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ABSTRACT
Distractor generation is a crucial step for fill-in-the-blank question
generation. We propose a generative model learned from training
generative adversarial nets (GANs) to create useful distractors. Our
method utilizes only context information and does not use the cor-
rect answer, which is completely different from previous Ontology-
based or similarity-based approaches. Trained on the Wikipedia
corpus, the proposed model is able to predict Wiki entities as dis-
tractors. Our method is evaluated on two biology question datasets
collected from Wikipedia and actual college-level exams. Experi-
mental results show that our context-based method achieves com-
parable performance to a frequently used word2vec-based method
for the Wiki dataset. In addition, we propose a second-stage learner
to combine the strengths of the two methods, which further im-
proves the performance on both datasets, with 51.7% and 48.4% of
generated distractors being acceptable.
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1 INTRODUCTION
Among various types of questions, the fill-in-the-blank (FITB) ques-
tion is widely used in many academic settings. A FITB question
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consists of three parts: (i) a question sentence or stem; (ii) the
correct answer or key; (iii) distractor answers which we call distrac-
tors. Automatic fill-in-the-blank question generation (FITB-QG) is
a promising research area and a successful system would permit
faster and less expensive question creation on a large scale.

We here focus on distractor generation (DG), i.e., generating
distractors given the question sentence and the key to the question.
DG is a crucial step in FITB-QG because one of its main challenges
is the generation of “good” distractors which can distinguish knowl-
edgeable test takers from less knowledgeable ones, in the sense that
the question becomes more effective at testing a student’s knowl-
edge. Most existing methods of DG are based on semantic similari-
ties between the key and the candidate distractor [1, 5, 12]. Various
similarities have been utilized in different work such as WordNet
similarity [19], word2vec similarity [18], n-gram co-occurrence
likelihood, etc. Distractors are selected from a ranked list based on
a weighted combination of different similarity metrics, where the
weights are usually ad-hoc. Additionally, these DG methods have
not fully explored how to utilize the context information (stem).

Different from existing approaches which heavily depend on
the key, we propose to learn distractor distribution conditioned on
the stem, since the semantic information conveyed by the stem is
also critical to generate “good” distractors. Specifically, we adapt
generative adversarial nets (GANs) [4] to tackle DG. We simulta-
neously train two models: a generative model G that captures real
data (corresponding to the key to the FITB question) distribution
given a context (corresponding to the stem), and a discriminative
model D that estimates the probability that a sample comes from
the real training data rather thanG. The training procedure for G
is to maximize the probability of D making a mistake. Distractors
can be generated according to the distribution estimated by G.

The proposed GAN model is trained on the Wikipedia corpus
and is able to predict Wiki entities as distractors. We evaluate the
proposed method on two biology question datasets: (i) Wiki-FITB
where 30 sentences from Wikipedia are selected and transformed
into FITB questions; (ii) Course-FITB where 92 FITB questions are
selected from actual college-level exams. Our method is compared
with a widely used word2vec-basedmethod. For each question, a list
of distractors is generated and evaluated by domain experts. Given
predictions of the two methods, we propose to apply a second-
stage learner to utilize information in both the stem and the key.
This outperforms both the proposed GAN-based method and the
word2vec-based method on two datasets, with 51.7% and 48.4% of
distractors generated being acceptable.
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Our major contribution is summarized as follows.

• The proposed machine learning-based approach is fundamentally
different from previous unsupervised similarity-based approaches
and it is the first application of GANs to DG.

• The proposed method only uses stem information and it can be used
in combination with existing key-based methods for generating
distractors that better fit question context.

• The college-level exam FITB question set can be used for evaluating
distractor generation or general FITB-QG.

2 RELATEDWORK
Early work in FITB-QG mainly focused on English language learn-
ing, with applications including evaluating students’ vocabulary [22]
and testing knowledge of using verbs [24], adjectives [14], and
prepositions [13]. Recently, FITB-QG generated exercise questions
as multiple-choice quizzes for one or multiple subjects [1, 2, 5, 12].
Our method aligns more closely to FITB-QG for general knowledge
assessment.

