
0 0 M O N T H 2 0 1 6 | V O L 0 0 0 | N A T U R E | 1

ARTICLE
doi:10.1038/nature20101

Hybrid computing using a neural
network with dynamic external memory
Alex Graves1*, Greg Wayne1*, Malcolm Reynolds1, Tim Harley1, Ivo Danihelka1, Agnieszka Grabska-Barwińska1,
Sergio Gómez Colmenarejo1, Edward Grefenstette1, Tiago Ramalho1, John Agapiou1, Adrià Puigdomènech Badia1,
Karl Moritz Hermann1, Yori Zwols1, Georg Ostrovski1, Adam Cain1, Helen King1, Christopher Summerfield1, Phil Blunsom1,
Koray Kavukcuoglu1 & Demis Hassabis1

Modern computers separate computation and memory. Computation
is performed by a processor, which can use an addressable memory to
bring operands in and out of play. This confers two important benefits:
the use of extensible storage to write new information and the ability
to treat the contents of memory as variables. Variables are critical to
algorithm generality: to perform the same procedure on one datum or
another, an algorithm merely has to change the address it reads from.
In contrast to computers, the computational and memory resources of
artificial neural networks are mixed together in the network weights
and neuron activity. This is a major liability: as the memory demands
of a task increase, these networks cannot allocate new storage dynam-
ically, nor easily learn algorithms that act independently of the values
realized by the task variables.

Although recent breakthroughs demonstrate that neural networks
are remarkably adept at sensory processing1, sequence learning2,3 and
reinforcement learning4, cognitive scientists and neuroscientists have
argued that neural networks are limited in their ability to represent
variables and data structures5–9, and to store data over long timescales
without interference10,11. We aim to combine the advantages of neu-
ral and computational processing by providing a neural network with
read–write access to external memory. The access is narrowly focused,
minimizing interference among memoranda and enabling long-term
storage12,13. The whole system is differentiable, and can therefore be
trained end-to-end with gradient descent, allowing the network to learn
how to operate and organize the memory in a goal-directed manner.

System overview
A DNC is a neural network coupled to an external memory matrix.
(The behaviour of the network is independent of the memory size as
long as the memory is not filled to capacity, which is why we view the
memory as ‘external’.) If the memory can be thought of as the DNC’s

RAM, then the network, referred to as the ‘controller’, is a differentiable
CPU whose operations are learned with gradient descent. The DNC
architecture differs from recent neural memory frameworks14,15 in
that the memory can be selectively written to as well as read, allowing
iterative modification of memory content. An earlier form of DNC,
the neural Turing machine16, had a similar structure, but more limited
memory access methods (see Methods for further discussion).

Whereas conventional computers use unique addresses to
access memory contents, a DNC uses differentiable attention
mechanisms2,16–18 to define distributions over the N rows, or ‘locations’,
in the N ×​ W memory matrix M. These distributions, which we call
weightings, represent the degree to which each location is involved in a
read or write operation. The read vector r returned by a read weighting
wr over memory M is a weighted sum over the memory locations:
=∑ ⋅=r wM i i[,] []i

N
1

r  , where the ‘·’ denotes all j =​ 1, …, W. Similarly,
the write operation uses a write weighting ww to first erase with
an erase vector e, then add a write vector v: M[i,j] ←​ M[i,j]
(1 −​ ww[i]e[j]) +​ ww[i]v[j]. The functional units that determine and
apply the weightings are called read and write heads. The operation of
the heads is illustrated in Fig. 1 and summarized below; see Methods
for a formal description.

Interaction between the heads and the memory
The heads use three distinct forms of differentiable attention. The first is
content lookup16,17,19–21, in which a key vector emitted by the controller
is compared to the content of each location in memory according to
a similarity measure (here, cosine similarity). The similarity scores
determine a weighting that can be used by the read heads for asso-
ciative recall19 or by the write head to modify an existing vector in
memory. Importantly, a key that only partially matches the content of
a memory location can still be used to attend strongly to that location.

Artificial neural networks are remarkably adept at sensory processing, sequence learning and reinforcement learning,
but are limited in their ability to represent variables and data structures and to store data over long timescales, owing to
the lack of an external memory. Here we introduce a machine learning model called a differentiable neural computer
(DNC), which consists of a neural network that can read from and write to an external memory matrix, analogous to the
random-access memory in a conventional computer. Like a conventional computer, it can use its memory to represent
and manipulate complex data structures, but, like a neural network, it can learn to do so from data. When trained
with supervised learning, we demonstrate that a DNC can successfully answer synthetic questions designed to emulate
reasoning and inference problems in natural language. We show that it can learn tasks such as finding the shortest
path between specified points and inferring the missing links in randomly generated graphs, and then generalize these
tasks to specific graphs such as transport networks and family trees. When trained with reinforcement learning, a DNC
can complete a moving blocks puzzle in which changing goals are specified by sequences of symbols. Taken together,
our results demonstrate that DNCs have the capacity to solve complex, structured tasks that are inaccessible to neural
networks without external read–write memory.

1Google DeepMind, 5 New Street Square, London EC4A 3TW, UK.
*These authors contributed equally to this work.

© 2016 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

http://www.nature.com/doifinder/10.1038/nature20101

2 | N A T U R E | V O L 0 0 0 | 0 0 M O N T H 2 0 1 6

ARTICLERESEARCH

This enables a form of pattern completion whereby the value recovered
by reading the memory location includes additional information that
is not present in the key. In general, key-value retrieval provides a rich
mechanism for navigating associative data structures in the external
memory, because the content of one address can effectively encode
references to other addresses.

A second attention mechanism records transitions between conse
cutively written locations in an N ×​ N temporal link matrix L. L[i, j]
is close to 1 if i was the next location written after j, and is close to 0
otherwise. For any weighting w, the operation Lw smoothly shifts the
focus forwards to the locations written after those emphasized in w,
whereas L⊤w shifts the focus backwards. This gives a DNC the native
ability to recover sequences in the order in which it wrote them, even
when consecutive writes did not occur in adjacent time-steps.

The third form of attention allocates memory for writing. The ‘usage’
of each location is represented as a number between 0 and 1, and a
weighting that picks out unused locations is delivered to the write head.
As well as automatically increasing with each write to a location, usage
can be decreased after each read. This allows the controller to reallocate
memory that is no longer required (see Extended Data Fig. 1). The
allocation mechanism is independent of the size and contents of the
memory, meaning that DNCs can be trained to solve a task using one
size of memory and later upgraded to a larger memory without retrain-
ing (Extended Data Fig. 2). In principle, this would make it possible to
use an unbounded external memory by automatically increasing the
number of locations every time the minimum usage of any location
passes a certain threshold.

The design of the attention mechanisms was motivated largely by
computational considerations. Content lookup enables the formation
of associative data structures; temporal links enable sequential retrieval
of input sequences; and allocation provides the write head with unused
locations. However, there are interesting parallels between the memory
mechanisms of a DNC and the functional capabilities of the mamma-
lian hippocampus. DNC memory modification is fast and can be one-
shot, resembling the associative long-term potentiation of hippocampal
CA3 and CA1 synapses22. The hippocampal dentate gyrus, a region
known to support neurogenesis23, has been proposed to increase rep-
resentational sparsity, thereby enhancing memory capacity24: usage-
based memory allocation and sparse weightings may provide similar

facilities in our model. Human ‘free recall’ experiments demonstrate
the increased probability of item recall in the same order as first pre-
sented—a hippocampus-dependent phenomenon accounted for by the
temporal context model25, bearing some similarity to the formation of
temporal links (Methods).

Synthetic question answering experiments
Our first experiments investigated the capacity of the DNC to perform
question answering. To compare DNCs to other neural network archi-
tectures, we considered the bAbI dataset26, which includes 20 types of
synthetically generated questions designed to mimic aspects of textual
reasoning. The dataset consists of short ‘story’ snippets followed by
questions with answers that can be inferred from the stories: for exam-
ple, the story “John is in the playground. John picked up the football.”
followed by the question “Where is the football?” with answer “play-
ground” requires a system to combine two supporting facts, whereas
“Sheep are afraid of wolves. Gertrude is a sheep. Mice are afraid of
cats. What is Gertrude afraid of?” (answer, “wolves”) tests its facility at
basic deduction (and resilience to distractors). We found that a single
DNC, jointly trained on all 20 question types with 10,000 instances
each, was able to achieve a mean test error rate of 3.8% with task failure
(defined as >​5% error) on 2 types of questions, compared to 7.5% mean
error and 6 failed tasks for the best previous jointly trained result21. We
also found that DNCs performed much better than both long short-
term memory27 (LSTM; at present the benchmark neural network for
most sequence processing tasks) and the neural Turing machine16
(see Extended Data Table 1 for details). Unlike previous results on this
dataset, the inputs to our model were single word tokens without any
preprocessing or sentence-level features (see Methods for details).

Graph experiments
Although bAbI is presented in natural language, each declarative sen-
tence involves a limited vocabulary and is generated from a simple triple
containing an actor, an action and a set of arguments. Such sentences
could easily be rendered in graphical form: for example “John is in the
playground” can be diagrammed as two named nodes, ‘Playground’ and
‘John’, connected by a named edge ‘Contains’. In this sense, the prop-
ositional knowledge in many of the bAbI tasks is equivalent to a set of
constraints on an underlying graph structure. Indeed, many important

B C F

B C F

W

N

W

a Controller b Read and write heads c Memory
d Memory usage
and temporal links

Output

Input

Write vector

Erase vector

Write key

Read key

Read mode

Read key

Read mode

Read vectors

Write

Read 1

Read 2

Figure 1 | DNC architecture. a, A recurrent controller network receives
input from an external data source and produces output. b, c, The
controller also outputs vectors that parameterize one write head (green)
and multiple read heads (two in this case, blue and pink). (A reduced
selection of parameters is shown.) The write head defines a write and
an erase vector that are used to edit the N ×​ W memory matrix, whose
elements’ magnitudes and signs are indicated by box area and shading,
respectively. Additionally, a write key is used for content lookup to find
previously written locations to edit. The write key can contribute to

defining a weighting that selectively focuses the write operation over the
rows, or locations, in the memory matrix. The read heads can use gates
called read modes to switch between content lookup using a read key (‘C’)
and reading out locations either forwards (‘F’) or backwards (‘B’) in the
order they were written. d, The usage vector records which locations have
been used so far, and a temporal link matrix records the order in which
locations were written; here, we represent the order locations were written
to using directed arrows.

