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Abstract. A hybrid architecture is presented capable of online learning
from both labeled and unlabeled samples. It combines both generative and
discriminative objectives to derive a new variant of the Deep Belief Net-
work, i.e., the Stacked Boltzmann Experts Network model. The model’s
training algorithm is built on principles developed from hybrid discrimi-
native Boltzmann machines and composes deep architectures in a greedy
fashion. It makes use of its inherent “layer-wise ensemble” nature to per-
form useful classification work. We (1) compare this architecture against
a hybrid denoising autoencoder version of itself as well as several other
models and (2) investigate training in the context of an incremental learn-
ing procedure. The best-performing hybrid model, the Stacked Boltzmann
Experts Network, consistently outperforms all others.

Keywords: Restricted Boltzmann machines · Denoising autoencoders ·
Semi-supervised learning · Incremental learning · Hybrid architectures

1 Introduction

When it comes to collecting information from unstructured data sources, the
challenge is clear for any information harvesting agent: to recognize what is
relevant and to categorize what has been found. For applications such as web
crawling, models such as the competitive Support Vector Machine are often
trained on labeled datasets [6]. However, as the target distribution (such as
that of information content from the web) evolves, these models quickly become
outdated and require re-training on new datasets. Simply put, while unlabeled
data is plentiful, labeled data is not [28]. While incremental approaches such as
co-training [15] have been employed to face this challenge, they require careful,
time-consuming feature-engineering (to construct multiple views of the data).

To minimize the human effort in gathering data and facilitate scalable learn-
ing, a model capable of generalization with only a few labeled examples and vast
quantities of easily-acquired unlabeled data is highly desirable. Furthermore, to
avoid feature engineering, this model should exploit the representational power
afforded by deeper architectures, which have seen success in domains such as com-
puter vision and speech recognition. Such a multi-level model could learn feature
abstractions, arguably capturing higher-order feature relationships in an efficient
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manner. In pursuit of this goal, our contribution is the development of a novel
hybrid Boltzmann-based architecture and its hybrid denoising autoencoder vari-
ant as well as their incremental, semi-supervised learning algorithms and predic-
tionmechanisms.The learning processmakes use of compound learning objectives,
balancing, in a parametric fashion, the dual goals of generative and discrimina-
tive modeling of data. We further experiment with relaxing our approach’s strict
bottom-up scheme to better handle the online data-stream setting.

The rest of this paper is organized in the following manner. First, we review
relevant previous work applying deep models to categorization problems in
Section 2. Following this, in Section 3, we describe the algorithmic mechanics of
our two incremental, semi-supervised deep architectures. Experimental results
of using these deep architectures in a variety of data contexts are presented in
Section 4. We sum up our work in Section 5 and consider model limitations and
potential algorithmic improvements.

2 Related Work

Our algorithms fall in the realm of representation-learning, designed to learn,
“...transformations of the data that make it easier to extract useful informa-
tion when building classifiers or other predictors” [2]. Shallow learning methods,
which require extensive prior human knowledge and large, labeled datasets, have
been argued to be limited in terms of learning functions that violate restrictive
assumptions such as smoothness and locality [4]. Moreover, architectures with
a single unobserved layer require an exponentially increasing number of units
to accurately learn complex distributions that deeper architectures, composed
of multiple layers of non-linearity, potentially can. Deeper models “exploit the
unknown structure” of the input data distribution to generate high-level features
that are invariant to most variations in the training examples and yet preserve
as much information regarding the input as possible [1].

In both large-scale, image-based [18,39] and language-based problems
[14,24,26,31], deep architectures have outperformed popular shallow models.
However, these models operate in a multi-stage learning process, where a gener-
ative architecture is greedily pre-trained and then used to initialize parameters
of a second architecture that is discriminatively fine-tuned. To help deep models
deal with potentially uncooperative input distributions or encourage learning of
discriminative information earlier in the learning process, some approaches have
leveraged auxiliary models in various ways [3,22,41]. A few methods have been
proposed for adapting deep architecture construction to incremental learning
settings [5,42]. Furthermore, an interesting approach combined the simple idea
of pseudo-labeling with training deep neural architectures composed of rectified
linear activation functions [13], a recent advancement [23].

While fundamentally different compared to purely generative or discrimina-
tive ones [21], we hypothesize that deep hybrid models that balance multiple
objectives similar to the shallow one in [19] can make good, semi-supervised
incremental models for classification. Motivated by this hypothesis, we design
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two model candidates, building on principles and successes of previous work: the
Stacked Boltzmann Expert Network (SBEN) and the Hybrid Stacked Denoising
Autoencoders model (HSDA). Furthermore, we introduce the idea of layer-wise
ensembling, a simple prediction scheme we shall describe in Section 3.3 to utilize
layer-wise information learnt by these models.