For the DG problem, many systems utilize WordNet [19] to find
synonyms or other related words as distractors [21]. Although
WordNet has 117,000 synsets, its coverage is limited when com-
pared to general knowledge bases such as Wikipedia. Other work
has explored using the link structure of ontologies [23], which usu-
ally requires a pre-existing domain-specific ontology. Our method
is text-based and orthogonal to these link-based methods. Other
methods choose distractors from sentences in a constrained set
of source texts [1, 9]. Our method does not have such constraints
and can select distractors from the entire Wikipedia. Others also
investigate various similarity metrics for DG, including embedding-
based similarity [5, 12], co-occurrence likelihoods [6], syntactic
similarities, etc. Our method is fundamentally different from these
unsupervised similarity-based methods in that the training is super-
vised and distractors are selected with only the context information
rather than the correct answer.

3 DISTRACTOR GENERATION
3.1 Generative Adversarial Nets
Proposed by Goodfellow et al. [4], generative adversarial nets are a
novel approach to train a generative model. The key to GANs are
two “adversarial” models: the GeneratorG and the Discriminator D.
G is a generative model that aims to capture real data distribution
pdata (x). D is a discriminative model that estimates the probability
that a sample came from the real training data rather than G. Both
G and D could be a non-linear mapping function. To learn the
generator’s distribution pд over data x, G parameterized by θд
maps a prior noise distribution pz (z) to the data space asG (z;θд ).
On the other hand, the discriminator D (x;θd ) parameterized by θd
outputs a single scalar representing the probability that a sample x
came from training data rather than pд .

D is trained to maximize the probability of assigning the correct
label to both training examples and samples fromG . Simultaneously
G is trained to maximize the probability of D making a mistake, i.e.,
minimizing log(1 − D (G (z))). The whole training procedure for G
and D follows a two-player minimax game:

min
G

max
D
Ex∼pdata (x)[logD (x)] + Ez∼pz (z)[log(1 − D (G (z)))] (1)

3.2 Conditional GANs for DG
Since our goal is to generate distractors given a question sentence,
we therefore adapt a GAN to distractor generation such that both
the generator and the discriminator are conditioned on the extra
context c learned from the question sentence (see Section 3.3). For
this we put c into both the discriminator and generator as additional
input. More precisely in the generator, the combination of a noise
vector z and c is taken as a joint input, while in the discriminator,
both the generated sample x and c are utilized to determine whether
x came from training data. As a consequence, the minimax game
in Equation 1 can be rewritten as:

min
G

max
D
Ex∼pdata (x)[logD (x|c)]+Ez∼pz (z)[log(1−D (G (z|c)))]

(2)

which is the conditional GAN proposed by [20].
The neural-network based training framework provides addi-

tional flexibility on how the input vectors are combined. In the
generator, we simply concatenate both z and c to build another vec-
tor representation: z̃ = z ⊙ c where ⊙ represents the concatenation.
In the discriminator, we concatenate the linear transformation of
the generated sample x and c: x̃ = (Wxx) ⊙ c , whereWx is a weight
matrix to be learned. x̃ is then fed to a multi-layer perceptron.

GANs have a serious limitation requiring that the composition
of the generator and the discriminator are fully differentiable. This
is not true for discrete variables such as tokens in the text. Since the
generator has an output softmax layer which can be interpreted as
the probability of yielding each token, we sample a discrete token
value from the distribution. As such, the back-propagation algo-
rithm alone cannot provide a valid training signal for the generator
since the sampling operation is not differentiable.

For this a number of approaches have been proposed, including
policy gradient [25] and Gumbel softmax trick [8, 16]. We adopt the
Gumbel softmax method since the policy gradient method involves
the design of a reward function, which can lead to training instabil-
ity. While prior work on Gumbel softmax trick were on datasets
with a small number of classes (e.g. 10 classes for MNIST dataset),
here we investigate its effectiveness on datasets with orders of
magnitude more classes.