© 2016 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

0 0 M O N T H 2 0 1 6 | V O L 0 0 0 | N A T U R E | 3

ARTICLE RESEARCH

tasks faced by machine learning involve graph data, including parse
trees, social networks, knowledge graphs and molecular structures.
We therefore turn next to a set of synthetic reasoning experiments on
randomly generated graphs.

Unlike bAbI, the edges in our graphs were presented explicitly, with
each input vector specifying a triple consisting of two node labels and
an edge label. We generated training graphs with random labelling and
connectivity and defined three kinds of query: ‘traversal’, ‘shortest path’
and ‘inference’ (Fig. 2). After training with curriculum learning28,29
using graphs and queries with gradually increasing complexity, the
networks were tested (with no retraining) on two specific graphs as a
test of generalization to realistic data: a symbolic map of the London
Underground and an invented family tree.

For the traversal task (Fig. 2b), the network was instructed to report
the node arrived at after leaving a start node and following a path of
edges generated by a random walk. For the shortest-path task (Fig. 2b),
a random start and end node were given as the query, and the net-
work was asked to return a sequence of triples corresponding to a
minimum-length path between them. Because we considered paths of
up to length five, this is a harder version of the path-finding task in the
bAbI dataset, which has a maximum length of two. For the inference
task (Fig. 2c), we predefined 400 ‘relation’ labels that stood as abbre-
viations for sequences of up to five connected edge labels. A query
consisted of an incomplete triple specifying a start node and a relation
label, and the required answer was the final node after following the
relation sequence. Because the relation sequences were never presented
to the network, they had to be inferred from the queries and targets.

As a benchmark we again compared DNCs with LSTM. In this case,
the best LSTM network we found in an extensive hyper-parameter
search failed to complete the first level of its training curriculum of even
the easiest task (traversal), reaching an average of only 37% accuracy
after almost two million training examples; DNCs reached an average of
98.8% accuracy on the final lesson of the same curriculum after around
one million training examples.

Figure 3 illustrates a DNC’s use of memory allocation, content lookup
and temporal linkage to store and traverse the London Underground
map. Visualization of a DNC trained on shortest-path suggests that it
progressively explored the links radiating out from the start and end
nodes until a connecting path was found (Supplementary Video 1).

Block puzzle experiments
Next we wanted to investigate the ability of DNCs to exploit their
memory for logical planning tasks. To do this, we created a block
puzzle game inspired by Winograd’s SHRDLU30—a classic artificial
intelligence demonstration of an environment with movable objects
and a rule-based agent that executed user instructions. Unlike the
previous experiments, for which the networks were trained with
supervised learning, we applied a form of reinforcement learning
in which a sequence of instructions describing a goal is coupled to
a reward function that evaluates whether the goal is satisfied—a
set-up that resembles an animal training protocol with a symbolic
task cue31.

Our environment, which we term Mini-SHRDLU, contains a set of
numbered blocks on a grid board. An agent, given a view of the board
as input, can move the top block from a column and deposit it on top
of a stack in another column. At every episode, we generated a start
board configuration and several possible goals. Each goal, identified by
a single-letter label, was composed of several individual constraints on
adjacent block pairs that were transmitted one constraint per time-step
(goal ‘T’ is “block 6 below 2; block 4 left of 1; …”) (Fig. 4b, c). After all
of the goals were presented, a single goal label was chosen at random,
and the agent was cued to satisfy that goal.

The DNC used its memory to store the instructions by iteratively writing
goals to locations (Fig. 4a); it could then carry out any chosen goal (Fig. 4c,
Supplementary Video 2). We observed that, at the time a goal was writ-
ten, but many steps before execution was required, the first action could
be decoded from memory (Fig. 4d). This indicates that the DNC had
written its decision to memory before acting upon it; thus, remarkably,

a Random graph c Family treeb London Underground

Shortest-pathTraversal

Ian Jodie

Tom Charlotte

MatJo

Fergus

AliceSteve

Simon Freya Natalie

Jane

Bob

Mary

Alan Lindsey

Liam Nina

Becky Alison

Maternal great uncle

Shortest-path question:
(Moorgate, PiccadillyCircus, _)

Traversal question:
(BondSt, _, Central),
(_, _, Circle), (_, _, Circle),
(_, _, Circle), (_, _, Circle),
(_, _, Jubilee), (_, _, Jubilee),

Underground input:
(OxfordCircus, TottenhamCtRd, Central)
(TottenhamCtRd, OxfordCircus, Central)
(BakerSt, Marylebone, Circle)
(BakerSt, Marylebone, Bakerloo)
(BakerSt, OxfordCircus, Bakerloo)

(LeicesterSq, CharingCross, Northern)
(TottenhamCtRd, LeicesterSq, Northern)
(OxfordCircus, PiccadillyCircus, Bakerloo)
(OxfordCircus, NottingHillGate, Central)
(OxfordCircus, Euston, Victoria)

84 edges in total

Inference question:
(Freya, _, MaternalGreatUncle)

Family tree input:
(Charlotte, Alan, Father)
(Simon, Steve, Father)
(Steve , Simon, Son1)
(Nina, Alison, Mother)
(Lindsey, Fergus, Son1)

(Bob, Jane, Mother)
(Natalie, Alice, Mother)
(Mary, Ian, Father)
(Jane, Alice, Daughter1)
(Mat, Charlotte, Mother)

54 edges in total

Answer:
(BondSt, NottingHillGate, Central)
(NottingHillGate, GloucesterRd, Circle)

(Westminster, GreenPark, Jubilee)
(GreenPark, BondSt, Jubilee)

Answer:
(Moorgate, Bank, Northern)
(Bank, Holborn, Central)
(Holborn, LeicesterSq, Piccadilly)
(LeicesterSq, PiccadillyCircus, Piccadilly)

Answer:
(Freya, Fergus, MaternalGreatUncle)

…

…

…

Figure 2 | Graph tasks. a, An example of a randomly generated graph used
for training. b, Zone 1 interchange stations of the London Underground
map, used as a generalization test for the traversal and shortest-path tasks.
Random seven-step traversals (an example of which is shown on the left)
were tested, yielding an average accuracy of 98.8%. Testing on all possible
four-step shortest paths (example shown on the right) gave an average
accuracy of 55.3%. c, The family tree that was used as a generalization
test for the inference task; four-step relations such as the one shown in

blue (from Freya to Fergus, her maternal great uncle) were tested, giving
an average accuracy of 81.8%. The symbol sequences processed by the
network during the test examples are shown beneath the graphs. The
input is an unordered list of (‘from node’, ‘to node’, ‘edge’) triple vectors
that describes the graph. For each task, the question is a sequence of
triples with missing elements (denoted ‘_’) and the answer is a sequence of
completed triples.

© 2016 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

4 | N A T U R E | V O L 0 0 0 | 0 0 M O N T H 2 0 1 6

ARTICLERESEARCH

DNC learned to make a plan. As with the graph tasks, learning
followed a curriculum that gradually increased the number of blocks on
the board and constraints in a goal as well as the number of goals and

the minimum number of actions needed to find a solution (Methods).
Again, the DNC performed substantially better than LSTM (see Fig. 5
and Extended Data Fig. 3).

c London Underground map

d Read key

a Read and write weightings

From

e Location content

To Line

Oxford Circus>Tottenham Court Rd
Tottenham Court Rd>Oxford Circus

Green Park>Oxford Circus
Victoria>Green Park

Oxford Circus>Green Park
Green Park>Victoria

Green Park>Piccadilly Circus
Piccadilly Circus>Leicester Sq

Piccadilly Circus>Green Park
Leicester Sq>Piccadilly Circus

Piccadilly Circus>Oxford Circus
Charing Cross>Piccadilly Circus
Piccadilly Circus>Charing Cross
Oxford Circus>Piccadilly Circus

Leicester Sq>Tottenham Court Rd
Charing Cross>Leicester Sq
Leicester Sq>Charing Cross

Tottenham Court Rd>Leicester Sq
Victoria>___ Victoria N

___>___ Victoria N
___>___ Central E

___>___ North S
___>___ Piccadilly W
___>___ Bakerloo N

___>___ Central E

C
ha

rin
g

C
ro

ss
G

re
en

 P
ar

k
Le

ic
es

te
r

S
q

O
xf

or
d

 C
irc

us
P

ic
ca

d
ill

y
C

irc
us

To
tt

en
ha

m
 C

ou
rt

 R
d

V
ic

to
ria

B
ak

er
lo

o
N

B
ak

er
lo

o
S

C
en

tr
al

 E
C

en
tr

al
 W

N
or

th
 N

N
or

th
 S

P
ic

ca
d

ill
y

E
P

ic
ca

d
ill

y
W

V
ic

to
ria

 N
V

ic
to

ria
 S

C
ha

rin
g

C
ro

ss
G

re
en

 P
ar

k
Le

ic
es

te
r

S
q

O
xf

or
d

 C
irc

us
P

ic
ca

d
ill

y
C

irc
us

To
tt

en
ha

m
 C

ou
rt

 R
d

V
ic

to
ria

From To Line

C
ha

rin
g

C
ro

ss
G

re
en

 P
ar

k
Le

ic
es

te
r

S
q

O
xf

or
d

 C
irc

us
P

ic
ca

d
ill

y
C

irc
us

To
tt

en
ha

m
 C

ou
rt

 R
d

V
ic

to
ria

B
ak

er
lo

o
N

B
ak

er
lo

o
S

C
en

tr
al

 E
C

en
tr

al
 W

N
or

th
 N

N
or

th
 S

P
ic

ca
d

ill
y

E
P

ic
ca

d
ill

y
W

V
ic

to
ria

 N
V

ic
to

ria
 S

C
ha

rin
g

C
ro

ss
G

re
en

 P
ar

k
Le

ic
es

te
r

S
q

O
xf

or
d

 C
irc

us
P

ic
ca

d
ill

y
C

irc
us

To
tt

en
ha

m
 C

ou
rt

 R
d

V
ic

to
ria

Decode

D
ec

od
ed

 m
em

or
y

lo
ca

tio
ns

b Read mode

Decode

Write head
Read head 1
Read head 2

Backward
Content
Forward

Graph de�nition Query Answer

Backward
Content
Forward

Time
0 5 10 15 20 25 30

Figure 3 | Traversal on the London Underground. a, During the graph
definition phase, the network writes each triple in the map to a separate
memory location, as shown by the write weightings (green). During the
query phase, the start station (Victoria) and lines to be traversed are
recorded. The triple stored in each location can be recovered by a logistic
regression decoder, as shown on the vertical axis. b, The read mode
distribution during the answer phase reveals that read head 1 (pink)

follows temporal links forwards to retrieve the instructions in order,
whereas read head 2 (blue) uses content lookup to find the stations along
the path. The degree of coloration indicates how strongly each mode is
used. c, The region of the map used. d, The final content key used by read
head 2 is decoded as a triple with no destination. e, The memory location
returned by the key contains the complete triple, allowing the network to
infer the destination (Tottenham Court Rd).