3 Deep Hybrid Architectures

In this section, we describe the implementations of our deep hybrid architectures.

3.1 The Stacked Boltzmann Experts Network (SBEN)

Our proposed variant of the Deep Belief Network (DBN), the Stacked Boltz-
mann Experts Network, follows an approach to construction and training similar
to the DBN itself. The key is to, in an efficient, greedy manner, learn a stack
of building-block models, and, as a layer is modified, freeze the parameters of
lower layers. In practice, this is done by propagating data samples up to the
layer targeted for layer-wise training and using the resultant latent representa-
tions as observations for constructing a higher level model. In contrast to the
DBN, which stacks restricted Boltzmann machines (RBM’s) and is often used to
initialize a deep multi-layer perceptron (MLP), the SBEN model is constructed
by composing hybrid restricted Boltzmann machines and is directly applied to
the discriminative task and potentially fine-tuned directly1.

The hybrid restricted Boltzmann machine (HRBM) [19,20,34], originally
referred to as the ClassRBM, formalized the RBM extended to handle classi-
fication tasks directly. The model has been studied and used in a wide variety
of applications [8,12,25,38] including the top of a DBN [36], most of which
focus on the directly supervised facet of the model. With defined parameters2

Θ = (W,U,b, c,d), the HRBM is designed to model the joint distribution of
a binary pattern vector x = (x1, · · · , xD) and its corresponding target variable
y ∈ {1, · · · , C} utilizing a set of latent variables h = (h1, · · · , hH). The HRBM
assigns a probability to the triplet (y,x,h) using:

p(y,x,h) =
e−E(y,x,h)

Z
, with, p(y,x) =

1
Z

∑

h

e−E(y,x,h) (1)

where Z =
∑

(y,x,h) e−E(y,x,h) is the partition function meant to ensure that the
value assignment is a valid probability distribution.Noting that theey = (1i=y)C

i=1

is the one-hot vector encoding of y, the model’s energy function may be defined as

E(y,x,h) = −hTWx − bTx − cTh − dTey − hTUey. (2)

1 We have developed an algorithm to fine-tune the SBEN jointly, but leave usage and
evaluation of this for future work.

2 W is the input-to-hidden weight matrix, U the hidden-to-class weight matrix, b the
visible bias vector, c the hidden unit bias vector, and d the class unit bias vector.
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It is often not possible to compute p(y,x,h) or the marginal p(y,x) due to the
intractable partition function. However, we may leverage block Gibbs sampling to
draw samples of the HRBM’s latent variable layer given the current state of the
visible layer (composed of x and ey) and vice versa, owing to the graphical model’s
bipartite structure (i.e., no intra-layer connections). This yields implementable
equations for conditioning on various layers of the model as follows:

p(h|y,x) =
∏

j

p(hj |y,x), with p(hj = 1|y,x) = σ(cj + Ujy +
∑

i

Wjixi) (3)

p(x|h) =
∏

i

p(xi|h), with p(xi = 1|h) = σ(bi +
∑

j

Wjihj) (4)

p(y|h) =
edy+

∑
j Ujyhj

∑
y� edy�+

∑
j Ujy�hj

(5)

σ(v) = 1/(1 + e−v). Furthermore, to perform classification directly using the
HRBM, one uses the model’s free energy function F (y,x) to compute the con-
ditional

p(y|x) =
e−F (y,x)

∑
y�∈{1,··· ,C} e−F (y�,x)

(6)

where −F (y,x) = (dy +
∑

j log(1 + exp (cj + Ujy +
∑

Wjixi))).
The hybrid model is trained leveraging a supervised, compound objective loss

function that balances a discriminative objective Ldisc and generative objective
Lgen, defined as follows:

Ldisc(Dtrain) = −
|Dtrain|∑

t=1

log p(y|xt)

(7)

Lgen(Dtrain) = −
|Dtrain|∑

t=1

log p(yt,xt)

(8)
where Dtrain = {(yt,xt)}, the labeled training dataset. The gradient for Ldisc

may be computed directly, following the general form

∂ log p(yt|x)
∂θ

= −Eh|yt,xt

[
∂

∂θ
(E(yt,xt,h))

]
+ Ey,h|,x

[
∂

∂θ
(E(y,x,h))

]
(9)

implemented via direct formulation (see [20] for details) or a form ofDropping, such
as Drop-Out or Drop-Connect [37]. The generative gradient follows the form

∂ log p(yt,x)
∂θ

= −Eh|yt,xt

[
∂

∂θ
(E(yt,xt,h))

]
+ Ey,x,h

[
∂

∂θ
(E(y,x,h))

]
(10)



520 A.G. Ororbia et al.

Algorithm 1. Contrastive Divergence: Single update for HRBM generative
objective.