Similar to the re-parameterization trick in variational auto-encoder
(VAE) [11], we efficiently draw samples x from a categorical distri-
bution with class probabilities π using the Gumbel-Max trick [17]:

x = one_hot(argmax
i

[дi + logπi ]) ≈ softmax(g + logπ ) (3)

whereдi (i = 1,2, · · · ,K ) is an i.i.d sample drawn fromGumbel(0,1)
distribution and K is the total number of classes. The softmax func-
tion is used as a continuous, differentiable approximation to argmax,
generating a K-dimensional sample vector x ∈ RK−1 where

xi =
exp((дi + logπi )/τ )∑K
j=1 exp((дj + logπj )/τ )

(4)

with τ being a temperature hyper-parameter.
Since the Gumbel-Max trick enables back-propagating training

signals from the discriminator to the generator, we can use the
minimax optimization for discrete variables.
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Figure 1: Conditional GANs for Distractor Generation.

Figure 1 presents the general architecture of the proposed con-
ditional GAN for DG, where c is the learned context vector rep-
resentation of the question stem, x the vector representation of
the correct answer or the generated sample, and z a noise vector
sampled from a prior noise distribution.G represents the generator,
and D represents the discriminator.

3.3 Context Modeling of the Question Sentence
The architecture proposed in Figure 1 requires a context vector
c of the question stem. To model the context, we use long short-
term memory (LSTM) [7]. Specifically, since each question sentence
could be divided into a left (sL ) and a right (sR ) part by the position
of the blank, two LSTMs (LSTML and LSTMR ) are used to model the
left context (cL) and the right context (cR ) separately. The context
vector c is therefore a concatenation of cL and cR . Consider the
question sentence “A is a networking device that forwards
data packets between computer networks.”. The question is first split
into two parts:“A” and “is a networking device that forwards data
packets between computer networks.” The left and right part is then
fed into LSTML and LSTMR respectively, resulting in cL and cR .
Next we concatenate cL and cR to obtain the context vector c.
In practice, we reverse the order of the words in the right part
sR when feeding it to LSTMR , in order to emphasize neighboring
words around the blank.

3.4 Implementation Details
The generator and the discriminator is implemented by a 2-layer
perceptron with a hidden size of 350. The network utilizes Leaky
ReLU [15] activation. We set the noise vector z as a 50-dimensional
vector drawn fromN (0,1) and each LSTM to have a hidden size of
150. During training, Adam algorithm [10] with a learning rate of
0.001 is used. The temperature τ is fixed as 1.

4 EXPERIMENTS
4.1 Data Preparation
Training the proposed conditional GAN model requires a large
number of (stem, key) pairs. We propose to utilize the Wikipedia
corpus for creating the training set. To remove part of the sentence
as a blank, we exploit the link structure among different Wiki pages.
Specifically, we substitute the link in a sentence with a blank to
get the stem and use the linked Wiki concept1 as the key. Thus
1Each concept corresponds to an English Wiki article.

sentences with links could be transformed into (stem, key) pairs.
Note that FITB-QG model usually is tailored to a certain domain,
such as physics, biology, mathematics, etc. For each domain, we
select a subset of all created pairs as training data based on whether
the key appears in the domain-specific concept vocabulary. Such
vocabulary is built by breadth-first searches starting from several
main concepts of the domain and filtering with several semantic
similarities such as LDA [3], word2vec, etc.

Our experiments here focus on biology. With the procedure
described above, we build a vocabulary with 8879 biology-related
concepts and create a training set with 1.62 million (stem, key)
pairs. In addition, we create two test sets for evaluation: (i)Wiki-
FITB: 30 FITB questions based on sentences in Wikipedia, selected
by a domain expert; (ii) Course-FITB: 92 FITB questions from
actual exams for two college-level biology courses and GRE (biology
subject) 2016.

4.2 Experiment Settings
For each (stem, key) pair, we apply the proposed FITB-QG method
to generate a list of distractors. Three domain experts with teaching
experience, a Ph.D. in biology, a Ph.D. candidate in biology and a
Ph.D. candidate in entomology were then asked collaboratively to
label each of the top-4 predictions as a Good, Fair, or Bad distractor.

We compare the proposed GAN-based FITB-QG model (GAN)
with a frequently used similarity-based method (W2V), which gen-
erates distractors based on the word2vec similarity between the
candidate and the key. We trained a word2vec model on the Wiki
corpus with each concept treated as an individual token.