G
:2

b
3

G
:6

r1
T:

6b
2

T:
4l

1
T:

5b
4

T:
6r

3
T:

2b
1

T:
5l

2
C

:1
a2

C
:5

r6
C

:3
a1

C
:4

a6
A

:1
l6

A
:5

a3
A

:4
r3 T?

#
#
#
#
#
A
A
C
C
C
C
T
T
T
T
G

a Weightings

d Planned action decodings e t-SNE location goal labels

c Board states

51 2 3 4
Action number

0.1

0.3

0.5

0.7

0.9

C
la

ss
i�

ca
tio

n
ac

cu
ra

cy

Time

Lo
ca

tio
ns

Write head

Read head 1

Read head 2

b Goal T constraints

Location average

Action frequencies
Action

Decode

6b2 4l1 5b4 6r3 5l22b1

Figure 4 | Mini-SHRDLU analysis. a, In a short example episode, the
network wrote goal-related information to sequences of memory locations.
(‘G’, ‘T’, ‘C’ and ‘A’ denote goals; the numbers refer to the block number;
‘b’, ‘a’, ‘l’ and ‘r’ denote ‘below’, ‘above’, ‘left of ’ and ‘right of ’, respectively.)
The chosen goal was T (‘T?’), and the read heads focused on the locations
containing goal T. b, The constraints comprising goal T. c, The policy
made an optimal sequence of moves to satisfy its constraints. d, On 800
random episodes, the first five actions that the network took for the chosen
goal were decoded from memory using logistic regression at the time-step
after the goal was written (box in a with arrow to c). Decoding accuracy

for the first action is 89%, compared to 17% using action frequencies
alone, indicating that the network had determined a plan at the time of
writing, many steps before execution. Error bars represent 5–95 percentile
bootstrapped confidence intervals on validation data. e, Within trials, we
average the location contents associated with each goal label into single
vectors. Across trials, we create a dataset of these vectors and perform
t-SNE (t-distributed stochastic neighbour embedding) dimensionality
reduction down to two dimensions. This shows that each goal label is
coded geometrically in the memory locations.

© 2016 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

0 0 M O N T H 2 0 1 6 | V O L 0 0 0 | N A T U R E | 5

ARTICLE RESEARCH

Discussion
Taken together, the bAbI and graph tasks demonstrate that DNCs are
able to process and reason about graph-structured data regardless of
whether the links are implicit or explicit. Moreover, we have seen that
the structure of the data source is directly reflected in the memory-
access procedures learned by the controller. The Mini-SHRDLU prob-
lem shows that a systematic use of memory also emerges when a DNC
learns by reinforcement to act in pursuit of a set of symbolic goals.

The theme connecting these tasks is the need to learn to represent
and reason about the complex, quasi-regular structure embedded in
data sequences. In each problem, domain regularities, such as the con-
ventions for representing graphs, are invariant across all sequences
shown; on the other hand, for any given sequence, a DNC must detect
and capture novel variability as episodic variables in memory. This
mixture of large-scale structure and microscopic variability is generic
to many problems that confront a cognitive agent32–34. For example, in
visual scenes, stories and action plans, broad regularities bind together
novel variation in any exemplar. Rooms statistically have chairs in them,
but the shape and location of a particular chair in a room are variables.
These variable values can be written to the external memory of a DNC,
leaving the controller network free to concentrate on learning global
regularities.

Our experiments focused on relatively small-scale synthetic tasks,
which have the advantage of being easy to generate and interpret. For
such problems, memory matrices of up to 512 locations were suffi-
cient. To tackle real-world data we will need to scale up to thousands or
millions of locations, at which point the memory will be able to store
more information than can be contained in the weights of the con-
troller. Such systems should be able to continually acquire knowledge
through exposure to large, naturalistic data sources, even without

adapting network parameters. We aim to further develop DNCs to
serve as representational engines for one-shot learning35–37, scene
understanding38, language processing39 and cognitive mapping40, capa-
ble of intuiting the variable structure and scale of the world within a
single, generic model.

Online Content Methods, along with any additional Extended Data display items and
Source Data, are available in the online version of the paper; references unique to
these sections appear only in the online paper.

Received 5 January; accepted 19 September 2016.

Published online 12 October 2016.

1.	 Krizhevsky, A., Sutskever, I. & Hinton, G. E. Imagenet classification with deep
convolutional neural networks. In Advances in Neural Information Processing
Systems Vol. 25 (eds Pereira, F. et al.) 1097–1105 (Curran Associates, 2012).

2.	 Graves, A. Generating sequences with recurrent neural networks. Preprint at
http://arxiv.org/abs/1308.0850 (2013).

3.	 Sutskever, I., Vinyals, O. & Le, Q. V. Sequence to sequence learning with neural
networks. In Advances in Neural Information Processing Systems Vol. 27 (eds
Ghahramani, Z. et al.) 3104–3112 (Curran Associates, 2014).

4.	 Mnih, V. et al. Human-level control through deep reinforcement learning.
Nature 518, 529–533 (2015).

5.	 Gallistel, C. R. & King, A. P. Memory and the Computational Brain: Why Cognitive
Science Will Transform Neuroscience (John Wiley & Sons, 2011).

6.	 Marcus, G. F. The Algebraic Mind: Integrating Connectionism and Cognitive
Science (MIT Press, 2001).

7.	 Kriete, T., Noelle, D. C., Cohen, J. D. & O’Reilly, R. C. Indirection and symbol-like
processing in the prefrontal cortex and basal ganglia. Proc. Natl Acad. Sci. USA
110, 16390–16395 (2013).

8.	 Hinton, G. E. Learning distributed representations of concepts. In Proc. Eighth
Annual Conference of the Cognitive Science Society Vol. 1, 1–12 (Lawrence
Erlbaum Associates, 1986).

9.	 Bottou, L. From machine learning to machine reasoning. Mach. Learn. 94,
133–149 (2014).

10.	 Fusi, S., Drew, P. J. & Abbott, L. F. Cascade models of synaptically stored
memories. Neuron 45, 599–611 (2005).

11.	 Ganguli, S., Huh, D. & Sompolinsky, H. Memory traces in dynamical systems.
Proc. Natl Acad. Sci. USA 105, 18970–18975 (2008).

12.	 Kanerva, P. Sparse Distributed Memory (MIT press, 1988).
13.	 Amari, S.-i. Characteristics of sparsely encoded associative memory. Neural

Netw. 2, 451–457 (1989).
14.	 Weston, J., Chopra, S. & Bordes, A. Memory networks. Preprint at http://arxiv.

org/abs/1410.3916 (2014).
15.	 Vinyals, O., Fortunato, M. & Jaitly, N. Pointer networks. In Advances in Neural

Information Processing Systems Vol. 28 (eds Cortes, C et al.) 2692–2700
(Curran Associates, 2015).

16.	 Graves, A., Wayne, G. & Danihelka, I. Neural Turing machines. Preprint at
http://arxiv.org/abs/1410.5401 (2014).

17.	 Bahdanau, D., Cho, K. & Bengio, Y. Neural machine translation by jointly learning
to align and translate. Preprint at http://arxiv.org/abs/1409.0473 (2014).

18.	 Gregor, K., Danihelka, I., Graves, A., Rezende, D. J. & Wierstra, D. DRAW: a recurrent
neural network for image generation. In Proc. 32nd International Conference on
Machine Learning (eds Bach, F. & Blei, D.) 1462–1471 (JMLR, 2015).

19.	 Hintzman, D. L. MINERVA 2: a simulation model of human memory. Behav.
Res. Methods Instrum. Comput. 16, 96–101 (1984).

20.	 Kumar, A. et al. Ask me anything: dynamic memory networks for natural
language processing. Preprint at http://arxiv.org/abs/1506.07285 (2015).

21.	 Sukhbaatar, S. et al. End-to-end memory networks. In Advances in Neural
Information Processing Systems Vol. 28 (eds Cortes, C et al.) 2431–2439
(Curran Associates, 2015).

22.	 Magee, J. C. & Johnston, D. A synaptically controlled, associative signal for
Hebbian plasticity in hippocampal neurons. Science 275, 209–213 (1997).

23.	 Johnston, S. T., Shtrahman, M., Parylak, S., Gonç alves, J. T. & Gage, F. H.
Paradox of pattern separation and adult neurogenesis: a dual role for new
neurons balancing memory resolution and robustness. Neurobiol. Learn. Mem.
129, 60–68 (2016).

24.	 O’Reilly, R. C. & McClelland, J. L. Hippocampal conjunctive encoding, storage,
and recall: avoiding a trade-off. Hippocampus 4, 661–682 (1994).

25.	 Howard, M. W. & Kahana, M. J. A distributed representation of temporal
context. J. Math. Psychol. 46, 269–299 (2002).

26.	 Weston, J., Bordes, A., Chopra, S. & Mikolov, T. Towards AI-complete question
answering: a set of prerequisite toy tasks. Preprint at http://arxiv.org/
abs/1502.05698 (2015).

27.	 Hochreiter, S. & Schmidhuber, J. Long short-term memory. Neural Comput. 9,
1735–1780 (1997).

28.	 Bengio, Y., Louradour, J., Collobert, R. & Weston, J. Curriculum learning. In Proc.
26th International Conference on Machine Learning (eds Bottou, L. & Littman, M.)
41–48 (ACM, 2009).

29.	 Zaremba, W. & Sutskever, I. Learning to execute. Preprint at http://arxiv.org/
abs/1410.4615 (2014).

30.	 Winograd, T. Procedures as a Representation for Data in a Computer Program for
Understanding Natural Language. Report No. MAC-TR-84 (DTIC, MIT Project
MAC, 1971).

a

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Lesson

0

0.2

0.4

0.6

0.8

1.0

P
ro

p
or

tio
n

b

0 1 2 3 4 5

Learning step (106)

0

5

10

15

20

25

Le
ss

on

Perfect
Success
Incomplete

LSTM

DNC

Figure 5 | Mini-SHRDLU results. a, 20 replicated training runs with
different random-number seeds for a DNC and LSTM. Only the DNC was
able to complete the learning curriculum. b, A single DNC was able to
solve a large percentage of problems optimally from each previous lesson
(perfect), with a few episodes solved in extra moves (success), and some
failures to satisfy all constraints (incomplete).