Input: training sample (yt,xt), HRBM current model parameters Θ
// Note that “a ← b” indicates assignment and “a ∼ b” indicates a is sampled from
b
function computeGenerativeGradient(yt,xt, Θ)

if yt = ∅ then
yt ∼ p(y|x) � Obtain a pseudo-label for the unlabeled sample.

// Conduct Positive Phase

y0 ← yt, x
0 ← xt, ̂h

0 ← σ(c + Wx0 + Uey0)
// Conduct Negative Phase
h0 ∼ p(h|y0,x0), y1 ∼ p(y|h0), x1 ∼ p(x|h0)
̂h1 ← σ(c + Wx1 + Uey1)
// Compute Gradient Update
for θ ∈ Θ do

� ← ∂
∂θ

E(y0,x0, ̂h
0
) − ∂

∂θ
E(y1,x1, ̂h

1
)

return �

and, although intractable for any (yt,xt), is approximated via contrastive diver-
gence [17], where the intractable second expectation is replaced by a point esti-
mate using one Gibbs sampling step (after initializing the Markov Chain at the
training sample).

In the semi-supervised context, where Dtrain is small but a large, unlabeled
dataset Dunlab is available, the HRBM can be further extended to train with
an unsupervised objective Lunsup, where negative log-likelihood is optimized
according to

Lunsup(Dunlab) = −
|Dunlab|∑

t=1

log p(xt). (11)

The gradient for Lunsup can be simply computed using the same contrastive diver-
gence update for Lgen but incorporating an extra step at the beginning by sam-
pling from the model’s current estimate of p(y|u) for an unlabeled sample u. This
form of the generative update could be viewed as a form of self-training or Entropy
Regularization [23]. The pseudo-code for the online procedure for computing the
generative gradient (either labeled or unlabeled example) for a single HRBM is
shown in Algorithm 1.

To train a fully semi-supervised HRBM, one composes the appropriate multi-
objective function using a simple weighted summation:

Lsemi(Dtrain,Dunlab) = γLdisc(Dtrain)+αLgen(Dtrain)+βLunsup(Dunlab) (12)

where α and β are coefficient handles designed to explicitly control the effects
that the generative gradients have on the HRBM’s learning procedure. We intro-
duced the additional coefficient γ as a means to also directly control the effect of
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Fig. 1. Architecture of the SBEN model. The flow of data through the system is indi-
cated by the numbered arrows. Given a sample x, the dash-dotted arrow indicates
obtaining an estimated label by using the current layer’s conditional via Equation 6
(i.e., Step # 1 dash-dotted red arrow). The latent representation is computed using
this proxy label and the data vector via Equation 3 (i.e.,Step # 2, dashed green arrow).
This procedure is repeated recursively, replacing x with hn.

the discriminative gradient in model training. Setting γ = 0 leads to construct-
ing a purely generative model of Dtrain and Dunsup, and further setting β = 0
leads to purely supervised generative modeling of labeled dataset Dtrain. If the
target task is classification, then γ may be set to any value in (0, 1] (for simplic-
ity, we chose γ = 1, although future work shall investigate building models with
values of this coefficient that shift the balance to models that favor generative
features a bit more). These free parameters, though making model selection a
bit more challenging, offer an explicit means of controlling the extent to which
the final parameters discovered are influenced by generative learning [20], much
in contrast to simple generative pre-training of neural architectures.

As mentioned before, to compose ourN -layer SBEN (orN -SBEN), one follows
the same greedy, layer-wise procedure of a DBN. However, unlike DBN’s, where
stacking RBM’s warrants only a direct feedforward operation (since RBM’s con-
tain only a single set of inputs), modifications must be made to account for the
architectural design of the HRBM graphical model. In order to unify the SBEN
architecture while respecting HRBM building block design, one must combine
Equations 3 and 6 to properly compute intermediate data representations dur-
ing training and prediction. This gives rise to the architecture as depicted in Fig. 1
and its corresponding learning procedure in Algorithm 2, where the representation
for the layer above cannot be computed without first obtaining an estimate of the
current layer’s p(y|x). 3 Each HRBM layer of the SBEN is greedily trained using

3 One may sample from this prediction vector as one would for hidden activations, how-
ever, we found that simply using this mean in forward propagation step yielded best
results.
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Algorithm 2. Greedy, layer-wise construction of an N -SBEN, where N is the
desired number of layers of latent variables.