Since a GAN only utilizes information in the stem part while
W2V only utilizes information in the key part, we additionally apply
a second-stage learner (GAN+W2V) to combine the strengths of
GAN and W2V. For each (stem, key, distractor) tuple, we use the
prediction score and the ranking of GAN and W2V as four features,
and train a logistic regression classifier to predict the probability of
a distractor being good, fair, or bad. The final distractor predictions
are ranked by the probability of being bad estimated by the second-
stage learner.

4.3 Experimental Results
The distractor generation results on two datasets are shown in
Table 1. We evaluate each method in a leave-one-out manner and
report the 95% confidence intervals of percentages of generated
distractors being good, fair, or bad.

When comparing GAN with W2V, we can see that they achieve
comparable performance on Wiki-FITB and that W2V is signifi-
cantly better than GAN on Course-FITB. Since the GAN is based
on the question stem, its distractor generation process is solely
dependent on the learned association between the context infor-
mation and distractors. Course-FITB, collected from actual college
exams, is a more challenging dataset because its writing style is
different from the part of Wikipedia on which the GAN is trained.
Such difference makes it difficult for the GAN to apply the asso-
ciation learned from Wikipedia to questions in Course-FITB. By
design distractors are often semantically related to the key (e.g.
DNA and RNA). As such similarity-based methods like W2V can
provide a strong baseline since they explicitly utilize information
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Table 1: Distractor generation results. Numbers are 95% con-
fidence intervals of percentages of generated distractors be-
ing good, fair, or bad, calculated in a leave-one-out manner.

Methods Good Fair Bad

GAN 28.4 (10.8) 10.8 (5.5) 60.8 (10.5)
W2V 35.8 (6.8) 10.0 (5.0) 54.2 (8.0)

GAN + W2V 40.0 (7.8) 11.7 (5.0) 48.3 (8.6)
(a) Wiki-FITB

Methods Good Fair Bad

GAN 17.7 (5.0) 9.2 (3.5) 73.1 (5.9)
W2V 32.9 (5.3) 11.9 (3.5) 55.2 (5.7)

GAN + W2V 34.3 (5.7) 14.1 (3.9) 51.6 (6.0)
(b) Course-FITB

Table 2: Distractor generation examples for question
“Changes in gene frequency over time describes the process
of .”, whose key isEvolution. (Legend: Good, Fair, Bad)

.
GAN W2V GAN + W2V

Speciation Natural selection Speciation
Transcription Macroevolution Natural selection
Inbreeding Evolutionary biology Microevolution
Genetic drift Microevolution Genetic drift

about the key. W2V is limited in that it can only output the same
distractors for a key regardless of question stems being different.
Since question stems sharing the same keys may still emphasize on
different aspects, it is desirable to generate diverse distractors for
each specific question stem. As such context-based methods such
as GAN are still valuable.

We can see that GAN + W2V reduces the mean percentages of
badly generated distractors, compared to both GAN and W2V. The
percentages of “acceptable” (good + fair) distractors are 51.7% for
Wiki-FITB and 48.4% for Course-FITB. Although the difference is
not significant given the small sizes of test set, the proposed second-
stage learner provides an initial attempt to combine the strengths
of GAN andW2V. Such learning-based method is a more systematic
way than the ad-hoc weighted combination of different predictions.

Table 2 shows an example of generated distractors for the ques-
tion “Changes in gene frequency over time describes the process
of .” We can see that GAN and W2V generate very different
distractors. Since GAN is based on context, its predictions are re-
lated to “gene” in the stem. As for W2V, the key “Evolution” is
utilized to retrieve similar concepts. In addition, we observe that
GAN + W2V’s predictions are a mix of GAN’s and W2V’s results,
which reduces the percentages of bad distractors and makes the
distractors more diverse.

5 CONCLUSION
We used conditional GANs for distraction generation for FITB
problems which to out knowledge is the first use of GANs for
this problem. Experiments on two collected biology question sets

showed that the proposed context-based method is a valuable com-
plement to previous similarity-based methods and that a second-
stage learner can be applied to combining the strengths of two
types of DG methods in order to achieve a better performance.
Such methods should significantly help instructors create better
FITB questions. Future work could be to explore: (i) a unified GAN
model which can include key information; (ii) better context mod-
eling to improve model generalization.
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