© 2016 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

http://www.nature.com/doifinder/10.1038/nature20101
http://arxiv.org/abs/1308.0850
http://arxiv.org/abs/1410.3916
http://arxiv.org/abs/1410.3916
http://arxiv.org/abs/1410.5401
http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1506.07285
http://arxiv.org/abs/1502.05698
http://arxiv.org/abs/1502.05698
http://arxiv.org/abs/1410.4615
http://arxiv.org/abs/1410.4615

6 | N A T U R E | V O L 0 0 0 | 0 0 M O N T H 2 0 1 6

ARTICLERESEARCH

31.	 Epstein, R., Lanza, R. P. & Skinner, B. F. Symbolic communication between two
pigeons (Columba livia domestica). Science 207, 543–545 (1980).

32.	 McClelland, J. L., McNaughton, B. L. & O’Reilly, R. C. Why there are
complementary learning systems in the hippocampus and neocortex: insights
from the successes and failures of connectionist models of learning and
memory. Psychol. Rev. 102, 419–457 (1995).

33.	 Kumaran, D., Hassabis, D. & McClelland, J. L. What learning systems do
intelligent agents need? Complementary learning systems theory updated.
Trends Cogn. Sci. 20, 512–534 (2016).

34.	 McClelland, J. L. & Goddard, N. H. Considerations arising from a
complementary learning systems perspective on hippocampus and neocortex.
Hippocampus 6, 654–665 (1996).

35.	 Lake, B. M., Salakhutdinov, R. & Tenenbaum, J. B. Human-level concept learning
through probabilistic program induction. Science 350, 1332–1338 (2015).

36.	 Rezende, D. J., Mohamed, S., Danihelka, I., Gregor, K. & Wierstra, D. One-shot
generalization in deep generative models. In Proc. 33nd International
Conference on Machine Learning (eds Balcan, M. F. & Weinberger, K. Q.)
1521–1529 (JMLR, 2016).

37.	 Santoro, A., Bartunov, S., Botvinick, M., Wierstra, D. & Lillicrap, T. Meta-learning
with memory-augmented neural networks. In Proc. 33nd International
Conference on Machine Learning (eds Balcan, M. F. & Weinberger, K. Q.)
1842–1850 (JMLR, 2016).

38.	 Oliva, A. & Torralba, A. The role of context in object recognition. Trends Cogn.
Sci. 11, 520–527 (2007).

39.	 Hermann, K. M. et al. Teaching machines to read and comprehend. In Advances
in Neural Information Processing Systems Vol. 28 (eds Cortes, C. et al.)
1693–1701 (Curran Associates, 2015).

40.	 O’Keefe, J. & Nadel, L. The Hippocampus as a Cognitive Map (Oxford Univ. Press,
1978).

Supplementary Information is available in the online version of the paper.

Acknowledgements We thank D. Silver, M. Botvinick and S. Legg for reviewing
the paper prior to submission; P. Dayan, D. Wierstra, G. Hinton, J. Dean, N.
Kalchbrenner, J. Veness, I. Sutskever, V. Mnih, A. Mnih, D. Kumaran, N. de Freitas,
L. Sifre, R. Pascanu, T. Lillicrap, J. Rae, A. Senior, M. Denil, T. Kocisky, A. Fidjeland,
K. Gregor, A. Lerchner, C. Fernando, D. Rezende, C. Blundell and N. Heess for
discussions; J. Besley for legal assistance; the rest of the DeepMind team for
support and encouragement; and Transport for London for allowing us to
reproduce portions of the London Underground map.

Author Contributions A.G. and G.W. conceived the project. A.G., G.W., M.R.,
T.H., I.D., S.G. and E.G. implemented networks and tasks. A.G., G.W., M.R., T.H.,
A.G.-B., T.R. and J.A. performed analysis. M.R., T.H., I.D., E.G., K.M.H., C.S., P.B.,
K.K. and D.H. contributed ideas. A.C. prepared graphics. A.G., G.W., M.R., T.H.,
S.G., A.P.B., Y.Z., G.O. and K.K. performed experiments. A.G., G.W., H.K., K.K.
and D.H. managed the project. A.G., G.W., M.R., T.H., K.K. and D.H. wrote the
paper.

Author Information Reprints and permissions information is available at
www.nature.com/reprints. The authors declare no competing financial
interests. Readers are welcome to comment on the online version of the
paper. Correspondence and requests for materials should be addressed
to A.G. (gravesa@google.com), G.W. (gregwayne@google.com),
D.H. (demishassabis@google.com).

Reviewer Information Nature thanks Y. Bengio, J. McClelland and the
other anonymous reviewer(s) for their contribution to the peer review of
this work.

© 2016 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

http://www.nature.com/doifinder/10.1038/nature20101
http://www.nature.com/reprints
http://www.nature.com/doifinder/10.1038/nature20101
http://www.nature.com/doifinder/10.1038/nature20101
mailto:gravesa@google.com
mailto:gregwayne@google.com
mailto:demishassabis@google.com

ARTICLE RESEARCH

METHODS
A glossary of symbols and full equations for the DNC model are provided in
Supplementary Information.
Controller network. At every time-step t the controller network N receives an
input vector xt ∈​ RX from the dataset or environment and emits an output vector
yt ∈​ RY that parameterizes either a predictive distribution for a target vector zt ∈​ RY
(supervised learning) or an action distribution (reinforcement learning).
Additionally, the controller receives a set of R read vectors …− −r r, ,t t

R
1

1
1 from the

memory matrix Mt−1 ∈​ R ×N W at the previous time-step, via the read heads. It then
emits an interface vector ξt that defines its interactions with the memory at the
current time-step. For notational convenience, we concatenate the read and input
vectors to obtain a single controller input vector χ = …− −x r r[; ; ;]t t t t

R
1

1
1 . Any

neural network can be used for the controller, but we have used the following
variant of the deep LSTM architecture41:

χ

χ

χ

χ

σ

σ

σ

= +

= +

= + +

= +

=

−
−

−
−

− −
−

−
−

i h h b

f h h b

s f s i h h b

o h h b

h o s

W

W

W

W

([; ;])

([; ;])

tanh([; ;])

([; ;])

tanh()

i i

f f

s s

t
l l

t t
l

t
l l

t
l l

t t
l

t
l l

t
l

t
l

t
l

t
l l

t t
l

t
l l

t
l l

t t
l

t
l l

t
l

t
l

t
l

o o

1
1

1
1

1 1
1

1
1

where l is the layer index, σ(x) =​ 1/(1 +​ exp(−​x)) is the logistic sigmoid function,
ht

l , it
l , f t

l , st
l and ot

l are the hidden, input gate, forget gate, state and output gate
activation vectors, respectively, of layer l at time t. =h 0t

0 for all t; = =h s 0l l
0 0 for

all l. The W terms denote learnable weight matrices (for example, W i
l is the matrix

of weights going into the layer-l input gates) and the b terms are learnable biases.
At each time-step, the controller emits an output vector υt and an interface

vector ξt ∈​ R(W×R)+3W+5R+3, defined as

υ

ξ

= …

= …ξ

h h

h h

W

W

[; ;]

[; ;]
yt t t

L

t t t
L

1

1

Assuming the controller network is recurrent, its outputs are a function of the
complete history (χ1, …, χt) of its inputs up to the current time-step. We can
therefore encapsulate the operation of the controller as

υ ξ χ χ θ= …N(,) ([; ;];)t t t1

where θ is the set of trainable network weights. It is also possible to use a feedfor-
ward controller, in which case N is a function of χt only; however, we use only
recurrent controllers in this paper. Finally, the output vector yt is defined by adding
υt to a vector obtained by passing the concatenation of the current read vectors
through the RW ×​ Y weight matrix Wr

υ= + …y r rW[; ;]t t t t
R

r
1

This arrangement allows the DNC to condition its output decisions on memory
that has just been read; it would not be possible to pass this information back to
the controller, and thereby use them to determine υ, without creating a cycle in
the computation graph.
Interface parameters. Before being used to parameterize the memory interactions,
the interface vector ξt is subdivided as follows:

ˆ ˆˆˆ ˆ ˆ ˆ ˆ ˆ ˆξ π πβ β β= 


… … … … 




k k k e v f f g g; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;t t t
R

t t
R

t t t t t t

R

t t t t
Rr,1 r, r,1 r, w w 1 a w 1

The individual components are then processed with various functions to ensure
that they lie in the correct domain. The logistic sigmoid function is used to con-
strain to [0, 1]. The ‘oneplus’ function is used to constrain to [1, ∞​), where

= + +xoneplus() 1 log (1 e)x

and the softmax function is used to constrain vectors to SN, the N −​ 1-dimensional
unit simplex

R ∑α α α=





∈ ∈ =





=

S : [0,1], 1N
N

i
i

N

i
1

After processing we have the following set of scalars and vectors:

•	 R read keys R∈ ≤ ≤k i R{ ; 1 }t
i Wr, ;

•	 R read strengths ˆβ β= ∈ ∞ ≤ ≤i R{ oneplus() [1,) ; 1 }t
i

t
ir, r,

;

•	 the write key R∈kt
Ww ;

•	 the write strength ˆβ β= ∈ ∞oneplus() [1,)t t
w w

;

•	 the erase vector ˆσ= ∈e e() [0,1]t t
W ;

•	 the write vector vt ∈​ RW;

•	 R free gates ˆσ= ∈ ≤ ≤f f i R{ () [0,1]; 1 }t
i

t

i
;

•	 the allocation gate ˆσ= ∈g g() [0,1]t t
a a ;

•	 the write gate ˆσ= ∈g g() [0,1]t t
w w ; and

•	 R read modes ˆπ π= ∈ ≤ ≤S i R{ softmax() ; 1 }t
i

t
i

3 .