Input: Dtrain, Dunlab, learning rate λ and hyper-parameters γ, α, β, numSteps, and
initial model parameters Θ = {Θ1, Θ2, ..., ΘN}
function constructModel(Dtrain, Dunlab, λ, γ, α, β, numSteps, Θ)

Dn
train ← Dtrain, Dn

unlab ← Dunlab � Initialize subsets to low-level
representations

for Θn ∈ Θ do
t ← 0
while t ≤ numSteps do

(yt,xt) ∼ Dn
train � Draw sample from Dn

train without replacement
(ut) ∼ Dn

unlab � Draw sample from Dn
unlab without replacement

(�disc, �gen, �unsup) ← updateLayer(yt,xt,ut, Θn)
Θn ← Θn + λ(−γ �disc +α �gen +β�unsup), t ← t + 1

Dh
train ← ∅, Dh

unlab ← ∅
for (yt,xt) ∈ Dn

train do � Compute latent representation dataset for Dn
train

Dh
train ← computeLatentRepresentation(yt,xt, Θn)

for (∅,ut) ∈ Dn
unlab do � Compute latent representation dataset for Dn

unlab

Dh
unlab ← computeLatentRepresentation(∅,ut, Θn)

Dn
train ← Dh

train, Dn
unlab ← Dh

unlab

function updateLayer(yt,xt,ut, Θn)
�disc ← computeDisciminativeGradient(yt,xt, Θn) � See [20] for details
�gen ← computeGenerativeGradient(yt,xt, Θn) � See Algorithm 1
�unsup ← computeGenerativeGradient(∅,ut, Θn) � See Algorithm 1
return (�disc, �gen, �unsup)

function computeLatentRepresentation(yt,xt, Θn)
yh

t ← p(yt|xt, Θn) � Equation 6 under the layerwise model
ht ∼ p(h|yh

t ,xt, Θn) � Equation 3 under the layerwise model
return (yt,ht)

the frozen latent representations of the one below, generated by using lower level
expert’s inputs and predictions.

The generative objectives (for both unlabeled and labeled samples) of our
model can be viewed as a form of data-dependent regularization acting on the
discriminative learning gradient of each layer. One key advantage of SBEN train-
ing is that each layer’s discriminative progress may be tracked directly, since each
layer-wise expert is capable of direct classification using Equation 6 to compute
the conditional p(y|hbelow). Note that setting the number of hidden layers equal
to 1 recovers the original HRBM architecture (a 1 -SEBN). One may notice some
similarity with the partially supervised, layer-wise procedure of [3] where a sim-
ple softmax classifier was loosely coupled with each RBM of a DBN. However,
this only served as a temporary mechanism for pre-training whereas the SBEN
leverages the more unified framework of the HRBM during and after training.
Note that inputs to the SBEN, like the DBN, can be trivially extended [29,40].
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A useful property of the SBEN model is that it also contains a generative
model “facet” due to its hybrid nature. One could treat this facet as a directed,
top-down generative network and generate fantasy samples for specific, clamped
class units. In addition, one could generate class-specific probabilistic scores for
input features by adapting the procedure in [37] and, since each layer contains
class units, potentially uncover the SBEN hierarchy extracted from the data.

3.2 Hybrid Stacked Denoising Auto-Encoders (HSDA)

The auto-encoder variant of the SBEN is the Hybrid Stacked Denoising Autoen-
coders model. Instead of building a direct model of the joint distribution of
(yt,xt) as in the HRBM, the hybrid denoising autoencoder (hDA) building
block, with parameters Θ = (W,W′,U,b,b′,d), may be viewed as a fusion
of a generative model of p(x), or an encoder-decoder reconstruction model, with
a conditional model of p(y|x), or a single-layer MLP. The reconstruction model
learns a corrupted version of the feature vector xt, which is created via stochas-
tic mapping x̂t ∼ qD(x̂t|x), where qD is a function that stochastically corrupts
an input vector (i.e., randomly masking entries by setting them to zero under a
given probability). The reconstruction model is defined as

h = fθ(x̂) = σ(Wx̂ + b) (13) z = gθ(h) = σ(W′h + b′) (14)

where parameters W and W′ may be “tied” by setting W′ = WT . The encoder
deterministically maps an input to a latent representation h (Equation 13) and
the decoder maps this h back to a reconstruction z (Equation 14). The coupled
neural network is tasked with mapping input x to y while sharing its latent layer
h with the encoder-decoder pair. To compute the conditional p(y|x), one uses
Equation 13 followed by Equation 5 of the HRBM. While the discriminative
objective of an hDA is defined similarly to the HRBM (Equation 7), where
gradients of the log loss are computed directly (as in an MLP), the generative
objective Lgen proceeds a bit differently:

Lgen(Dtrain) = −
|Dtrain|∑

t=1

xt log zt + (1 − xt) log(1 − zt) (15)

This is the cross-entropy of two independent multivariate Bernoulli distributions,
or cross-entropy loss. Unlike the HRBM, training an hDA under this generative
objective is notably simpler since it uses back-propagation combined with the
loss as defined in Equaton 15. A full hDA is trained using the weighted, tri-
objective framework described in Section 3.1, Lsemi (Equation 12), where its
unlabeled objective Lunsup uses the same cross-entropy function as Lgen but
operates on samples drawn from Dunlab. The semi-supervised hDA differs from
the HRBM complement in not only gradient calculation but also in that its
unsupervised components do not require a corresponding sample of the model’s
estimate of p(yt|ut) for an unlabeled sample ut. This is advantageous since gen-
erative gradients are computed independently of the existence of a label, saving
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computational time and avoiding one drawback of self-training schemes: Rein-
forcement of incorrect predictions through model-generated pseudo-labels.

