives the average height of pre-
dictions for all recommenders and bins. Note
that we treat average height within bins as a
secondary statistic, used only for comparing
recommenders with similar hit ratios. We
prefer lower values of height, unlike with hit
ratios. Of the best five competing techniques
with respect to hit ratios (maxent, multino-
mial mixture, correlation, Markov mixture,
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Figure 3. The number of hits for each bin for (a) all recommending methods currently
used in ResearchIndex and (b) all probabilistic collaborative-filtering models, 
correlation, and the ResearchIndex Merge recommender.



and ResearchIndex Merge), maxent per-
formed the best with respect to average
height, Markov mixture was the worst, and
the other three were fairly close. Overall, the
model-based approach provided an attractive
alternative to current recommenders in terms
of the quality of its predictions.

Table 4 compares various models with
respect to the average time taken and memory
required to make a prediction. The data clearly
illustrates that all the models we chose for
experiments were on average faster than 1/100
of a second, which is currently the maximum
time the system allows for generating a rec-
ommendation. In line with our expectations,
our models’memory requirements were much
higher than that for the individual recom-
menders. However, as we argued earlier, this
shouldn’t constitute a practical problem for a
recommender with reasonably fast perfor-
mance running on a stand-alone machine. For
the maxent approach, we might further reduce
memory consumption by either limiting the
maximum size or increasing the number of
clusters. In the former case, if we fix the max-
imum size of the cluster at 1,000, memory
usage drops from 458 to 276 Mbytes with a
negligible decrease in performance. Increas-
ing the number of clusters will probably also
result in less accurate models and will require
a better modeling of P(cluster | H).

Overall, all the algorithms trade off accuracy,
speed, and memory use. Our results demon-
strate that the maxent approach offers one of
the best performance profiles. It’s more accu-
rate than the other model-based approaches,
about as accurate as correlation, and orders of
magnitude faster than correlation. Maxent even
compares favorably against the current simi-
larity-based recommenders in ResearchIndex.
This is significant because the test data should
be biased in favor of the similarity-based rec-
ommenders because they were installed and
running when the data was generated.

Most of the models we tested are easy to
fit to sparse, high-dimensional data without
any additional preprocessing. By clustering
documents based on user navigation patterns,
we can also apply maxent modeling to the
ResearchIndex data. Thus, all the models
generated fast enough recommendations to
be used in real time on high-volume Web
servers. However, the maxent approach gives
us a unique advantage—the ability to model
long-term interactions and dependencies in
data sequences. Maxent did especially well
when the recommendation list was limited
to a small size. We believe this indicates that

maxent can achieve better results in real-time
recommendations, since its recommenda-
tions would affect users’ future requests.

In any application domain, we can’t answer
the question “which recommender is the

best” solely by doing offline experiments on
historical logs as we did in the work reported
here. For instance, ResearchIndex enforces a
certain interface, showing only the top three
documents according to each of the available
similarity-based recommenders. This clearly
affects user interaction with the system, conse-
quently biasing the logs. In future work, we
plan to perform “live” testing of the clustering
approach and various models in ResearchIn-
dex. We also plan to enhance our maxent
approach with a better model for P(cluster | H),
which could also be modeled using maxent.8

Our recent work10 suggests that for difficult pre-
diction problems, we might improve the plain
maxent technique by using mixtures of max-

ent models. This could yield better accuracy
and faster recommendations; however, we still
need to explore the feasibility of fitting this
model to the data. We also plan to evaluate dif-
ferent clustering methods for documents and
try to combine prediction results for different
clusterings. We’ve also started exploring the
use of content-based recommendation infor-
mation for clustering, and clustering based on
user queries. Yet another interesting area of
research is combining collaborative filtering
and content recommendations.

When mining the log file of ResearchIn-
dex, we observed that different groups of users
had different patterns of browsing. Some users
never followed the recommendations; others
used a totally different order of similarity-
based predictors. We believe that further per-
sonalization of recommendations can boost
the system’s performance.
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Table 4. Average time per 1,000 predictions and total memory used by various models.

Time (sec.) Memory (Mbytes)

Cited By 0.0062 3.80

Active Bibliography 0.0082 6.00

Sentence Similarity 0.0056 3.30

Users Who Viewed 0.0078 5.90

Text Similarity 0.0080 6.30

Co-citation 0.0049 2.40

Cites 0.0072 7.20

On Same Site 0.0068 6.00

ResearchIndex Merge 0.0144 24.00

Multinomial mixture, 60 computed 2.5285 60.75

Markov mixture, 1 computed 0.0703 9.73

Markov mixture, 30 computed 0.5204 292.00

Maxent 7.6281 458.10

Correlation > 1 hour 80.90

Table 3. Average heights of predictions for bins 1–5 and 10 and four best 
recommenders with respect to the hits ratio (see Figure 3a).

Bin

Model 1 2 3 4 5 10

ResearchIndex Merge 0 0.3785 0.7440 1.2285 2.5814 2.9057

Multinomial mix 0 0.3890 0.7552 1.2125 2.5698 2.9251

Correlation 0 0.5766 0.9441 1.2645 1.5509 2.7208

Maxent 0 0.3206 0.5964 0.8448 1.0694 1.9824

Markov mix 0 0.4561 0.8962 1.3209 1.7332 3.5504
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