The use and interpretation of these terms will be explored in the following
sections.
Reading and writing to memory. Selecting locations for reading and writing
depends on weightings, which are vectors of non-negative numbers whose ele-
ments sum to at most 1. The complete set of allowed weightings over N locations
is the non-negative orthant of RN with the unit simplex as a boundary (known as
the ‘corner of the cube’):

R ∑α α αΔ =





∈ ∈ ≤





=

: [0,1], 1N
N

i
i

N

i
1

For the read operation, R read weightings Δ… ∈w w{ , , }t t
R

N
r,1 r, are used to compute

weighted averages of the contents of the locations, thereby defining the read vectors
…r r{ , , }t t

R1 as

= r wMt
i

t t
ir,

The read vectors are appended to the controller input at the next time-step, giving
it access to the memory contents. The write operation is mediated by a single write
weighting Δ∈w t N

w , which is used in conjunction with an erase vector et ∈​ [0, 1]W
and a write vector vt ∈​ RW (both emitted by the controller) to modify the memory
as follows:

= − +− �
 w e w vM M E()t t t t t t1

w w

where � denotes element-wise multiplication and E is an N ×​ W matrix of ones.
The computation of the read and write weightings is detailed in the following
section.
Memory addressing. The system uses a combination of content-based addressing
and dynamic memory allocation to determine where to write in memory, and a
combination of content-based addressing and temporal memory linkage to deter-
mine where to read. These mechanisms, all of which are parameterized by the
interface vectors defined in Methods section ‘Interface parameters’, are described
in detail below.
Content-based addressing. All content lookup operations on the memory
M ∈​ R ×N W use the following function

β
β
β

=
⋅

∑ ⋅
C

D

D
k k

k
M i M i

M j
(, ,)[] exp{ (, [,]) }

exp{ (, [,]) }j

where k ∈​ RW is a lookup key, β ∈​ [1, ∞​) is a scalar representing key strength and
D is the cosine similarity:

=
⋅

D u v u v
u v

(,)

The weighting C(M, k, β) ∈​ SN defines a normalized probability distribution over
the memory locations. In later sections, we will encounter weightings in Δ​N that
may sum to less than one, with the missing weight implicitly assigned to a null
operation that does not access any of the locations. Content lookup operations are
performed by both the read and write heads.
Dynamic memory allocation. To allow the controller to free and allocate memory
as needed, we developed a differentiable analogue of the ‘free list’ memory alloca-
tion scheme42, whereby a list of available memory locations is maintained by add-
ing to and removing addresses from a linked list. Denote by ut ∈​ [0, 1]N the
memory usage vector at time t, and define u0 =​ 0. Before writing to memory, the
controller emits a set of free gates f t

i , one per read head, that determine whether

© 2016 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

ARTICLERESEARCH

the most recently read locations can be freed. The memory retention vector
ψt ∈​ [0, 1]N represents by how much each location will not be freed by the free gates,
and is defined as

∏ψ = −
=

−()f1 wt
i

R

t
i

t
i

1
1

r,

The usage vector can then be defined as

ψ= + −− − − −� �u u w u w()t t t t t t1 1
w

1 1
w

where � denotes element-wise multiplication. Intuitively, locations are used if they
have been retained by the free gates (ψt[i] ≈​ 1), and were either already in use or
have just been written to. Every write to a location increases its usage, up to a
maximum of 1, and usage can only be subsequently decreased (to a minimum of
0) using the free gates; the elements of ut are therefore bounded in the range [0, 1].
Once ut has been determined, the free list φt ∈​ ZN is defined by sorting the indices
of the memory locations in ascending order of usage; φt[1] is therefore the index
of the least used location. The allocation weighting at ∈​ Δ​N, which is used to pro-
vide new locations for writing, is

∏φ φ φ= −
=

−
a u uj j i[[]] (1 [[]]) [[]] (1)t t t t

i

j

t t
1

1

If all usages are 1, then at =​ 0 and the controller can no longer allocate memory
without first freeing used locations. The sort operation induces discontinuities at
the points at which the sort order changes. We ignore these discontinuities when
calculating the gradient, as they do not seem to be relevant to learning.
Write weighting. The controller can write to newly allocated locations, or to loca-
tions addressed by content, or it can choose not to write at all. First, a write content
weighting ∈ Sct N

w is constructed using the write key kt
w and write strength β t

w:

β= −Cc kM(, ,)t t t t
w

1
w w

ct
w is interpolated with the allocation weighting at defined in equation (1) to deter-

mine a write weighting Δ∈wt N
w :

= 
 + − 

w a cg g g(1) (2)t t t t t t
w w a a w

where ∈g [0,1]t
a is the allocation gate governing the interpolation and ∈g [0,1]t

w
is the write gate. If the write gate is 0, then nothing is written, regardless of the other
write parameters; it can therefore be used to protect the memory from unnecessary
modifications.
Temporal memory linkage. The memory allocation system defined above stores
no information about the order in which the memory locations are written to.
However, there are many situations in which retaining this information is useful:
for example, when a sequence of instructions must be recorded and retrieved in
order. We therefore use a temporal link matrix Lt ∈​ [0, 1]N×N to keep track of con-
secutively modified memory locations (Fig. 1d).

Lt[i, j] represents the degree to which location i was the location written to
after location j, and each row and column of Lt defines a weighting over locations:
Lt[i, ·] ∈​ Δ​N and Lt[·, j] ∈​ Δ​N for all i, j and t. To define Lt, we require a precedence
weighting pt ∈​ Δ​N, where element pt[i] represents the degree to which location
i was the last one written to. pt is defined by the recurrence relation

∑

=

=




−






+−

p

p w p wi

0

1 []t
i

t t t

0

w
1

w

where wt
w is the write weighting defined in equation (2). Every time a location is

modified, the link matrix is updated to remove old links to and from that location.
New links from the last-written location are then added. We use the following
recurrence relation to implement this logic:

= ∀
= ∀

= − − +− −w w w p

L i j i j
L i i i
L i j i j L i j i j

[,] 0 ,
[,] 0
[,] (1 [] []) [,] [] []
t

t t t t t t

0

w w
1

w
1

Self-links are excluded (the diagonal of the link matrix is always 0) because it is
unclear how to follow a transition from a location to itself. The rows and columns
of Lt represent the weights of the temporal links going into and out from particular
memory slots, respectively. Given Lt, the backward weighting Δ∈bt

i
N and forward

weighting Δ∈f t
i

N for read head i are defined as

=

=

−

−


f w

b w

L

L
t
i

t t
i

t
i

t t
i
1

r,

1
r,

where −wt
i

1
r, is the ith read weighting from the previous time-step.

Sparse link matrix. The link matrix is N ×​ N and therefore requires O(N2) resources
in both memory and computation to calculate exactly. Although tolerable for the
experiments in this paper, this cost rapidly becomes prohibitive as the number of
locations increases. Fortunately, the link matrix is typically very sparse and can
be approximated with O(NlogN) computation cost and O(N) memory with no
discernible loss in performance (see Extended Data Fig. 4 for an example).

For some fixed K, we first calculate sparse vectors ŵt
w and ˆ −pt 1 by sorting wt

w
and pt−1, setting all but the K highest values to 0, and dividing the remaining K by
their sum to ensure that they sum to 1. This step has O(NlogN +​ K) computational
cost to account for the sort and O(N) memory cost. We then compute the sparse
outer product ˆ ˆw pt t

w , which requires O(K2) memory and computation. Assuming
the sparse link matrix ˆ −Lt 1 from the previous time-step has at most NK non-zero
elements, L̂t can be updated with O(NK) cost using

ˆ ˆ ˆ ˆˆ ˆ= − − +− −w w w pL i j i j L i j i j[,] (1 [] []) [,] [] []t t t t t t
w w

1
w

1

and then setting all elements of L̂t that are less than 1/K to zero. Because each row
and column of L̂t sums to at most 1, this operation guarantees that L̂t has at most
K non-zero elements per row and column and therefore at most NK non-zero
elements. Finally, the forward and backward weightings can be calculated with
O(NK) computation cost and O(N) memory cost as follows:

ˆ

ˆ

=

=

−

−


f w

b w

L

L

t
i

t t
i

t
i

t t
i

1
r,

1
r,

Because K is a constant that is independent of N (in practice K =​ 8 appears to be
sufficient, regardless of memory size), the complete sparse update is O(NlogN) in
computation and O(N) in memory.
Read weighting. Each read head i computes a content weighting Δ∈ct

i
N

r, using a
read key R∈kt

i Wr, :

β= Cc kM(, ,)t
i

t t
i

t
ir, r, r,

Each read head also receives a read mode vector π ∈ St
i

3, which interpolates
among the backward weighting bt

i , the forward weighting f t
i and the content read

weighting ct
ir, , thereby determining the read weighting ∈ Swt

ir,
3:

π π π= + +w b c f[1] [2] [3]t
i

t
i

t
i

t
i

t
i

t
i

t
ir, r,

If π [2]t
i dominates the read mode, then the weighting reverts to content lookup

using kt
ir, . If π [3]t

i dominates, then the read head iterates through memory locations
in the order they were written, ignoring the read key. If π [1]t

i dominates, then the
read head iterates in the reverse order.
Comparison with the neural Turing machine. The neural Turing machine16
(NTM) was the predecessor to the DNC described in this work. It used a similar
architecture of neural network controller with read–write access to a memory
matrix, but differed in the access mechanism used to interface with the mem-
ory. In the NTM, content-based addressing was combined with location-based
addressing to allow the network to iterate through memory locations in order of
their indices (for example, location n followed by n +​ 1 and so on). This allowed
the network to store and retrieve temporal sequences in contiguous blocks of
memory. However, there were several drawbacks. First, the NTM has no mecha-
nism to ensure that blocks of allocated memory do not overlap and interfere—a
basic problem of computer memory management. Interference is not an issue for
the dynamic memory allocation used by DNCs, which provides single free loca-
tions at a time, irrespective of index, and therefore does not require contiguous
blocks. Second, the NTM has no way of freeing locations that have already been
written to and, hence, no way of reusing memory when processing long sequences.
This problem is addressed in DNCs by the free gates used for de-allocation. Third,
sequential information is preserved only as long as the NTM continues to iterate
through consecutive locations; as soon as the write head jumps to a different part
of the memory (using content-based addressing) the order of writes before and
after the jump cannot be recovered by the read head. The temporal link matrix
used by DNCs does not suffer from this problem because it tracks the order in
which writes were made.
bAbI task descriptions. The bAbI dataset26 comprises a set of 20 synthetic
question answering tasks that are designed to test different aspects of logical