In the same greedy, layer-wise fashion as the SBEN, the N -layer HSDA
(N -HSDA) may be composed by stacking hDA’s. By replacing the procedure
for generative gradients (Algorithm 1) and the discriminative gradient with the
appropriate autoencoder cross-entropy back-propagation alternatives and sub-
stituting Equations 6 and 3 with Equation 13 (for computing hidden activities
in COMPUTELATENTREPRESENTATION of Algorithm 2), one may build
an HSDA using Algorithm 2. The most useful property of the HSDA is that
required computation for training and prediction may be reduced since dimen-
sionality of each latent representation in auto-encoder architectures can be grad-
ually decreased for upper levels of the network.

One may notice that the architectures of [42] and [30] may be recovered from
our framework by manipulating the coefficients γ, α, and β in the Lsemi objective
function for the HSDA. Both these studies made use of dual-gradient models,
which either focused on a hybrid objective that balanced a discriminative and
weighted generative objective on a single sample (where the objective collapsed
into a single generative objective when no label was available) [42] or where
a generative objective was used as the primary objective and combined with
a weighted discriminative objective [30]. Since our HSDA architecture can be
viewed as a more general formulation of these original models, it is also amenable
to their own particular extensions (such as feature growth/pruning, alternative
input units for handling different types of data, etc.).

3.3 Ensembling of Layer-Wise Experts

Both the SBEN and the HSDA models, in addition to unique strengths, possess
the interesting property where each layer, or expert, of the model is capable of
classification given the appropriate latent representation of the data. This implies
that the model is ensemble-like in its very nature but differs from standard
ensemble methods where many smaller models are horizontally aggregated using
well-established schemes such as boosting [33] or majority voting. Traditional
feedforward models simply propagate data through the final network to obtain
an output prediction from its penultimate layer for a given xt. In contrast, these
hybrid models are capable of a producing a label yn

t at each level n for xt,
resulting from their layer-wise multi-objective training.

To vertically aggregate layer-wise expert outputs, we experimented with a
variety of schemes in development, but found that computing a simple mean
predictor, p(y|x)ensemble worked best, defined as:

p(y|x)ensemble =
1
N

N∑

n=1

p(y|x)n (16)

This ensembling scheme allows for all components of the hybrid model to play a
role in classification of unseen samples, perhaps leveraging acquired discrimina-
tive “knowledge” at their respective level of abstraction in the model hierarchy to
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ultimately improve final predictive performance. This scheme exploits our model’s
inherent layer-wise discriminative ability, which stands as an alternative to cou-
pling helper classifiers as in [3] or the “companion objectives” of [22] to solve poten-
tial exploding gradients in deep convolution networks for object detection.

4 Experimental Results

We present experimental results on several classification problems in both optical
character recognition and document categorization.

Character Recognition. Two experiments were conducted. The first experiment
uses the Stanford OCR dataset, which contains 52,152 16 × 8 binary pixel images
labeled as 1 of 26 letters of the English alphabet. Training (∼ 2% of source), valida-
tion (∼ 1.9%), unlabeled (∼ 19.2%), and test sets (∼ 77%) are created via a seeded
randomsamplingwithout replacement procedure that ensured examples fromeach
class appeared in roughly equal quantities in training and validation subsets. The
second experiment makes use of a (seeded) stochastic process we implemented that
generates 28×28 pixel CAPTCHA images of single characters based on the CAGE
model4, where one of 26 English characters may be generated (26 classes), of either
lower or upper-case form in a variety of fonts as well as orientations and scales. We
make use of this process in two ways: 1) create a finite dataset of 16,000 samples
with (∼ 3.125% in training, ∼ 3.125% in validation, ∼ 31.125% in unlabeled, and
∼ 62.25% in test) and perform an experiment similar to the OCR dataset, and 2)
use the process as a controllable data-stream, which allows for compact storage of
a complex distribution of image samples. The only pre-processing applied to the
CAPTCHA samples was pixel binarization.