© 2016 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

ARTICLE RESEARCH

reasoning. Because the bAbI data are programmatically generated, and the code
is publicly available, multiple versions of the data can be used. For our exper-
iments we used the en-10k subset of the data available for download from
http://www.thespermwhale.com/jaseweston/babi/tasks_1-20_v1-2.tar.gz. For each
of the 20 tasks, the data comes partitioned into a training set with 10,000 questions
and a test set with 1,000 questions21. The bAbI tasks are designed around stories
that may contain more than one question; we treated each story as a separate
sequence and presented it to the network in the form of word vectors, one word at
a time. After removing all numbers, splitting the remaining text into words, and
converting all words to lower case, there were 156 unique words in the lexicon and
three punctuation symbols: ‘ . ’ , ‘?’ and ‘-’, the last of which we added to indicate
points in the input sequence where outputs were required. Each word was therefore
represented as a size-159 one-hot vector, and the network outputs were size-159
softmax distributions. The sentences were separated by full stop characters, and
all questions were delimited by a question mark followed by as many dash charac-
ters as there were words in the answer to that question. For example, a story from
the ‘Counting and Lists/Sets’ task containing five questions was presented as the
following input sequence of 69 word tokens:

mary journeyed to the kitchen. mary moved to the bedroom. john went
back to the hallway. john picked up the milk there. what is john carrying ?
- john travelled to the garden. john journeyed to the bedroom. what is john
carrying ? - mary travelled to the bathroom. john took the apple there. what
is john carrying ? - -

The answers required at the ‘−​’ symbols, grouped by question into braces, are

{milk}, {milk}, {milk apple}

The network was trained to minimize the cross-entropy of the softmax outputs
with respect to the target words; the outputs during time-steps when no target was
present were ignored. For each step where a target was present, the most probable
word in the network’s output distribution was selected as its answer. The network
was considered to have correctly replied to a question only if it got all of the tar-
get words correct (for example, it had to answer “milk” then “apple” to get the
final question in the above story right). Following previous work, we evaluated
our networks using the per-task ‘question error rate’ (the fraction of incorrectly
answered questions).

For each task, we removed approximately 10% of the stories and added them to
a validation set. All of the remaining stories were gathered together into a single
training set from which a random story was drawn for each training sample. No
distinction was drawn between the different tasks during training, and no explicit
information was provided to the network to indicate which task the current story
was drawn from. We performed a grid search over experimental hyper-parameters
for all three architectures, and kept the two settings that returned (1) the lowest
average question error rate over the validation set and (2) the single network with
the lowest validation question error rate. We also used the validation error rate
as the early stopping criterion during training (although in practice we did not
observe a substantial increase in validation error due to overfitting for any of the
networks).

Using word tokens led to much longer sequences than previous work on bAbI,
for which sentence embeddings were used as input21,26. The distinction is notable in
that it places greater stress on the long-range memory capacity of the models, and
in that the word-level approach is easier to generalize to natural language, which
has far greater variability in sentence length and structure than the bAbI data.

For complete results and hyper-parameters on all the bAbI tasks for DNC, NTM
and LSTM, see Extended Data Tables 1 and 2.
Graph task descriptions. The graph tasks were supervised learning problems
with each training example consisting of an input vector sequence and corre-
sponding target vector sequence. Each vector encoded a triple consisting of a
source label, an edge label and a destination label. All labels were represented
as numbers between 0 and 999, with each digit represented as a 10-way one-hot
encoding. We reserved a special ‘blank’ label, represented by the all-zero vector
for the three digits, to indicate an unspecified label. Each label required 30 input
elements, and each triple required 90. The sequences were divided into multiple
phases: first a graph description phase, then a series of query and answer phases; in
some cases the query and answer were separated by an additional planning phase
with no input, during which the network was given time to compute the answer.
During the graph description phase, the triples defining the input graph were
presented in random order. Target vectors were present during only the answer
phases. The input vectors had additional binary channels alongside the triples
to indicate when transitions between the different phases occurred, and when a
prediction was required of the network (this channel remained active throughout
the answer phase). In total, the input vectors were size 92 and the target vectors

were size 90. The graph networks had 90 output units, corresponding to nine
separate softmax distributions over the ten digits. The log-probability of correctly
predicting an entire target triple was therefore the sum of the log-probabilities
of correctly classifying each of the nine digits. Given input sequence x, network
output sequence y and target sequence z, all of length T, this yields the following
cross-entropy loss function:

∑ ∑=−





|




= =

L x z z yA t(,) () log[Pr()]
t

T

d
t
d

t
d

1 0

9

where z t
d is the target at time t for digit d, y t

d is the softmax distribution over digit
d returned by the network at time t, and A(t) is an indicator function whose value
was 1 during answer phases (that is, when predictions were required of the net-
work) and 0 otherwise.

The network’s predictions were determined by taking the mode of the output
distribution; the network indicated that it had completed an answer by outputting
a specially reserved termination pattern. For all tasks apart from shortest-path task,
performance was evaluated as the fraction of sequences for which all target vectors
were correctly predicted. The metric used for the shortest-path task is described
in Methods section ‘Structured prediction’.
Random graph generation. For all graph tasks, the graphs used to train the net-
works were generated by uniformly sampling a set of two-dimensional points
from a unit square, each point corresponding to a node in the graph. For each
node, the K nearest neighbours in the square were used as the K outbound con-
nections, with K independently sampled from a uniform range for each node. The
numerical labels for the nodes were chosen uniformly from the range [0, 999].
For the shortest-path and traversal problems, the edge labels were unique per
outbound node, but non-unique across the graph. This meant that the network
had to search the graph for a node and edge label simultaneously to pinpoint a
particular triple, which made following paths much more difficult than if it had
to search for only an edge. For a graph with N nodes, N unique numbers in the
range [0, 999] were initially drawn. Then, the outbound edge labels for each node
were chosen at random from those N numbers. The edge labelling procedure for
the inference task is described below.
Traversal. A path on the graph was defined on the basis of a random walk from
a random start node. At the query phase, the first input to the network was an
incomplete triple with the destination unspecified (source label, edge label, _). The
input triples for the rest of the query contained only edge labels, with source and
destination unspecified. During the answer phase, no inputs were presented and
the target output was the sequence of complete triples along the path. To succeed,
the network had to infer the destination of each triple, and remember it as the
implicit source for the next triple.
Shortest path. In the query phase, a single incomplete triple was presented, defining
the start and end nodes (source, _, destination). Each query was followed by a
10-time-step planning phase, allowing the network to perform computations and
to attempt to determine a shortest path. During the answer phase, the network
emitted a sequence of triples corresponding to a path. Unlike the traversal task,
it also received input triples during the answer phase, indicating the actions cho-
sen on the previous time-step. This makes the problem a ‘structured prediction’
problem, which we explain further in Methods section ‘Structured prediction’. As
described therein, the input triples were sometimes the network’s own predictions
from the previous time-step, and during training were sometimes provided by an
optimal planner recalculating a shortest path to the end node. To ensure that the
network always moved to a valid node, the output distribution was renormalized
over the set of possible triples outgoing from the current node. The performance
measure was the fraction of sequences for which the network found a minimally
short path.
Inference. We define a ‘relation’ to be a concatenation of two or more edge labels
that is given a distinct label; the label therefore acts as a kind of alias for the
sequence. For the inference task, numbers from 0 to 9 indicated single edge labels
and numbers from 10 to 410 indicated relation labels. The relations were generated
as unique sequences of single edges of length 2–5, with 100 distinct sequences for
each length. The sequences and labels were fixed for all networks trained on the
task. During the query phase, an incomplete triple was presented, consisting of a
start node and a relation label (start node, relation label, _). This was followed by
a 10-time-step planning phase. The single target vector during the answer phase
was the completed triple from the query: (start node, relation label, end node).
To solve the problem the network had to infer the relation sequence from its label
and perform an implicit traversal along that sequence during the planning phase
to reach the destination. The relations were never passed as input the network, so
it had to infer them from error signals alone.

© 2016 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

http://www.thespermwhale.com/jaseweston/babi/tasks_1-20_v1-2.tar.gz

ARTICLERESEARCH

Structured prediction. The shortest-path task can be considered a structured
prediction problem43,44, because the output decisions of the network determine
the sequence of nodes traversed on the graph and, hence, influence the future
decisions of network and the prediction costs. To bring nomenclature in line with
the literature on this topic, we refer to the output distribution of the network as a
policy π(a |​ s) over the actions a available to the network in state s. The state incor-
porates both the node currently occupied by the network and the latent state of the
network itself. The actions are the outgoing edges from the current node (recall
that the output distribution is renormalized over the allowed triples after each
move). Following policy π, the induced distribution over states at time-step t is
denoted ρπ s()t . We denote the optimal policy as π*(a |​ s) with corresponding state
distribution ⁎ρ s()t . The conventional supervised loss is

⁎⁎∑π π π= ⋅ | ⋅ |ρ
=

~J E l s s() [(), ()]
t

T

s s t t
sup

1
()t t

where ⁎ ⁎π π π π⋅ | ⋅ | =−∑ | |l s s a s a s[(), ()] ()log [()]t t a t t is the cross-entropy loss.
π*(a |​ st) is a delta function on the action that corresponds to the first step along
one possible shortest path from the current node to the destination (there may
be more than one). If the state distributions ⁎ρ s()t and ρπ s()t are dissimilar, then
minimizing the supervised loss function does not necessarily transfer to the true
task objective

⁎∑π π π= ⋅ | ⋅ |ρ
=

π
~J E l s s() [(), ()]

t

T

s s t t
task

1
()t t

where the actions are sampled from the network policy and the states are therefore
drawn from ρπ s()t . To counteract this problem, we follow a similar approach to the
DAGGER algorithm43, which constructs a mixture policy πβ(a |​ s) =​ βπ*(a |​ s) +​ 
(1 −​ β)π(a |​ s) with parameter β and induced state distribution ρβ s()t . To simplify
the implementation, we used a batch size of 1 and trained by taking a stochastic
gradient of

⁎∑π π π= ⋅ | ⋅ |β
ρ

=

β
~J E l s s() [(), ()]

t

T

s s t t
1

()t t

where the actions are sampled from the network with probability (1 −​ β) and from
the optimal policy with probability β. To make transitions driven by the network
output, all possible edges connected to a source node are assigned a probability,
and the most likely edge is chosen.
Reinforcement learning. Most reinforcement learning problems are sequential
decision problems: the environment is in state s and each action a issued by the
agent causes a transition of the environment state on the basis of the environment
dynamics. We consider episodic problems whereby the agent acts in the envi-
ronment for T steps before the environment is reset and a new episode begins.
The agent thus acts to create a time series s1, a1, s2, a2, s3, a3, …, sT, aT. A reward
function that defines the goal of the problem is given as a function of a state and
an action: r(st, at). The goal of the agent is to maximize the total expected reward
over an episode. The architecture of the reinforcement learning agent presented
here contains two DNC networks: a policy network that selects an action and a
value network that estimates the expected future reward given the policy network
and current state.