Text Categorization. We make use of a pre-processed WEBKB text collection (i.e.,
font formatting, stop words removed, terms stemmed, and words with length less
than 3 removed) [7], which contains pages from a variety of universities (Cornell,
Texas, Washington, and Wisconsin and miscellaneous pages from others). The 4-
class classification problem as defined by this dataset will be to determine if a web-
page can be identified as one belonging to a Student, Faculty, Course, or a Project.
The dataset was already pre-partitioned into a training set (2,803 samples) and a
test set (1,396 web pages), so using the same sampling scheme as the OCR data, we
built from the training split a smaller training (∼ 20.2%) and validation (∼ 14.2%)
subset, and put the rest into the unlabeled set (∼ 62.5%), discarding 87 document
vectors that contained less than 2 active features. The test set contained 1,344 sam-
ples, after discarding 52 samples with less than 2 active features. We simplified the
low-level feature representation by using the top 2000words in the corpus andbina-
rizing the document term vectors.

Models. We compare the HSDA and SBEN models to the non-linear, shallow
HRBM (which, as described in Section 3.1, is a 1 -SBEN). For a simpler clas-
sifier, we implemented an incremental version of Maximum Entropy (which, as

4 https://akiraly.github.io/cage/index.html

https://akiraly.github.io/cage/index.html
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explained in [32], is equivalent to a softmax classifier), or MaxEnt. Furthermore,
we implemented the Pegasos SVM algorithm (SVM ) [35] and extended it to fol-
low a proper multi-class scheme [9]. This is the online formulation of the Support
Vector Machine, trained via sub-gradient descent on the primal objective followed
by a projection step (note that for simplicity we built the linear-kernel version of
the model, which is quite fast). Evaluating the Pegasos SVM algorithm in the fol-
lowing experiments allows us to compare our deep semi-supervised models against
the incremental version of a strong linear-kernel classifier. To provide some con-
text with previously established deep architectures also learnable in a 1-phase fash-
ion like our own, we present results for a simple sparse Rectifier Network, or Rect.
[13]. 5 Note that we extended all shallow classifiers and the Rectifier Network to
leverage self-training so that they may also learn from unlabeled examples. To do
so, we implemented a scheme similar to that of [23] and used a classifier’s esti-
mate of p(y|u) for an unlabeled sample. However, a 1-hot proxy encoding using the
argmax of model’s predictor was only created for such a sample if max[p(y|u)] > p̄.
We found that by explicitly controlling pseudo-labeling through p̄ we could more
directly improve model performance.

Model Selection. Model selection was conducted using a parallelized multi-
setting scheme, where a configuration file for each model was specified, describing
a set of hyper-parameter combinations to explore (this is akin to a course-grained
grid search, where points of model evaluation are set manually a priori). For the
HSDA, SBEN, HRBM, and Rect we varied model architectures, exploring under-
complete, complete, and over-complete versions, as well as the learning rate, α,
and β coefficients (holding γ fixed at 1.0). If a model was trained using its
stochastic form (i.e., HRBM, SBEN, or HSDA), to ensure reproducible model
behavior, we ran it in feedforward mean-field, where no sampling steps were
taken when data vectors were propagated through a network model when col-
lecting layer-wise predictions (we also found that this yielded lowest generaliza-
tion error). For the SVM, we tuned its slack variable λ. The rectifier network’s
training also involved using a L2 regularization penalty (0.002), initialization
of hidden biases to small positive values (|N(0, 0.25)|) [13], and the use of the
improved leaky rectifier unit [27].

For all finite dataset experiments, model performance is reported on the test set
using the model with lowest validation-set error found during the training step.6

Generalization performance was evaluated by calculating classification error,

5 Model implementations were computationally verified for correctness when applicable.
Since discriminative objectives entailed using an automatic differentiation framework,
we checked gradient validity via finite difference approximation.

6 For the SVM, λ was varied in the interval [0.0001, 0.5] while the learning rate for
all other models was varied in [0.0001, 0.1]. For HRBM, SBEN, & HSDA, β was
explored in the interval [0.05, 0.1], and for HRBM, SBEN, & HSDA, α was explored in
[0.075, 1.025]. The threshold p̄ was varied in [0.0, 1.0] and the number of latent layers N
for deeper architectures was explored in [2, 5] where we delineate the optimal number
with the prefix “N -”.
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Table 1. Character identification results on the CAPTCHA simulated dataset. Clas-
sification results are reported as 10-trial averages with single standard deviation from
the mean.

Error Precision Recall F1-Score

MaxEnt 0.475 ± 0.010 0.535 ± 0.011 0.524 ± 0.010 0.522 ± 0.010
SVM 0.461 ± 0.011 0.564 ± 0.010 0.537 ± 0.011 0.526 ± 0.011
2-Rect [13,23] 0.365 ± 0.011 0.651 ± 0.011 0.634 ± 0.011 0.627 ± 0.013
HRBM [20] 0.368 ± 0.009 0.643 ± 0.010 0.631 ± 0.009 0.629 ± 0.009
5-SBEN 0.324 ± 0.008 0.681 ± 0.009 0.675 ± 0.008 0.671 ± 0.009
5-HSDA 0.359 ± 0.011 0.650 ± 0.011 0.640± 0.011 0.633 ± 0.011

Table 2. Character identification results on the Stanford OCR dataset. Classification
results are reported as 10-trial averages with single standard deviation from the mean.

Error Precision Recall F1-Score

MaxEnt 0.425 ± 0.009 0.508 ± 0.006 0.563 ± 0.005 0.512 ± 0.006
SVM 0.428 ± 0.008 0.504 ± 0.004 0.582 ± 0.011 0.510 ± 0.007
3-Rect [13,23] 0.387 ± 0.009 0.549 ± 0.009 0.592 ± 0.014 0.548 ± 0.011
HRBM [20] 0.399 ± 0.019 0.565 ± 0.009 0.606 ± 0.016 0.552 ± 0.014
3-SBEN 0.333 ± 0.009 0.602 ± 0.009 0.668 ± 0.009 0.610 ± 0.012
3-HSDA 0.399 ± 0.012 0.546 ± 0.007 0.601 ± 0.012 0.537 ± 0.009

Table 3. Text categorization results on the WEBKB dataset.

Error Precision Recall F1-Score Error Precision Recall F1-Score

MaxEnt 0.510 0.386 0.387 0.384 3-SBEN 0.210 0.788 0.770 0.769
SVM 0.524 0.404 0.378 0.387 3-HSDA 0.219 0.757 0.780 0.765

precision, recall, and F-Measure, where F-Measure was chosen to be the harmonic
mean of precision and recall, F1 = 2(precision · recall)/(precision + recall).

Since the creation of training, validation, and unlabeled subsets was con-
trolled through a seeded random sampling without replacement process, the
procedure described above composes a single trial. For the Standford OCR and
CAPTCHA datasets, the results we report are 10-trial averages with a single
standard deviation from the mean, where each trial used a unique seed value.

4.1 Finite Dataset Learning Performance

On all of the datasets we experimented with, in the case when all samples
are available a priori, ranging from vision-based tasks to text classification,
we observe that hybrid incremental architectures have, in general, lower error
as compared to non-hybrid ones. In the CAPTCHA experiment (Table 1), we
observed that both the SBEN and HSDA models reduced prediction error over
the SVM by nearly 30% and 22% respectively. Furthermore, both models con-
sistently improved over the error the HRBM, with the SBEN model reducing
error by ∼ 12%. In the OCR dataset (Table 2), we see the SBEN improving over
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Fig. 2. Online error (y-axis) of 3-SBEN, 3-HSDA, & HRBM (or 1 - SBEN) evaluated
every 100 time steps (x-axis). Each curve reported is a 4-trial mean of the lowest
validation error model.

the HRBM by more than 16% and the SVM by more than 22%. In this case,
the HSDA only marginally improves over the SVM model (∼ 6%) and equal to
that of an HRBM, the poor performance we attribute to a coarse search through
a meta-parameter space window as opposed to an exhaustive grid search. For
WEBKB problem, over the MaxEnt model (which slightly outperformed the
SVM itself), we see a ∼ 57% improvement in error for the HSDA and ∼ 58% for
the SBEN (Table 3). Note that the rectifier network is competitive, however, in
both image-based experiments, the SBEN model outperforms it by more than
11% on CAPTCHA and nearly 14% on OCR.

4.2 Incremental Learning Performance

In the online learning setting, samples from Dunlab may not be available at once
and instead available at a given rate in a stream for a single time instant (we
chose to experiment with one example presented at a given iteration and only
constant access to a |Dtrain| = 500). In order to train a deep architecture in
this setting, while still exploiting the efficiency of a greedy, layer-wise approach,
one may remove the “freezing” step of Algorithm 2 and train all layers dis-
jointly in an incremental fashion as opposed to a purely bottom-up approach.
Using the same sub-routines as depicted in Algorithm 2, this procedure may
be implemented as shown in Algorithm 3, effectively using a single bottom-up
pass to modify model parameters. This approach adapts the training of hybrid
architectures, such as the SBEN and HSDA, to the online learning setting.

As evidenced by Fig. 2, it is possible to train the layer-wise experts of a multi-
level hybrid architecture simultaneously and still obtain a gain in generalization
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Algorithm 3. Online variant of layer-wise construction of a deep hybrid archi-
tecture.