The policy specifies a parametric mapping from state observations to a
probability distribution over actions: a ∼​ π(· |​ s; θ), where θ denotes the policy
parameters. The total expected reward of the policy over an episode is
π π= ∑ |=J E r s a() [(,)]t

T
t t1 . In the context of Mini-SHRDLU, the policy-network

DNC observes the environment states by receiving an observation sequence
o1, o2, …, ot, one step at a time and conditions its action on the sequence seen so
far: π(· |​ o1, …, ot; θ). The value-network DNC tries to predict the sum of future
rewards for this policy given the current history of observations: V π(o1, …, ot; φ),
where φ comprises its parameters.

The learning algorithm for the value network is conceptually simpler than that
of the policy network. The value network learns by supervised regression to predict
the sum of future rewards. After a mini-batch of L episodes, the value network
updates its parameters φ using gradient descent on the loss function

∑∑ ∑φ φ= − …
τ

τ τ
π

τ
= = =

C
L

r s a V o o() 1
2

(,) (, , ;)
l

L

t

T

t

T
l l

1 1
1

2

The action distribution of the policy network π(at |​ o1, …, ot; θ) is a softmax over
a discrete set of actions. We use a policy gradient method to optimize the policy
parameters45,46. After each mini-batch of L episodes, the policy parameter gradient
direction to ascend J(π) is

∑∑

∑ ∑

π π θ∇ ∇≈ 

| … 

























−























θ θ

τ
τ τ

τ
τ τ

= =

≥ ≥

J
L

a o o

E r s a s a E r s a s

() 1 log (, , ;)

(,) , (,)

l

L

t

T

t
l l

t
l

t

T
l l

t
l

t
l

t

T
l l

t
l

1 1
1

The quantity ∑ ∑





|





−






|




τ τ τ τ τ τ≥ ≥E r s a s a E r s a s(,) , (,)t

T l l
t
l

t
l

t
T l l

t
l , known as the

advantage, represents the amount that the value changes from taking action at
l in

state st
l . Using the value network, we can approximate the advantage using the

temporal difference error

δ φ φ= + … − …π π
+r s a V o o V o o(,) (, , ;) (, , ;)t

l
t
l

t
l l

t
l l

t
l

1 1 1

We use a slight modification of this expression for the advantage47 to reduce the
bias in the value networks. The advantage is estimated using a geometric series of
temporal difference errors λ δ∑τ

τ
τ≥

−
t

t l , where λ is a parameter that controls a
bias-variance trade-off between estimates based on the empirical return versus the
parametric value function. Finally, the policy gradient estimate is

∑∑ ∑π π θ λ δ∇ ∇≈ | …θ θ
τ

τ
τ

= = =

−J
L

a o o() 1 log[(, , ;)]
l

L

t

T

t
l l

t
l

t

T
t l

1 1
1

Mini-SHRDLU. The Mini-SHRDLU board consists of an S ×​ S grid, each square
of which is either empty or filled with a numbered block. We report experiments
with S =​ 3 and a maximum of 6 blocks on the board, uniquely numbered 1–6. To
generate a problem instance, we first randomly place the blocks on the board so
that a block always rests on top of the highest block previously placed in its column.
A sequence of G goals is generated, each composed of a number of constraints. An
example of a single goal is: block 1 is below block 4; block 2 is to the right of block
5; block 3 is above block 4; and so on. Each goal represents a label for a set of con-
straints on the adjacency relations of the blocks. A goal can be ambiguous in that
it does not describe a unique board configuration. For example, a goal consisting
of only “block 1 is left of block 2” allows any configuration of the unstated blocks.
Each goal is chosen by constructing a tree search of all configurations of the board
that are at minimum D moves away from the starting board, randomly selecting
one of these configurations, and then sampling a set of constraints on the chosen
board configuration. Redundant conditions such as “block 1 is left of block 2; block
2 is right of block 1” are pruned, as are constraints that are already fulfilled by the
initial state of the board.

The goals are presented sequentially to the policy network during which time
the policy cannot make any moves on the board. Each constraint in the goal is
presented in one time-step using a place-coded vector: (first block, adjacency rela-
tion, second block). For example, (100000, 1000, 010000) represents the constraint
“block 1 is above block 2”. In addition, each constraint is labelled with the goal of
which it is a part: (goal name, first block, adjacency relation, second block), where
we have chosen to let the goals be 1 of 26 possible letters designated by one-hot
encodings; that is, A =​ (1, 0, …, 0), Z =​ (0, 0, …, 1) and so on. The board is rep-
resented as a set of place-coded representations, one for each square. Therefore,
(000000, 100000, …) designates that the bottom, left-hand square is empty, block
1 is in the bottom centre square, and so on. The network also sees a binary flag that
represents a ‘go cue’. While the go cue is active, a goal is selected from the list of
goals that have been shown to the network, its label is retransmitted to the network
for one time-step, and the network can begin to move the blocks on the board. All
told, the policy observes at each time-step a vector with features (goal name, first
block, adjacency relation, second block, go cue, board state). Up to 10 goals with
6 constraints each can be sent to the network before action begins.

Once the go cue arrives, it is possible for the policy network to move a block
from one column to another or to pass at each turn. We parameterize these actions
using another one-hot encoding so that, for a 3 ×​ 3 board, a move can be made
from any column to any other; with the pass move, there are therefore 7 moves.
The policy’s outputs define the probability of selecting each one of these actions,
and a move is sampled at each time-step, which changes the board configuration
correspondingly. The policy has a fixed number of moves to make progress on
the board until the episode ends. In this setting, we can determine the minimum
number of moves L required to solve the problem. We found that the early stages
of learning benefited from giving the policy a number of extra steps to satisfy the
instructions, in total allowing L +​ Δ​L moves with Δ​L fixed at 6 in the reported
experiments. This parameter did not need to be fine-tuned.

The reward function for the policy equalled the number of constraints in the
chosen goal that are currently satisfied minus a small cost for making invalid moves
such as picking a block up from a column without any blocks. There was also a
penalty for achieving the goal configuration, but then undoing it. In addition, the

© 2016 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

ARTICLE RESEARCH

policy received an extra reward that promoted higher-entropy output distributions
and encouraged exploration45.
Curriculum learning. We found that curriculum learning28 was essential for all of
our experiments apart from those on the bAbi dataset. For each task, we selected
a set of task parameters governing the complexity of the problem. For example,
for the traversal task, these parameters were the number of nodes in the graph,
the number of outgoing edges from each node and the number of steps in the
traversal. We built a linear sequence of lessons in which the complexity of the
task increases along at least one task parameter with each new lesson. Consistent
with the observations of Zaremba and Sutskever29, we found in some tasks that
performance on earlier lessons degraded if all training exemplars were drawn only
from the current lesson. We followed their strategy to remedy this effect and drew
10% of exemplars uniformly from earlier lessons on the traversal, inference and
Mini-SHRDLU problems. (Shortest-path lessons effectively include earlier lessons
as proper subsets of the final lessons, so this is unnecessary.) After a predefined
number of gradient updates, we ran a batch evaluation of the success of the network
on the current problem distribution. During evaluation in each episode, on the
graph problems, we deterministically sampled the most probable outputs of the
network (modal sampling). For the graph problems besides shortest-path, if 90% of
the episodes were solved optimally, the lesson was completed. (Shortest-path lesson
completion required 80% of network paths to be no more than one step longer than
the shortest path.) In the Mini-SHRDLU problem, the lesson was marked complete
if 85% of the relevant goal constraints were satisfied on average over the batch. The
curricula for the tasks are presented in Extended Data Tables 3–6.
Network analysis. In Fig. 3a, the y-axis labels are the input triples provided at
each time-step, written beside the location with strongest write magnitude. The
locations were re-ordered spatially on the basis of the writing order. Figure 3d, e
is produced on the basis of the output of a trainer classifier, called the decoder. A
logistic regression classifier was built from a dataset of 40,000 data points in which
write vectors were treated as classifier inputs, with the input triples from the same
time-step taken to be the classifier targets, and treating source, destination and
edges as independent outputs. The digits of each element were decoded inde-
pendently, so that a total of nine 10-way classifiers were used to decode each triple.
The classifier was trained with an L2 regularization of the classifier weights with
coefficient 0.1. Output classes that were irrelevant to the episode were excluded
from the diagram. Figure 3d was produced by applying the classifier to the content
lookup key; Fig. 3e was produced by applying the classifier to the contents of the
memory location with the highest read weighting.

For Fig. 4d, classifiers were trained on a dataset of 800 Mini-SHRDLU epi-
sodes. On each episode, the locations to which the read heads assign more than a
threshold of 0.01 weighting at the time of the query were considered relevant to the
selected goal. These locations were noted, and their contents at the time when they
were last written (determined by the same numerical threshold) were uniformly
averaged into a single vector. The vectors therefore encapsulate an average of the
locations containing the goal directly after the goal has been written to memory,
but potentially many (up to about 60) time-steps before the first action occurs. The
vectors were used as inputs to train the classifier to predict the first five actions
following the query; that is, action 1 occurs at tquery +​ 0, action 2 occurs at tquery +​ 1
and so on. The classifiers use logistic regression with an L2 regularization
coefficient of 1. The action-frequencies baseline predicts each of the action choices
on the basis of its frequency at that time-step after the query. Classifier accuracy
is determined by constructing 100 80%/20% random splits of the episodes into

training and test data. The error bars represent 5–95 percentile accuracy on the
test data partitions. In Fig. 4e, two-dimensional t-SNE48 dimensionality reduction
is performed on those same averaged vectors. Each data point (only half of which
are shown to reduce crowding) is marked with the relevant goal label.
Optimization. For all experiments, results are reported on the basis of statis-
tics gathered from 20 randomly initialized networks that share the same set of
hyper-parameters. The hyper-parameters were selected from large grid searches,
and are listed for each experiment in Extended Data Table 2. All networks were
trained using a single machine version of Downpour SGD49. Each CPU in the
machine runs a ‘worker’ process with its own copy of the model parameters. The
workers generate episodes and compute gradients of the loss function with respect
to the network weights using backpropagation through time50. The gradients are
combined with a single central instance of the RMSProp optimization algorithm51.
Once a worker computes gradients for an episode, it acquires a mutual exclusion
lock guaranteeing that no other process is accessing the optimizer. The gradients
are used to perform one optimization step, modifying the central master copy of
the parameters, and the new parameter values are copied back to the worker. The
optimizer updates a single global copy of its state, which for RMSProp includes a
moving average of gradient magnitudes. Finally, the mutual exclusion is released,
allowing a different worker to perform a gradient update. In the backpropaga-
tion-through-time backward pass, the gradient with respect to the LSTM controller
activations was clipped element-wise to the range [−​10, 10].
Code Availability. A public version of the code will be made available within
6 months, linked to from our website http://www.deepmind.com.