Input: (yt,xt) ∈ Dtrain, (ut) ∈ Dunlab, learning rate λ, hyper-parameters γ, α, β,
& model parameters Θ = {Θ1, Θ2, ..., ΘN}
function constructModel(yt,xt,ut, λ, γ, α, β, Θ)

xh
t ← xt, u

h
t ← ut � Initialize samples to low-level representations

for Θn ∈ Θ do
(�disc, �gen, �unsup) ← updateLayer(yt,x

h
t ,uh

t , Θn)
Θn ← Θn + λ(−γ �disc +α �gen +β�unsup), t ← t + 1
// Compute latent representation of data samples
(yt,x

h
t ) ← computeLatentRepresentation(yt,x

h
t , Θn)

(∅,uh
t ) ← computeLatentRepresentation(∅,uh

t , Θn)

performance over a non-linear, shallow model such as the HRBM. The HRBM
settles at an online error of 0.356 whereas the 5-HSDA reaches an error of 0.327
and the 5-SBEN an error of 0.319 in a 10,000 iteration sweep. Online error was
evaluated by computing classification error on the next 1,000 unseen samples
generated by the CAPTCHA process.

While the simultaneous greedy training used in this experiment allows for
construction of a deep hybrid model in unity when faced with a data stream, we
note that instability may occur in the form of “shifting representations”. This
is where an upper level model is dynamically trained on a latent representation
of a lower-level model that has not yet settled since it has not yet seen enough
samples from the data distribution.

5 Conclusions

We developed two hybrid models, the SBEN and the HSDA, and their training
algorithms in the context of incremental, semi-supervised learning. They com-
bine efficient greedy, layer-wise construction of deeper architectures with a multi-
objective learning approach. We balance the goal of learning a generative model
of the data with extracting discriminative regularity to perform useful classifi-
cation. More importantly, the framework we describe facilitates more explicit
control over the multiple objectives involved. Additionally, we presented a ver-
tical aggregation scheme, layer-wise ensembling, for generating predictions that
exploit discriminative knowledge acquired at all levels of abstraction defined by
the architecture’s hierarchical form. Our framework allows for explicit control
over generative and discriminative objectives as well as a natural scheme for
tracking layer-wise learning.

Models were evaluated in two problem settings: optical character recognition
and text categorization. We compared results against shallow models and found
that our hybrid architectures outperform the others in all datasets investigated.We
found that the SBEN performed the best, improving classification error by as much
58% (compared to Maximum Entropy on WEBKB). Furthermore, we found that
improvement in performance holds when hybrid learning is adapted to an online
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setting (relaxing the purely bottom-up framework in Section 3.1). We observe that
we are able to improve error while significantly minimizing the number of required
labeled samples (as low as 2% of total available data in some cases).

The hybrid deep architectures presented in this paper are not without potential
limitations. First, there is the danger of “shifting representations” if using Algo-
rithm 3 for online learning. To combat this, samples could be pooled into mini-
batchmatrices before computing gradients andminimize someof the noise of online
error-surface descent. Alternatively, all layer-wise experts could be extended tem-
porally to Conditional RBM-like structures, potentially improving performance as
in [43]. Second, additional free parameterswere introduced that require tuning, cre-
ating a more challenging model selection process for the human user. This may be
alleviated with a parallelized, automated approach, however, a model that adapts
its objectiveweights during the learning processwould be better, altering its hyper-
parameters in response to error progress on data subsets. Our frameworks may
be augmented with automatic latent unit growth for both auto-encoder [42] and
Boltzmann-like variants [10] or perhaps improved by “tying” all layer-wise expert
outputs together in a scheme like that in [11].

The models presented in this paper offer promise in the goal of incremen-
tally building powerful models that reduce expensive labeling and feature engi-
neering effort. They represent a step towards ever-improving models that adapt
to “in-the-wild” samples, capable of more fully embracing the “...unreasonable
effectiveness of data” [16].

Acknowledgments. The first author acknowledges support from Pennsylvania State
University & the National Science Foundation under IGERT award # DGE-1144860,
Big Data Social Science. We thank Hugo Larochelle and Roberto Calandra for their
correspondence and advice, although all shortcomings of the presented work are ours.

References

1. Bengio, Y.: Deep learning of representations for unsupervised and transfer learning.
Journal of Machine Learning Research-Proceedings Track (2012)

2. Bengio, Y., Courville, A.C., Vincent, P.: Unsupervised feature learning and deep
learning: Review and new perspectives (2012). CoRR abs/1206.5538

3. Bengio, Y., Lamblin, P., Popovici, D., Larochelle, H.: Greedy layer-wise training
of deep networks. Advances in Neural Information Processing Systems (2007)

4. Bengio, Y., LeCun, Y.: Scaling learning algorithms towards AI. Large-Scale Kernel
Machines 34, 1–41 (2007)

5. Calandra, R., Raiko, T., Deisenroth, M.P., Pouzols, F.M.: Learning deep
belief networks from non-stationary streams. In: Villa, A.E.P., Duch, W.,
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