41.	 Graves, A., Mohamed, A.-r. & Hinton, G. Speech recognition with deep recurrent
neural networks. In IEEE International Conference on Acoustics, Speech and
Signal Processing (eds Ward, R. et al.) 6645–6649 (Curran Associates, 2013).

42.	 Wilson, P. R., Johnstone, M. S., Neely, M. & Boles, D. Dynamic storage allocation:
a survey and critical review. In Memory Management (ed. Baler, H. G.) 1–116
(Springer, 1995).

43.	 Ross, S., Gordon, G. J. & Bagnell, J. A. A reduction of imitation learning and
structured prediction to no-regret online learning. In Proc. Fourteenth
International Conference on Artificial Intelligence and Statistics (eds Gordon, G.
et al.) 627–635 (JMLR, 2010).

44.	 Daumé, H. III, Langford, J. & Marcu, D. Search-based structured prediction.
Mach. Learn. 75, 297–325 (2009).

45.	 Williams, R. J. Simple statistical gradient-following algorithms for connectionist
reinforcement learning. Mach. Learn. 8, 229–256 (1992).

46.	 Sutton, R. S., McAllester, D., Singh, S. P. & Mansour, Y. Policy gradient methods
for reinforcement learning with function approximation. In Advances in Neural
Information Processing Systems Vol. 12 (eds Solla, S. A. et al.) 1057–1063 (MIT
Press, 1999).

47.	 Schulman, J., Moritz, P., Levine, S., Jordan, M. & Abbeel, P. High-dimensional
continuous control using generalized advantage estimation. Preprint at http://
arxiv.org/abs/1506.02438 (2015).

48.	 van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. J. Mach. Learn.
Res. 9, 2579–2605 (2008).

49.	 Dean, J. et al. Large scale distributed deep networks. In Advances in Neural
Information Processing Systems Vol. 25 (eds Pereira, F. et al.) 1223–1231
(Curran Associates, 2012).

50.	 Werbos, P. J. Backpropagation through time: what it does and how to do it.
Proc. IEEE 78, 1550–1560 (1990).

51.	 Tieleman, T. & Hinton, G. RmsProp: divide the gradient by a running average of its
recent magnitude. Lecture 6.5 of Neural Networks for Machine Learning
(COURSERA, 2012); available at http://www.cs.toronto.edu/~​tijmen/csc321/
slides/lecture_slides_lec6.pdf.

© 2016 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

http://www.deepmind.com
http://arxiv.org/abs/1506.02438
http://arxiv.org/abs/1506.02438
http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf

ARTICLERESEARCH

Extended Data Figure 1 | Dynamic memory allocation. We trained
the DNC on a copy problem, in which a series of 10 random sequences
was presented as input. After each input sequence was presented, it was
recreated as output. Once the output was generated, that input sequence
was not needed again and could be erased from memory. We used a DNC
with a feedforward controller and a memory of 10 locations—insufficient
to store all 50 input vectors with no overwriting. The goal was to test

whether the memory allocation system would be used to free and re-use
locations as needed. As shown by the read and write weightings, the
same locations are repeatedly used. The free gate is active during the read
phases, meaning that locations are deallocated immediately after they are
read from. The allocation gate is active during the write phases, allowing
the deallocated locations to be re-used.

© 2016 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

ARTICLE RESEARCH

Extended Data Figure 2 | Altering the memory size of a trained
network. A DNC trained on the traversal task with 256 memory locations
was tested while varying the number of memory locations and graph
triples. The heat map shows the fraction of traversals of length 1–10
performed perfectly by the network, out of a batch of 100. There is a
clear correspondence between the number of triples in the graph and

the number of memory locations required to solve the task, reflecting
our earlier analysis (Fig. 3) that suggests that DNC writes each triple to a
separate location in memory. The network appears to exploit all available
memory, regardless of how much memory it was trained with. This
supports our claim that memory is independent of processing in a DNC,
and points to large-scale applications such as knowledge graph processing.

© 2016 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

ARTICLERESEARCH

Extended Data Figure 3 | Probability of achieving optimal solution. a, DNC. With 10 goals, the performance of a DNC network with respect to
satisfying constraints in minimal time as the minimum number of moves to a goal and the number of constraints in a goal are varied. Performance was
highest with a large number of constraints in each goal. b, The performance of an LSTM on the same test.

© 2016 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

ARTICLE RESEARCH

Extended Data Figure 4 | Effect of link matrix sparsity on performance.
We trained the DNC on a copy problem, for which a sequence of length
1–100 of size-6 random binary vectors was given as input, and an identical
sequence was then required as output. A feedforward controller was
used to ensure that the sequences could not be stored in the controller
state. The faint lines show error curves for 20 randomly initialized runs
with identical hyper-parameters, with link matrix sparsity switched off
(pink), sparsity used with K =​ 5 (green) and with the link matrix disabled
altogether (blue). The bold lines show the mean curve for each setting.

The error rate is the fraction of sequences copied with no mistakes out
of a batch of 100. There does not appear to be any systematic difference
between no sparsity and K =​ 5. We observed similar behaviour for values
of K between 2 and 20 (plots omitted for clarity). The task cannot easily
be solved without the link matrix because the input sequence has to be
recovered in the correct order. Note the abrupt drops in error for the
networks with link matrices: these are the points at which the system
learns a copy algorithm that generalizes to longer sequences.

© 2016 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

ARTICLERESEARCH

Extended Data Table 1 | bAbI best and mean results

To compare with previous results we report error rates for the single best network across all tasks (measured on the validation set) over 20 runs. The lowest error rate for each task is shown in bold.
Results for MemN2N are from ref. 21; those for DMN are from ref. 20. The mean results are reported with ±​s.d. for the error rates over all 20 runs for each task. The lowest mean error rate for each task
is shown in bold.

© 2016 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

ARTICLE RESEARCH

Extended Data Table 2 | Hyper-parameter settings for bAbI, graph tasks and Mini-SHRDLU

In bAbI experiments, for all models (LSTM, NTM and DNC) we kept the hyper-parameter settings that (1) gave the lowest average validation error rate and (2) gave the single best validation error rate for
a single model. For LSTM and NTM the same setting was best for both criteria, but for DNC two different settings were found (DNC1 for criterion 1 and DNC2 for criterion 2).

© 2016 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

ARTICLERESEARCH

Extended Data Table 3 | Curriculum results for graph traversal

Parentheses represent ranges: (lower bound, upper bound). ‘Test’ is the accuracy (mean ±​ s.d.) on the test problem (here, the London Underground map) after the completion of each intermediate
lesson. Evaluation of lesson completion occurs after every group of 100 batches has been processed on the main worker thread. The completion threshold is met if 90% of modal samples (most likely
output of the network) are correct. ‘Final’ (mean ±​ s.d.) is the accuracy on the final lesson of the curriculum after the completion of each intermediate lesson.

© 2016 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

ARTICLE RESEARCH

Extended Data Table 4 | Curriculum results for inference

Parentheses represent ranges: (lower bound, upper bound). Evaluation of lesson completion occurs after every group of 100 batches has been processed on the main worker thread. The completion
threshold is met if 90% of modal samples (most likely output of the network) are correct. ‘Test’ and ‘Final’ as in Extended Data Table 3.

© 2016 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

ARTICLERESEARCH

Extended Data Table 5 | Curriculum results for shortest-path task

Parentheses represent ranges: (lower bound, upper bound). Evaluation of lesson completion occurs after every group of 2,000 batches (size 1) has been processed on main worker thread. A path is
defined as ‘correct’ if it is a shortest path. The completion threshold is met if 80% of modal samples (most likely output of the network) are correct on a new group of 50 episodes. ‘Test’ and ‘Final’ as
in Extended Data Table 3.

© 2016 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

ARTICLE RESEARCH

Extended Data Table 6 | Curriculum for Mini-SHRDLU

Parentheses represent ranges: (lower bound, upper bound). Evaluation of lesson completion occurs after every group of 400 batches has been processed on the main worker thread. The completion
threshold is met if 85% of constraints are satisfied at episode termination on average over 160 episodes. (The final lesson has no termination.)

© 2016 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

	Hybrid computing using a neural network with dynamic external memory

	Authors
	Abstract
	System overview

	Interaction between the heads and the memory

	Synthetic question answering experiments

	Graph experiments

	Block puzzle experiments

	Discussion

	References
	Acknowledgements
	Author Contributions
	﻿Figure 1﻿﻿ DNC architecture.
	﻿Figure 2﻿﻿ Graph tasks.
	﻿Figure 3﻿﻿ Traversal on the London Underground.
	﻿Figure 4﻿﻿ Mini-SHRDLU analysis.
	﻿Figure 5﻿﻿ Mini-SHRDLU results.
	﻿Extended Data Figure 1﻿﻿ Dynamic memory allocation.
	﻿Extended Data Figure 2﻿﻿ Altering the memory size of a trained network.
	﻿Extended Data Figure 3﻿﻿ Probability of achieving optimal solution.
	﻿Extended Data Figure 4﻿﻿ Effect of link matrix sparsity on performance.
	﻿Extended Data Table 1﻿﻿bAbI best and mean results.
	﻿Extended Data Table 2﻿﻿Hyper-parameter settings for bAbI, graph tasks and Mini-SHRDLU.
	﻿Extended Data Table 3﻿﻿Curriculum results for graph traversal.
	﻿Extended Data Table 4﻿﻿Curriculum results for inference.
	﻿Extended Data Table 5﻿﻿Curriculum results for shortest-path task.
	﻿Extended Data Table 6﻿﻿Curriculum for Mini-SHRDLU.

